Changes in Native Whey Protein Content, Gel Formation, and Endogenous Enzyme Activities Induced by Flow-Through Heat Treatments of Goat and Sheep Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Heat Treatments
2.2. Milk Analyses
2.3. Rennet Clotting Behavior of Heat-Treated Goat and Sheep Milk
2.4. Yoghurt-Type Gels from Heat-Treated Goat Milk
2.5. Statistical Analysis
3. Results and Discussion
3.1. pH and Acidity
3.2. Denaturation of Whey Proteins
3.3. Rennet Clotting Behaviour
3.4. Goat Milk Yoghurt-Type Gels
3.5. Alkaline Phosphatase and Lactoperoxidase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alichanidis, E.; Moatsou, G.; Polychroniadou, A. The Composition and the Properties of non-Cow Milks and Products. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitriou, K., Eds.; Academic Press: London, UK, 2016; pp. 81–116. [Google Scholar] [CrossRef]
- Barlowska, J.; Szwajkowska, M.; Litwinczuk, Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compreh. Rev. Food Sci. Food Safety 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Moatsou, G.; Park, Y.W. Goat Milk Products: Types of Products, Manufacturing Technology, Chemical Composition and Marketing. In Handbook of Non Bovine Mammals, 2nd ed.; Wendorff, W.L., Park, Y.W., Haenlein, G.F.W., Eds.; John Wiley and Sons Ltd: Chichester, UK, 2017; pp. 84–150. [Google Scholar] [CrossRef]
- Moatsou, G.; Sakkas, L. Sheep milk components: Focus on nutritional advantages and biofunctional potential. Small Rumin. Res. 2019, 180, 86–99. [Google Scholar] [CrossRef]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Composition, structure, and digestive dynamics of milk from different species—A Review. Front. Nutr. 2020, 7, 577759. [Google Scholar] [CrossRef]
- Walstra, P.; Wouters, J.T.M.; Geurts, T.J. Changes in salts. Heat treatment. In Dairy Science and Technology, 2nd ed.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2006; pp. 33–37, 225–272. [Google Scholar]
- Singh, H. Heat stability of milk. Intern. J. Dairy Technol. 2004, 57, 111–119. [Google Scholar] [CrossRef]
- Heilig, A.; Celik, A.; Hinrichs, J. Suitability of Dahlem Cashmere goat milk towards pasteurisation, ultrapasteurisation and UHT-heating with regard to sensory properties and storage stability. Small Rumin. Res. 2008, 78, 152–161. [Google Scholar] [CrossRef]
- Henry, G.; Molle, D.; Morgan, F.; Fauquant, J.; Bouhallab, S. Heat-induced covalent complex between casein micelles and β-lactoglobulin from goat’s milk: Identification of an involved disulfide bond. J. Agric. Food Chem. 2002, 50, 185–191. [Google Scholar] [CrossRef]
- Hovjecki, M.; Miloradovic, Z.; Rac, V.; Pudja, P.; Miocinovic, J. Influence of heat treatment of goat milk on casein micelle size, rheological and textural properties of acid gels and set type yoghurts. J. Texture 2020, 51, 680–687. [Google Scholar] [CrossRef]
- Pesic, M.B.; Barac, M.B.; Stanojevic, S.P.; Ristic, N.M.; Macej, O.D.; Vrvic, M.M. Heat induced casein–whey protein interactions at natural pH of milk: A comparison between caprine and bovine milk. Small Rumin. Res. 2012, 108, 77–86. [Google Scholar] [CrossRef]
- Raynal, K.; Remeuf, F. The effect of heating on physicochemical and renneting properties of milk: A comparison between caprine, ovine and bovine milk. Intern. Dairy J. 1998, 8, 695–706. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Park, Y.W.; Gaucheron, F.; Bouhallab, S. Heat stability and enzymatic modifications of goat and sheep milk. Small Rumin. Res. 2007, 68, 207–220. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, S.; Lu, J.; Lv, J. Effects of heat treatment and stabilizing salts supplementation on the physicochemical properties, protein structure and salts balance of goat milk. LWT Food Sci. Technol. 2020, 132, 109878. [Google Scholar] [CrossRef]
- De la Fuente, M.A.; Olano, A.; Casal, V.; Juarez, M. Effects of high pressure and heat treatment on the mineral balance of goats’ milk. J. Dairy Res. 1999, 66, 65–72. [Google Scholar] [CrossRef]
- De La Fuente, M.A.; Olano, A.; Juárez, M. Effects of heat treatments and subsequent storage on the mineral balance of ewes’ milk. J. Dairy Res. 1998, 65, 457–464. [Google Scholar] [CrossRef]
- Alloggio, V.; Caponio, F.; Pasqualone, A.; Gomes, T. Effect of heat treatment on the rennet clotting time of goat and cow milk. Food Chem. 2000, 70, 51–55. [Google Scholar] [CrossRef]
- Miloradovic, Z.; Kljajevic, N.; Miocinovic, J.; Levic, S.; Pavlovic, V.B.; Blažić, M.; Pudja, P. Rheology and Microstructures of Rennet Gels from Differently Heated Goat Milk. Foods 2020, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Montilla, A.; Balcones, E.; Olano, A.; Calvo, M.M. Influence of heat treatments on whey protein denaturation and rennet clotting properties of cow’s and goat’s milk. J. Agric. Food Chem. 1995, 43, 1908–1911. [Google Scholar] [CrossRef]
- Klotz, V.; Hill, A.; Warriner, K.; Griffiths, M.; Odumeru, J. Assessment of the colorimetric and fluorometric assays for alkaline phosphatase activity in cow’s, goat’s, and sheep’s milk. J. Food Protection 2008, 71, 1884–1888. [Google Scholar] [CrossRef]
- Dumitraşcu, L.; Stănciuc, N.; Stanciu SRâpeanu, G. Inactivation kinetics of alkaline phosphatase from different species of milk using quinolyl phosphate as a substrate. Food Sci. Biotechnol. 2014, 23, 1773–1778. [Google Scholar] [CrossRef]
- Lorenzen, P.C.; Martin, D.; Clawin-Rädecker, I.; Barth, K.; Knappstein, K. Activities of alkaline phosphatase, -glutamyltransferase and lactoperoxidase in cow, sheep and goat’s milk in relation to heat treatment. Small Rumin. Res. 2010, 89, 18–23. [Google Scholar] [CrossRef]
- Vamvakaki, A.-N.; Zoidou, E.; Moatsou, G.; Bokari, M.; Anifantakis, E. Residual alkaline phosphatase activity after heat treatment of ovine and caprine milk. Small Rumin. Res. 2006, 65, 237–241. [Google Scholar] [CrossRef]
- Wilinska, A.; Bryjak, J.; Illeova, V.; Polakovic, M. Kinetics of thermal inactivation of alkