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Abstract: Exploratory factor analysis (EFA) is a very widely used statistical procedure in the social
and behavioral sciences. This technique features in validity studies, as well as investigations of
latent structure underlying observed measurements. A primary aspect of using EFA is determining
the number of factors to retain. In addition to theoretical considerations, a variety of statistical
tools have been developed and recommended for use in assisting researchers with respect to factor
retention. Some research has been conducted to investigate the accuracy of these methods in the
case of continuous factor indicators. The purpose of the current simulation study was to extend this
earlier work to situations in which the indicator variables are dichotomous, as with questionnaire
or test items. Results of this study revealed that an approach based on the combined results of the
empirical Kaiser criterion, comparative data, and Hull methods, as well as Gorsuch’s CNG scree plot
test by itself, all yielded accurate results with respect to the number of factors to retain. Implications
for practice are discussed.
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1. Introduction

Exploratory factor analysis (EFA) is a widely used tool in the psychological sciences.
For example, in a recent review of the Psycinfo search engine for the 10 years between
31 July 2013 and 31 July 2023, using the keyword “exploratory factor analysis”, a total of
560,312 separate journal articles were identified. Given its ubiquity and importance in
assessing the viability of psychological theories, the appropriate application of EFA by
researchers is of key importance in order to ensure that statistical results are as accurate as
possible. Perhaps the central decision to be made by researchers using EFA is the number
of factors to retain [1]. Many methods exist for determining the number of factors to
retain when using EFA, and a number of studies have compared these methods in the
presence of normally distributed observed indicator variables; e.g., [2]. However, in many
psychological and educational applications, the observed indicator variables associated
with the use of EFA are dichotomous in nature e.g., [3,4]. For example, popular scales of
mood [5] and anxiety [6] rely on items that force respondents to select whether particular
symptoms are present or absent. Likewise, personality inventories [7], academic admissions
tests [8], and numerous tests of cognitive ability [9] consist of items with dichotomous
responses. Therefore, it is of key importance for researchers and data analysts to have
insights regarding optimal techniques for determining the number of factors to retain
in the case of categorical, and in particular dichotomous, indicator variables. Although
research has been conducted to examine the performance of techniques for determining the
number of factors to retain in EFA, these have focused on continuous indicator variables [2].
Given the aforementioned ubiquity of dichotomous items in in social science research, it is
worthwhile to investigate the performance of factor determination methods for such scales.

The purpose of this study was to build on earlier work [2,10] by examining a wide
range of statistics for determining the number of factors to retain in the context of dichoto-
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mous observed indicator variables. The prior research in this area has focused primarily on
approaches for determining the number of factors to retain when the indicator variables
are continuous [2]. While certainly informative, this earlier work does not pertain directly
to the case where indicators consist of dichotomous variables, such as item responses,
which are common in the social sciences, as discussed above. There has been some strong
recent work examining the performance of parallel analysis and revised parallel analysis
in the context of EFA with dichotomous items [10] However, this work has not included
the full range of statistical tools available to determine the number of factors to retain,
beyond the parallel analysis framework. The current study extends on this earlier work
by comparing the full array of methods heretofore used with continuous indicators with
dichotomous items.

The remainder of the manuscript is structured as follows: First is a brief review of
the one-factor model, followed by a description of the various factor retention methods
examined in this study. Next is a review of prior research focused on factor retention
techniques with continuous and categorical indicators. The simulation methodology used
in this study is then described, followed by the results, and finally a discussion of the
findings from the current study in light of prior research.

2. Exploratory Factor Analysis

The EFA model can be expressed as:

Y = Λξ + Ψ (1)

where

Y = matrix of observed indicator variables
ξ = matrix of factor(s)
Λ = matrix of factor loadings relating indicators to factor(s)
Ψ = matrix of unique random errors associated with the observed indicators

Of particular interest in the context of EFA is the factor loading matrix, Λ, which
links the observed indicator variables to the latent factors. Indicator factor combinations
with non-trivial loadings, e.g., >0.3 [11], are said to be associated with one another. Based
on the indicator groupings, researchers can make inferences regarding the nature of the
latent traits underlying the observed indicators. A number of methods are available for
estimating the model parameters in Equation (1), a step often referred to as factor extraction.
Perhaps the most widely used of these methods are maximum likelihood estimation (MLE)
and principal axis factoring (PAF). After the initial factor loadings are extracted, they
are typically transformed (i.e., rotated) in order to improve interpretability of the results
through the mathematical encouragement of simple structure in Λ; i.e., each indicator will
be associated with a single factor.

3. Determining the Number of Factors to Retain

EFA is, by definition, an exploratory statistical technique. As such, researchers using it
do not explicitly link individual indicator variables to specific latent factors. In addition,
typical EFA practice involves an exploration of multiple possible factor solutions, with the
optimal such approach being selected as the “winner”. A key aspect of selecting the number
of factors to retain is matching the factor loading pattern with theory. The ultimate decision
regarding the EFA results to retain should be conceptually coherent and theoretically
sound with respect to how the indicators group together with the factors [12]. In addition,
researchers can make use of several statistically based techniques for ascertaining the
number of factors to retain. These methods do not refer to theory, but rather provide
insights regarding the number of factors to retain based upon statistical criteria. Although
these purely statistical approaches cannot be in isolation to determine the number of factors
to retain, they are very useful, in conjunction with theoretical considerations, to help
researchers ascertain the number of factors to retain. Following is a description of several
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such techniques that have been shown in prior research to be useful tools for determining
the number of factors to retain.

3.1. Chi-Square Test

One of the more widely used approach for determining the number of factors to retain
is the chi-square statistic associated with MLE. MLE utilizes a minimization process in
which model parameter estimates (i.e., factor loadings, variances, and error variances)
that yield a predicted covariance matrix (Σ) of the indicator variables that is very close in
value to the observed covariance matrix (S). The value of the function that results from
this minimization process can be converted to a chi-square statistic that can be used to test
the null hypothesis that Σ = S; i.e., the model predicted covariance matrix is equal to the
actual covariance matrix. This null hypothesis states that the fit of the model is perfect,
which is actually rarely achieved in practice [13,14]. Therefore, many close-fitting models
that prove useful may be rejected by the chi-square goodness of fit test, thereby leading a
researcher to conclude that the model does not provide a good fit to the data, when in fact
the proposed model does provide reasonably good data model fit. For this reason, this test
may not be particularly useful for assessing the fit of an individual model [14,15].

Despite the limited utility of the MLE chi-square test for assessing the feasibility of
a single model, it has been shown to be an effective tool for comparing EFA models with
differing numbers of factors. This approach involves obtaining the chi-square statistic
for each of several EFA results (e.g., 1 factor, 2 factors, 3 factors) and then calculating the
difference in values between adjacent factor models. These differences follow the chi-square
distribution if the observed indicators come from a multivariate normal distribution [16].
Thus, the chi-square difference statistic can be used to test the null hypothesis of equivalent
model fit between a pair of EFA models. As an example, the researcher might fit EFA
models with 1 to 4 factors. Then, the differences in chi-square fit statistic values between
1 and 2, 2 and 3, and 3 and 4 factors are calculated. If the 1 vs. 2, and 2 vs. 3 chi-square
differences values are statistically significant, but the 3 vs. 4 are not, then the researcher
would retain 3 factors.

This approach, commonly referred to as the sequential model test (SMT), has been
shown to be an effective tool when the assumption of multivariate normality is met,
and particularly when factors are relatively highly correlated [2]. However, when data
do not follow a multivariate normal distribution, the population model is mis-specified,
and/or minor factors are present in the population, SMT has tendency to overextract; i.e.,
recommend the retention of too many factors [2,17]. SMT was included in the current
study in order to serve as a baseline approach, given its popularity in applied settings.
However, given that the data used here were dichotomous, thus violating the assumption
of multivariate normality, it was not anticipated that this approach would be particularly
effective in determining the number of factors to retain.

3.2. Parallel Analysis

Another inferential approach for determining the number of factors to retain is parallel
analysis (PA). This method was first described by Horn [18], and involves the generation
of synthetic data that has the same marginal properties (i.e., means and variances) as the
actual observed data, but which has no underlying latent structure; i.e., 0 factors. Most
often, the synthetic data are generated nonparametrically through the random mixing of
indicator variable values within variables across observations. Typically, a large number
(e.g., 1000) of these synthetic datasets is generated, for each of which EFA is conducted.
The eigenvalues from these analyses, which reflect the explained variance associated with
each factor, are then used to create distributions of eigenvalues that would be expected
if no factor structure is present. The eigenvalues obtained using the observed data are
then compared to these distributions in order to determine the number of factors to retain.
A factor is retained if its observed eigenvalue is larger than the 95th percentile of the
distribution of null factor eigenvalues generated from the random data. For example, if the
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observed first, second, and third eigenvalues were 4.5, 2.1, and 0.9 and the 95th percentiles
of the first, second, and third eigenvalues were 1.4, 1.2, and 1, the researcher would retain
two factors. Researchers [17] extended the use of PA based on the tetrachoric correlation
matrix of dichotomous item response data and principal components analysis. Given that
the data used in this study were dichotomous item responses, this approach based on the
tetrachoric correlation was used in the current study. The tetrachoric correlation has been
shown to be most appropriate for estimating correlation coefficients with dichotomous
variables [19].

3.3. Revised Parallel Analysis

Researchers have pointed out that standard PA may have some limitations with respect
to assessing the magnitude of all but the largest eigenvalues produced by EFA [20]. The
rationale behind this argument is that it is only for the assessment of the first eigenvalue that
the underlying latent structure is assumed to include no factors. If the first eigenvalue for
the observed data exceeds the 95th percentile of the reference distribution, the presence of
one factor can be inferred. Thus, the second observed eigenvalue should be compared with
a null distribution assuming a single latent trait. Likewise, the third observed eigenvalue
should be compared with a null distribution assuming two latent traits, and so on. In
order to address this issue, [20] proposed the use of what they called revised PA (RPA),
in which the comparison data are generated assuming that k − 1 latent variables underlie
the observed data, rather than 0 factors as is the case with traditional PA. Thus, when
testing for 4 factors, RPA would generate data from a 3-factor model, holding the marginal
distributions of the variables to be equal to those in the observed sample. In other respects,
the methodology for RPA is the same as for standard PA.

3.4. Comparative Data Method

Concurrent with the work by [20,21] described the comparative data method (CD) for
determining the number of factors to retain. CD generates a sample of 10,000 cases based
on a correlation matrix associated with k − 1 latent variables. Next, 500 random samples
of n observations (where n is equal to the observed data sample size) are drawn from the
10,000 cases, and principal components analysis (PCA) is conducted in order to obtain
eigenvalues. Inference regarding the number of factors to retain is then carried out as with
PA and RPA. For PA, RPA, and CD in this study, the tetrachoric correlation was used.

3.5. Minimum Average Partial

Velicer [22] proposed a method for determining the number of factors to retain that
is based upon an examination of the average squared partial correlations among the
observed indicators, accounting for the influence of the latent variables. This method,
called minimum average partial (MAP), is carried out using a multiple-step procedure. In
the first step, the correlations among the observed variables are calculated, squared, and
then the squares are averaged. In the second step, the squared correlations among the
indicators are again calculated and averaged, in this case after partialing out the first latent
variable obtained using EFA. In the third step, the average squared correlation among the
observed variables is again calculated, this time partialing out the first two latent variables.
These steps are repeated for the first p − 1 factors, where p is the number of observed
indicators. The researcher then would retain the number of factors corresponding to the
minimum average squared partial correlation, as this corresponds to the point at which the
maximum amount of systematic variance in the observed indicators is accounted for by
the latent variables. Thus, if the average squared partial correlation values were 0.2, 0.15,
0.09, 0.03, 0.07, 0.11, and 0.12, the researcher would select the 4-factor solution. Simulation
research has consistently demonstrated that MAP is one of the more accurate methods for
determining the number of factors to retain [21,23–25].
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3.6. Empirical Scree Plot Methods

A plot of the eigenvalues by the factor number, known as the scree plot, was proposed
by [26] determining the optimal EFA solution. The purpose of this plot is to examine the
relationship between the number of factors and the amount of variance explained in the
observed variables (as measured by the eigenvalues), with an eye toward identifying for
which factor number the amount of explained variance declines sharply. In practice, this is
done using a scatterplot with the eigenvalue on the y-axis, the factor number on the x-axis,
and a line connecting points in the plot. As noted above, the eigenvalues decrease in value
from the first through the last factor, which is reflected in the scatterplot. The researcher
using this approach examines the plot, looking for the point where the line connecting the
eigenvalues begins to flatten out in its rate of decline. This point will correspond to the
number of factors that should be retained.

In practice, the scree plot has been found to be relatively inaccurate with respect to the
number of factors to retain, in large part perhaps due to the highly subjective interpretive
criterion [27]. Thus, multiple more objective approaches based on the scree plot have been
discussed in the literature. Gorsuch’s [1] CNG scree test involves the calculation of the slope
linking the first three eigenvalues, then the calculation of the slope linking eigenvalues
2, 3, and 4, then the slope linking eigenvalues 3, 4, and 5, and so on. The researcher
then compares these slopes with one another, and selects the number of factors where
the difference between the slopes is greatest. Thus, for example, if the largest difference
between slope values lies between the line for points 2, 3, and 4 versus the line for points 3,
4, and 5, we would retain 4 factors. Zoski and Jurs [28] suggested a variant (NMREG) of
the Gorsuch approach in which pairs of regression equations are estimated using all of the
data points, rather than just sets of 3 at a time. Thus, for p indicator variables, the following
pairs of equations would be considered:

Line 1 (eigenvalues 1, 2, and 3) Line 2 (eigenvalues 4 through p)
Line 3 (eigenvalues 1, 2, 3, and 4) Line 4 (eigenvalues 5 through p)
Line 5 (eigenvalues 1, 2, 3, 4, and 5) Line 6 (eigenvalues 6 through p)

The slopes for the lines in each pair (e.g., line 1 versus line 2) are then compared using a t-test,
and the number of factors to be retained is associated with the maximum t value. As an example,
if the maximum t statistic is associated with the comparison between lines 3 and 4, then 4 factors
(corresponding the largest factor number in line 3) would be retained.

3.7. Hull Method
Lorenzo-Seva, et al. [29] described an approach for determining the number of factors to retain

from an EFA that is related to the scree plot approaches described above. The Hull technique is based
on model goodness of fit test results using the following steps.

1. Fit EFA models with varying numbers of factors (e.g., 1, 2, 3, etc.).
2. For each model from step 1, calculate a goodness of fit statistic (Gm and model degrees of

freedom d f m), such as the CFI.
3. Compare the values of Gm across factor models. A model is rejected if its value of Gm is lower

than that of an adjacent model with fewer factors.
4. Models from those remaining after step 3 are rejected as viable if their Gm value lies below a

line connecting points in a plot of Gm and d f m.
5. Repeat step 4 until no nonviable solutions are remaining.
6. Select the number of factors, m, for which the following statistic is maximized from among the

set of potentially viable solutions:

(Gm − Gm−1)/
(
d f m − d f m−1

)
(Gm+1 − Gm)/

(
d f m+1 − d f m

) (2)

Prior research has shown that the Hull method using the CFI as Gm is an effective tool for
identifying the number of factors with continuous indicators [2,29], particularly when it is used in
combination with other statistics. This is the approach that was employed in the current study.
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3.8. Empirical Kaiser Criterion
Braeken and van Assen [30] described a method for determining the number of factors based

upon the eigenvalues, thereby distinguishing it from the Hull approach, and placing it in the broad
family including the objective scree plot techniques and PA/RPA. This empirical Kaiser criterion
(EKC) is an outgrowth of the familiar Kaiser criterion, in which all factors with eigenvalues greater
than 1 are retained. A problem with the original Kaiser approach is that it does not account for
sampling variability inherent in analyses that do not involve the entire population [27]. The EKC
method is based upon an assumption that the distribution of eigenvalues follows the Marcenko-Pastur
distribution [31]. The upper bound of this distribution is calculated as:

λ1,re f =

(
1 +

√
p
n

)2

(3)

where

p = number of indicators
n = sample size

The largest eigenvalue from the EFA (corresponding to the first factor) is compared to this
maximum value. The remaining eigenvalues are compared to the variance corrected reference
eigenvalues as calculated below:

λm,re f = max

(
p − ∑m−1

i=0 λm

p − m + 1

(
1 +

√
p
n

)2

, 1

)
(4)

The number of factors to be retained corresponds to the number of eigenvalues that are greater
than the reference value in Equation (4). For example, consider the case where the first 4 observed
eigenvalues are 3.5, 2.4, 1.7, and 1.1. If there are 20 indicators and a sample size of 200, the upper
bound from Equation (3) is 1.73. Thus, the first factor would be retained. If the subsequent reference
eigenvalues calculated from Equation (4) were 1.5, 1.4, and 1.25, the researcher would retain a total of
3 factors.

3.9. Combination Approach
In addition to the individual statistics described above, a combination approach to determining

the number of factors to retain was also investigated in the current study. This combination tech-
nique included a vote-counting approach to EKC, Hull, and CD, per Auerswald and Moshagen [2].
Specifically, the number of factors to retain corresponded to the largest vote count from among the
methods. If multiple numbers of factors received the same number of votes, the most parsimonious
model from the vote winners was selected. It is important to note that the prior authors also included
SMT in their combination approach. However, given that the dichotomous data used in the current
study do not conform to the multivariate normal assumption underlying MLE, the SMT approach
was excluded from the combination method utilized here.

3.10. Limited Information Item Factor Analysis
McDonald [32] introduced the Normal-Ogive Harmonic Analysis Robust Method (NOHARM)

approach to fitting factor analysis models to dichotomous item response data. The NOHARM model
takes the form:

P
(

Uji = 1
∣∣∣θ) = N

(
β j0 + β j1θ1i + · · ·+ β jkθki

)
(5)

where

Uji = response to item j for respondent i; 1 = item endorsement
θ = vector of latent traits
θki = level on latent trait k for respondent i
β j0 = intercept for item j
β jk = coefficient relating item j to trait k

Parameter estimates for the model in Equation (5) can be obtained using a limited information
approach based on unweighted least squares (ULS).
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Fit of the NOHARM model to the data can be assessed using a chi-square statistic, as described
by Gessaroli and De Champlain [33]:

χ2
GD = (N − 3)∑J

l=2 ∑J−1
j=1 z(r)jl (6)

where

N = total sample size

z(r)jl = Fisher’s z-transformed residual correlation, r, for item pair jl

In order to determine the number of factors using χ2
GD, a sequence of models is fit to the

data, differing based upon the number of factors, much as with SMT. For each such model, χ2
GD is

calculated and the difference between this statistic for models with k and k − 1 number of factors
is calculated. This ∆χ2

GD statistic follows an approximate χ2 distribution [33] with the degrees of
freedom equal to the difference in degrees of freedom for the two models. If the ∆χ2

GD is statistically
significant, the researcher concludes that the EFA model with k factors provides better fit than the k −
1 factor. The k factor solution is then compared to the k + 1 solution, and the procedure is repeated
until a non-statistically significant conclusion is achieved, at which point the more parsimonious
solution in the comparison (e.g., k vs. k + 1) is selected. For example, if the ∆χ2

GD values comparing 1
vs. 2 and 2 vs. 3 factors were statistically significant, but the value comparing 3 vs. 4 factors was not,
the researcher would retain 3 factors.

3.11. Full Information Item Factor Analysis
An alternative to modeling dichotomous item response data with more than one latent trait

comes in the form of the full information multidimensional IRT (MIRT) model. The 2-parameter
logistic (2PL) MIRT model (which corresponds to the standard factor model) for dichotomous data
takes the form:

P
(

Uji = 1
∣∣∣θ) =

e(αj1θ1j+···+αjkθki)+γj

1 + e(αj1θ1j+···+αjkθki)+γj
(7)

where

αjk = discrimination parameter for item j on latent trait k
γj = difficulty for item j

Maximum likelihood can be used to obtain the parameters in Equation (7) based on the EM
algorithm [34]. Alternative estimation approaches such as either a Metropolis–Hastings Robbins–
Monro or Bayes can also be used in conjunction with the MIRT model. The EM algorithm was used in
the current study. As with the standard EFA and NOHARM models, an exploratory implementation
of the MIRT model can be used when the researcher is unsure as to the number of underlying latent
traits for a given dataset. Further details regarding the implementation of the exploratory MIRT
model in the R software environment can be found in Chalmers [26].

Determination of the number of factors to retain when using the full information MIRT model
involves use of the likelihood ratio test, in much the same way as the SMT and ∆χ2

GD described
above. For each prospective model, the exploratory MIRT model is fit to the data and the chi-square
goodness of fit statistic is obtained. As with SMT and NOHARM, the difference between these
statistics is compared to the chi-square distribution with degrees of freedom equal to the difference
in the degrees of freedom for the two models. An approach similar to that described above for
NOHARM and the SMT can be used with exploratory MIRT in order to determine the optimal
number of factors to retain. As an example, if the tests comparing 1 vs. 2 factors and 2 vs. 3 factors
were statistically significant, but the test comparing 3 vs. 4 factors was not, the researcher would retain
3 factors from the EFA.

3.12. Prior Research Investigating Factor Retention Methods
There is a relatively large body of literature investigating the performance of multiple methods

for identifying the number of factors to retain in the context of EFA. This work has been particularly
focused on the case of continuous (and primarily multivariate normal) indicator variables. For
example, research has demonstrated that PA and its variants are among the most effective methods
for identifying the number of factors to retain in the context of EFA [35–39]. Early simulation results
consistently demonstrated that PA tended to identify the correct number of factors underlying a set
of observed indicators more frequently than did most other alternative approaches, such as the scree
plot, the eigenvalue greater than 1 rule, and proportion of variance explained by the factors. More
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recent work has shown that RPA and CDM may yield somewhat more accurate results than standard
PA, and that RPA is perhaps the best performer most consistently across a variety of conditions [40].
Auerswald and Moshagen [2] found that PA based on PCA (rather than the common factor model)
yielded more accurate results than did RPA based on the common factor model. Similarly, Guo and
Choi [10] found that PA and RPA based on PCA was able to accurately identify the number of factors
to retain when the indicators were dichotomous in nature, provided that the sample is 500 or larger.
Lim and Jahng [38] conducted a simulation study comparing various versions of PA and found that
standard PA yielded accurate results to within 1 factor (plus or minus) of the actual number of latent
traits underlying the observed data.

With respect to the objective methods associated with the scree plot, simulation research has
shown that the Zoski and Jurs approach and the CNG scree test are both very effective at determining
the number of factors to retain, assuming that there are at least 3 latent variables present in the
data ([27]. This work was limited to the case of multivariate normal indicator variables. Thus, the
current research was designed to extend upon these earlier results by applying the objective scree
plot techniques to the case of dichotomous indicator variables.

Auerswald and Moshagen [2] compared the performance of several criteria for determining the
number of factors to retain when using EFA. They concluded that using results from a combination
of statistics, rather than a single value, might prove to be the most effective. Based upon their
simulation study, Auerswald and Moshagen recommended that when researchers fit EFA models
with continuous indicator variables, the results of the SMT and either RPA, Hull, or EKC agree on the
number of factors to retain, they settle on this value. However, if the SMT and the other technique
do not suggest the same number of factors, then the researcher should rely primarily on CD, EKC,
or RPA solely. Finally, their results demonstrated that using a combination of approaches typically
yields more accurate results than does any single approach.

With respect to χ2
GD, Finch and Habing [41,42] showed that a variant of ∆χ2

GD performed
well, particularly with more factors present in the population. This approach was more effective
than alternatives when the underlying latent trait was normally distributed, whereas when the
trait was skewed, nonparametric alternatives were better able to control the Type I error rate [41].
Svetina and Levy [43] extended this work and found that the ∆χ2

GD statistic was more accurate than
nonparametric alternatives, particularly for data when some indicators were associated with multiple
factors, the test was longer, and the factors were more highly correlated.

3.13. Study Goals
The primary goal of this simulation study was to compare several methods for determining

the number of factors to retain in the context of EFA with dichotomous indicator variable data. This
study was designed to expand on earlier work, particularly that of Guo and Choi [10] and Auerswald
and Moshagen [2]. As discussed above, prior work with continuous indicator variables indicated that
using a combination of methods may be the optimal approach for this purpose [2]. In addition, Guo
and Choi showed that using PA based on the tetrachoric correlation matrix and PCA can provide
accurate results for dichotomous item response data. With respect to specific techniques, CD, EKC, or
RPA may yield the most accurate results with respect to the number of factors to retain, based on
prior research. The current study builds upon this earlier work by investigating the factor retention
problem when indicators are dichotomous in nature using a wide array of possible methods for
this purpose. Several of the methods examined in earlier research are included in this study, as
are approaches designed specifically for categorical indicator variables, including NOHARM and
the MIRT model. In addition, methods that have been found to be effective for a larger number of
indicators than is present in the current work (i.e., [10]) were also included in this study. Thus, the
current study was designed to extend two recent studies on EFA and factor retention with a focus
on dichotomous indicators and a large array of methods. This study provides direct comparisons
among a wide range of methods that have not been compared in this way before. The techniques
are compared with respect to the proportion of instances in which the correct number of factors is
recommended by each method, as well as the mean number of factors suggested for retention.

4. Methods
In order to address the goals of this study, a Monte Carlo simulation study was conducted. For

each combination of conditions (described below), 1000 replications were used. The simulations
were carried out with the R software system, version 4.1.2 [44]. Dichotomous item response data
were simulated based on a structural equation model with either 1 or 3 latent traits, using the
MonteCarloSEM R package [45]. The item thresholds used in data generation were drawn from a
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standardized mathematics test, with a mean of 0.04 and ranging between −2.3 and 2.7. The tetrachoric
correlation matrix was estimated for the set of dichotomous indicators and then served as the dataset
for each of the factor retention methods included in the study.

In addition to the methods used to determine the number of factors to retain, other manipulated
factors included sample size, the number of underlying latent traits, interfactor correlation, the
number of indicators per factor, and the factor loading value. The sample sizes used in this study
were 200, 500, 1000, and 2000. These values were selected based on prior research in the area of factor
analysis [2,10,46]. Data were generated either from a 1 or a 3-factor model, allowing for assessment
of the factor retention methods for both unidimensional and multidimensional data. There were 5, 10,
or 20 indicator variables per factor, for each of the factor number conditions, reflecting what might
be seen with short subscales (5 items) to relatively long subscales (20 items). Results for the 10 and
20 indicator conditions were found to be virtually identical and therefore, in order to simplify the
presentation of results somewhat, only those for 5 and 10 indicators are reported below. The factor
loadings were set at either 0.6 or 0.8, which, when combined with the number of indicators, resulted
in scale reliability values between 0.74 and 0.97. In addition, these loading values were selected in
order to examine performance of the factor retention methods when more than 50% of the variance
in each indicator was associated with the latent trait (loading = 0.8) and when less than 50% of the
indicator variance was explained by the factor (loading = 0.6). Three conditions were included for
interfactor correlations, including 0.25, 0.50, and 0.75. These values were selected so as to reflect
small, medium, and large relationships among the factors [47].

The methods used to determine the number of factors to retain included EKC, Hull, SMT, CD,
Combined, MAP, NMREG, CNG, PA, RPA, MIRT, and NOHARM. These methods were applied using
the R packages ‘nFactors’ [48], ‘EFA.dimensions’ [49], ‘mirt’ [50], and ‘sirt’ [51]. The outcomes of
interest were the proportion of replications for which each method correctly identified the number
of factors to retain and the mean number of factors retained across the 1000 replications for each
combination of conditions. In order to identify which combinations of the manipulated conditions
were associated with the correct proportion of factors retained, analysis of variance (ANOVA) was
used. For each combination of study conditions, the proportion of correct cases was calculated and
served as the dependent variable in the ANOVA. In addition to statistical significance, the eta-squared
effect size was also calculated for each term in the model. ANOVA models were fit separately for the
1 and 3-factor cases, due to the difference in the terms available for each.

5. Results
5.1. Three Factors
5.1.1. Factor Retention Accuracy Rate

For the case when 3 factors were present in the population, ANOVA identified the interactions
of the factor determination method, number of indicators, and interfactor correlation (F22,286 =
7.03, η2 = 0.79), and the factor determination method, number of indicators, and sample size
(F66,286 = 2.18, η2 = 0.33) as being statistically significantly related to the proportion of replications
with the correct number of factors being retained. Table 1 includes the proportion of replications with
the correct number of factors by method, number of indicators, and interfactor correlations, in the
3-factors case. When there were 10 indicators per factor, EKC and Combined exhibited the highest
proportion of correct number of factors retained, across interfactor correlation levels. In addition, CD,
CNG and MAP had rates of correct identification of 1.00 for an interfactor correlation of 0.25 and 0.50,
but rates below 0.90 when factors had a correlation of 0.75. Of these latter techniques, CD had the
highest accuracy rate for the highest interfactor correlation.

Table 1. Proportion of replications with correct number of factors, number of indicators, and interfac-
tor correlation: 3 factors.

I * C EKC Hull SMT CD Comb MAP NMREG CNG PA RPA MIRT NOHARM

5 0.25 0.9951 0.6362 0.0000 0.9911 0.9951 0.5230 0.4110 1.0000 0.6986 0.5805 0.5427 0.0408
0.50 0.8461 0.5495 0.0000 0.8911 0.8461 0.4314 0.5088 1.0000 0.6759 0.5648 0.5976 0.0334
0.75 0.0000 0.0223 0.0000 0.4739 0.0000 0.1731 0.0735 0.6272 0.6601 0.4738 0.5119 0.0443

10 0.25 1.0000 0.8364 0.0000 1.0000 1.0000 1.0000 0.7840 1.0000 0.7978 0.7000 0.8765 0.8234
0.50 1.0000 0.8092 0.0000 1.0000 1.0000 1.0000 0.8138 1.0000 0.7753 0.6503 0.8125 0.7294
0.75 0.9419 0.7409 0.0000 0.8116 0.9456 0.5966 0.0029 0.7432 0.7464 0.6043 0.6991 0.6402

* I = Number of indicators per factor; C = Interfactor correlation.
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When each factor had 5 indicators, the accuracy rates were generally lower for all methods
across interfactor correlation conditions. The only exception to this pattern was CNG at correlations
of 0.25 or 0.50, for which the accuracy rate was 1.00. In addition, EKC, CD and Combined had
accuracy rates of 0.99 for a correlation of 0.25. As the interfactor correlation increased in value,
the accuracy rates for all of the methods studied here declined in the 5-indicator condition. At the
highest interfactor correlation value, MIRT, NOHARM, and CNG had the highest accuracy rates in
the 5-indicators case. The SMT had the lowest rates across all conditions in Table 1.

The proportion of replications with the correct number of factors identified by number of
indicators, sample size, and method appear in Table 2. Across methods, the rate of correct factor
number identification was higher for larger samples and more indicators. For 5 indicators, the highest
accuracy rates were associated with CNG, except for when N = 2000. In this latter case, PA had
an accuracy rate of 1.00, with CD being the second most accurate, followed by CNG. When there
were 10 indicators per factor, EKC and the Combined method had the highest accuracy rates. Across
conditions, SMT had the lowest rates of accurately determining the number of factors to retain.
Finally, when there were 3 factors, each method studied here had higher accuracy rates for retaining
the number of factors when the loadings were 0.8 as opposed to 0.6 (Table 3). This result was most
marked for MAP and CD, and least so for MIRT and NOHARM.

Table 2. Proportion of replications with correct number of factors, number of indicators, and sample
size: 3 factors.

I * N EKC Hull SMT CD Comb MAP NMREG CNG PA RPA MIRT NOHARM

5 200 0.5073 0.3387 0.0000 0.5747 0.5073 0.5109 0.0828 0.9181 0.5000 0.4000 0.5126 0.0440
500 0.6426 0.3965 0.0000 0.8087 0.6426 0.4387 0.3363 0.9117 0.5545 0.5004 0.5509 0.0473

1000 0.6648 0.4471 0.0000 0.8873 0.6648 0.3657 0.4634 0.9043 0.7692 0.7122 0.5600 0.0409
2000 0.6667 0.4541 0.0000 0.9560 0.6667 0.0000 0.5527 0.9326 1.0000 0.9124 0.5795 0.0257

10 200 0.9567 0.6678 0.0000 0.8750 0.9617 0.8683 0.4343 0.8523 0.6417 0.5834 0.7457 0.6408
500 0.9678 0.7255 0.0000 0.8860 0.9678 0.8767 0.4476 0.8656 0.7667 0.6247 0.7845 0.6780

1000 0.9980 0.8913 0.0000 0.9878 0.9980 0.8800 0.5923 0.8758 0.8918 0.8000 0.8156 0.7632
2000 1.0000 0.8974 0.0000 1.0000 1.0000 0.8372 0.6601 0.9093 0.9925 0.9413 0.8481 0.8155

* I = Number of indicators per factor; N = Sample size.

Table 3. Proportion of replications with correct number of factors, by number of number of factors
and factor loading value.

F * L EKC Hull SMT CD Comb MAP NMREG CNG PA RPA MIRT NOHARM

1 0.60 1.0000 0.9874 0.0000 1.0000 1.0000 1.0000 0.1394 1.0000 0.8729 0.7775 0.5933 0.2946
0.80 1.0000 0.9943 0.0000 1.0000 1.0000 1.0000 0.0955 1.0000 0.9011 0.8383 0.6506 0.6423

3 0.60 0.7815 0.5533 0.0000 0.7878 0.7828 0.3939 0.3979 0.8561 0.7249 0.6670 0.6423 0.3473
0.80 0.8413 0.6794 0.0000 0.9561 0.8413 0.9148 0.4861 0.9267 0.8334 0.8000 0.6915 0.3792

* F = Number of factors; L = Factor loading value.

5.1.2. Mean Number of Factors Retained
The number of factors retained by method, number of indicators, and interfactor correlation in

the 3-factor condition appear in Table 4. Across conditions, SMT, PA, and RPA all overestimated the
number of factors to retain. In addition, NMREG also overestimated the number of factors present
when the interfactor correlation was 0.5 or 0.75. Among the other methods, the mean number of
factors retained was closest to the actual value of 3 for EKC, CD, Combined, CNG, MAP, MIRT,
and NOHARM in the 10-indicator case, particularly with correlations below 0.75. At this highest
correlation value, EKC, Combined, MIRT, and NOHARM were closest to the actual data generating
factor number. With 5 indicators, the interfactor correlation had a greater impact on the perfor-
mance of the methods studied here. When the correlation was 0.25 or 0.50, CNG suggested retaining
3 factors on average, whereas EKC, CD, and Combined all had a mean number of factors retained of 2.8
or higher. At the highest interfactor correlation, EKC, CD, and Combined all suggested that fewer fac-
tors be retained, with means of 2 or fewer. In contrast, CNG had a mean of 3.4 factors with 5 indicators
and an interfactor correlation of 0.75, suggesting that it tended to overfactor when the latent traits were
most strongly related to one another. Finally, in the 5-indicators condition, MIRT tended to overfactor
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and NOHARM tended
to underfactor.

Table 4. Number of factors retained by number of indicators, and interfactor correlation: 3 factors.

I * C EKC Hull SMT CD Comb MAP NMREG CNG PA RPA MIRT NOHARM

5 0.25 2.9951 2.4791 7.6664 2.9942 2.9951 2.3386 2.4569 3.0000 4.0836 4.7493 3.4435 1.4236
0.50 2.8416 2.1514 7.7285 2.8583 2.8416 1.9337 4.1305 3.0000 3.877 4.6005 3.3949 1.3478
0.75 1.1713 1.0601 7.5671 2.0438 1.1713 1.4411 6.2610 3.4167 3.4621 4.4475 3.4835 1.3869

10 0.25 3.0000 2.7555 20.3450 3.0000 3.0000 3.0000 2.7977 3.0000 3.7758 3.6103 3.1186 3.1470
0.50 3.0000 2.5921 20.3086 3.0000 3.0000 3.0000 5.6286 3.0000 3.4600 3.5881 3.1539 3.1386
0.75 2.9281 2.5041 20.0646 2.6456 2.9419 2.3502 14.7273 3.2754 3.2063 3.3914 2.9699 2.8878

* I = Number of indicators per factor; C = Interfactor correlation.

The results in Table 5 show the mean number of factors retained for each method by the number
of indicators and the sample size. Many of these patterns are similar to those in Table 4 and thus will
not be repeated here. Of particular import in this table is that the mean number of factors retained was
closest to the population value of 3 with larger samples for EKC, CD, and Combined. In addition, the
mean number of factors for PA was approximately 3 for sample size of 2000, regardless of the number
of indicators. The method with the mean number of factors consistently closest to the population
value of 3 across conditions was CNG. The mean number of latent traits retained by method and
factor loadings for the 3-factor condition appear in Table 6. As noted above, the mean number of
factors to retain was closest to the population value of 3 for CNG across factor loading values, with
MIRT having the next closest mean number of factors.

Table 5. Number of factors retained by number of indicators, and sample size: 3 factors.

I * N EKC Hull SMT CD Comb MAP NMREG CNG PA RPA MIRT NOHARM

5 200 2.1872 1.8383 7.9188 2.2419 2.1872 2.1154 5.1066 3.0905 4.1324 4.5296 3.4574 1.3956
500 2.3565 1.8912 7.6964 2.6799 2.3565 2.0224 4.1902 3.0956 3.5573 3.8880 3.4409 1.4396

1000 2.4290 1.9430 7.6782 2.8345 2.4290 1.9041 3.8438 3.1015 3.2825 3.4298 3.4242 1.3893
2000 2.4066 1.9331 6.9912 2.9121 2.4066 1.2475 3.6984 3.0674 3.0075 3.0885 3.4400 1.3198

10 200 2.9383 2.4122 20.5598 2.7500 2.9567 2.7950 9.4493 3.1701 3.8966 4.0295 2.9323 2.8738
500 2.9678 2.4755 20.6500 2.7836 2.9678 2.8099 9.3135 3.1651 3.3155 3.6445 3.1063 3.0665

1000 2.9980 2.7863 20.2742 2.9939 2.9980 2.7988 7.2015 3.1261 3.2450 3.3256 3.1519 3.1230
2000 3.0000 2.7948 19.4735 3.0000 3.0000 2.7299 4.9072 3.0944 3.0000 3.0110 3.1844 3.2781

* I = Number of indicators per factor; N = Sample size.

Table 6. Number of factors retained by number of number of factors and factor loading value.

F * L EKC Hull SMT CD Comb MAP NMREG CNG PA RPA MIRT NOHARM

1 0.60 1.0000 1.0126 7.1464 1.0000 1.0000 1.0000 5.8678 1.0000 1.8111 1.9648 1.4353 2.1216
0.80 1.0000 1.0057 8.6957 1.0000 1.0000 1.0000 7.1758 1.0000 1.3167 1.4711 1.4743 1.4117

3 0.60 2.6332 2.1682 13.3974 2.6275 2.6378 1.9479 7.0629 3.1564 3.6379 3.8941 3.3000 1.9109
0.80 2.7277 2.4100 15.4734 2.9228 2.7277 2.8593 5.0314 3.0824 3.3460 3.5803 3.2488 2.3896

* F = Number of factors; L = Factor loading value.

5.2. 1-Factor
5.2.1. Factor Retention Accuracy Rate

For the 1-factor condition, ANOVA identified the interaction of factor retention method by the
number of indicators per factor and sample size (F66,286 = 2.91, η2 = 0.54), and method by factor
loading magnitude (F11,286 = 3.01, η2 = 0.17) as being statistically significantly related to the factor
retention accuracy rate. A number of methods exhibited accurate rates of 1.00 across sample size and
number of indicators, including EKC, CD, Combined, MAP, and CNG. In contrast, SMT, NMREG,
and RPA had the lowest accuracy rates across number of indicators and sample sizes. Accuracy
rates were generally higher in the 10-indicator condition, particularly for MIRT and NOHARM.
The accuracy rates by factor loading for the 1-factor case appears in Table 7. For the most accurate
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methods, EKC, CD, MAP, CNG, and Combined, the loading values were not associated with the
proportion of cases for which 1 factor was correctly identified. Among the other methods, accuracy
for PA and NOHARM was most strongly impacted by loading value, where accuracy was markedly
higher for the 0.80 condition.

Table 7. Proportion of replications with correct number of factors, number of indicators, and sample
size: 1 factor.

I * N EKC Hull SMT CD Comb MAP NMREG CNG PA RPA MIRT NOHARM

5 200 1.0000 0.9848 0.0000 1.0000 1.0000 1.0000 0.1104 1.0000 0.6032 0.5712 0.4469 0.1762
500 1.0000 0.9872 0.0000 1.0000 1.0000 1.0000 0.1708 1.0000 0.6719 0.5004 0.4777 0.1985

1000 1.0000 0.9931 0.0000 1.0000 1.0000 1.0000 0.2704 1.0000 0.8003 0.7122 0.4020 0.3272
2000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.2802 1.0000 1.0000 0.9124 0.4886 0.4463

10 200 1.0000 0.9774 0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.6890 0.6293 0.8507 0.6884
500 1.0000 0.9938 0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.8114 0.7900 0.8162 0.7029

1000 1.0000 0.9995 0.0000 1.0000 1.0000 1.0000 0.0385 1.0000 0.9171 0.8657 0.7870 0.6860
2000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0473 1.0000 1.000 0.9703 0.6781 0.6960

* I = Number of indicators per factor; N = Sample size.

5.2.2. Mean Number of Factors Retained
The mean number of factors retained by factor loading in the 1-factor case appears in Table 8.

EKC, CD, MAP, CNG, and Combined had mean number of factors retained of 1, matching the
population value of 1. In addition, the Hull technique had a mean just above 1. The mean number of
factors retained by method, sample size, and method in the 1-factor case appear in Table 8. In keeping
with the patterns described above, EKC, CD, MAP, CNG, and Combined had a mean number of
factors retained of 1 across conditions, with the mean for Hull also being very close to 1. NOHARM
and MIRT both performed better (i.e., had a mean closer to 1) for more indicators, as well as for larger
samples in the case of MIRT.

Table 8. Number of factors retained by number of indicators, and sample size: 1 factor.

I * N EKC Hull SMT CD Comb MAP NMREG CNG PA RPA MIRT NOHARM

5 200 1.0000 1.0152 4.3520 1.0000 1.0000 1.0000 3.2768 1.0000 1.8438 2.3651 1.6519 2.2753
500 1.0000 1.0128 4.3282 1.0000 1.0000 1.0000 2.8922 1.0000 1.4513 1.8192 1.6595 2.2958

1000 1.0000 1.0000 4.2028 1.0000 1.0000 1.0000 2.5845 1.0000 1.1516 1.3949 1.7623 2.0383
2000 1.0000 1.0069 4.2446 1.0000 1.0000 1.0000 2.5882 1.0000 1.0000 1.3629 1.6616 1.7961

10 200 1.0000 1.0062 12.2284 1.0000 1.0000 1.0000 11.6358 1.0000 1.4938 1.6296 1.3575 1.3419
500 1.0000 1.0062 12.0617 1.0000 1.0000 1.0000 11.3281 1.0000 1.2728 1.5142 1.2184 1.3425

1000 1.0000 1.0226 11.6353 1.0000 1.0000 1.0000 9.7962 1.0000 1.0996 1.2907 1.1838 1.3406
2000 1.0000 1.0000 11.0903 1.0000 1.0000 1.0000 8.7266 1.0000 1.0000 1.0712 1.1628 1.3475

* I = Number of indicators per factor; N = Sample size.

6. Discussion
The goal of this study was to investigate a wide array of statistical methods for determining

the number of factors to retain when using EFA with dichotomous indicators. With respect to
the statistical methods under investigation in this work, the results presented above suggest that
researchers should consider using the Combined approach based on EKC, Hull, and CD. This result
was in keeping with Auerswald and Moshagen [2], who also found that a combination approach
was effective in ascertaining the number of factors to retain when the indicators were normally
distributed. In addition, the CNG method alone also proved to be very effective in revealing the
number of factors to retain. Indeed, in the most challenging case with 5 indicators per factor and
an interfactor correlation of 0.75, CNG yielded the most accurate results across methods. However,
when 10 indicators were present, CNG was not the most accurate method in the 0.75 interfactor
correlation condition. Thus, it cannot be uniformly recommended for use in all cases.

When 10 indicators per factor were found to be present, multiple methods yielded highly
accurate results for determining the number of factors to retain. Specifically, both the EKC and
Combination techniques were highly accurate regardless of the interfactor correlation. In addition,
MAP, CD, and CNG yielded perfectly accurate results for the 0.25 and 0.50 interfactor correlation
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conditions. However, when the correlations were 0.75, they were somewhat less accurate than EKC
and Combination.

When a single factor was present in the population, a number of methods studied here yielded
highly accurate results, including EKC, CD, Combination, MAP, and CNG. Thus, when a single latent
trait underlies the observed indicators, researchers can have confidence that any of these methods is
likely to yield accurate results regarding the number of factors to retain, assuming conditions similar
to those used in this study. Of course, in reality the data analyst will not know how many factors
are actually present. Nonetheless, it does appear that if theory suggests a single factor is present
and the methods mentioned above as being most accurate are used and yield a 1-factor solution, the
researcher may be fairly confident in this result.

Several methods did not perform particularly well and may not be optimal for use in conditions
similar to those used in this simulation study. In particular, PA and RPA, both of which performed
well in previous studies [10], did not do so well under most conditions used in this study. Both
methods tended to overfactor the data, leading to the low accuracy rates described above. It should
be noted that in the previous work focusing on PA/RPA, there were more indicators per factor than
were used in the current study. Thus, it seems that when the number of indicators per factor is
5, 10, or 20, neither PA nor RPA provides as accurate results as some other methods studied here,
or as they do themselves with 30 or 60 indicators [10]. Similarly, the chi-square test based upon
NOHARM also yielded lower accuracy rates than a number of the other techniques used in this study,
particularly with 5 indicators. However, these results were due to a tendency to underfactor in the
3 latent trait condition, rather than overfactor, as was the case for PA/RPA. The MIRT model approach
also yielded somewhat lower accuracy rates than a number of other methods in the 5 indicators
3-factors condition, but with a tendency to overfactor. When a single factor was present, PA, RPA,
MIRT, and NOHARM all yielded overfactoring results. Taken together, these findings suggest that
when statistical methods did not recommend retaining the correct number of factors, there were
multiple ways in which they reached this incorrect decision. Sometimes overfactoring was the cause,
whereas in other cases it was due to underfactoring. In any case, these methods may not be optimal
for use with dichotomous indicators, particularly in light of the fact that other approaches (e.g., CNG,
Combination and EKC, CD, or MAP in some cases) do appear to yield accurate results.

7. Implications for Practice
As described above, the results presented here provide some guidelines for researchers and

data analysts. First, researchers and data analysts should consider the combined approach based on
EKC, Hull, and CD for determining the number of factors to retain. The CNG technique would be a
reasonable second choice for this purpose. Second, having more indicators per factor (presuming
loadings in the range simulated here) will yield more accurate factor retention results. Thus, all other
things being equal, researchers should seek to use longer scales. When scales are relatively short
(e.g., 5 indicators per factor) and the interfactor correlation is high (e.g., 0.75), researchers may find it
difficult to identify the correct number of factors to retain in an EFA, no matter the methodology used.
Finally, larger samples were associated with more accurate results, in general. Therefore, researchers
using EFA should attempt to obtain samples of 500 or more, particularly if they are working with a
relatively small number (e.g., 5) of indicators per factor.

8. Limitations of This Study
As with all studies, there are limitations to the current work that future research should address.

First, not all possible conditions that might be seen in practice were included in the current study.
The goal of this work was to focus on dichotomous indicators such as might be encountered in
many survey or testing environments. However, it is certainly the case that many scales rely on
polytomous items that yield ordinal, rather than dichotomous, data. Thus, a limitation of this study
was the fact that only items with two categories were included. Future work should include a focus
on ordinal items. In addition, this study focused on cases with either 1 or 3 latent traits. However,
many situations in practice involve scales with more possible latent traits, including assessments
of cognitive ability, mood, or executive functioning. Thus, future work should include more latent
traits while also examining a relatively small number of indicators, as was the case in this study. The
current study included only latent traits that followed the standard normal distribution, which will
not be present in all research contexts. For this reason, future work should consider cases where the
latent trait is not normally distributed but rather might be skewed and/or highly kurtotic. Another
limitation of the current study was with respect to the number of indicators per factor. In the current
study, there were either 5 or 10 indicators per factor. In some instances, scales may be comprised
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of more indicators than this, e.g., 20, 30, or even more. Thus, future work should examine the
performance of these methods with more indicators per factor.

9. Conclusions
The current study was designed to extend upon prior studies comparing methods for determin-

ing the number of factors to retain in the context of EFA. This earlier work focused on a wide array of
methods in the context of normally distributed indicators [2] or PA/RPA with dichotomous indica-
tors [10]. This study included a wide array of techniques in the context of dichotomous indicators
with a small number of indicators per factor. The results suggest that data analysts and researchers
might be best served to use CNG when there are 5 indicators per factor, and CNG, EKC, MAP, or the
combination techniques for 10 indicators per factor. In such cases, one can anticipate accurate results
regarding the number of factors to retain, particularly when the interfactor correlations are 0.5 or
lower. Of course, regardless of what the statistical methods might suggest, researchers should always
ensure that their ultimate findings are grounded in theory. If the optimal factor retention solution
based on statistical results does not yield a result that is theoretically sound, the researcher should
reconsider their analyses. However, when used in conjunction with theory, several methods studied
here can help researchers identify the optimal number of factors to retain from an EFA.
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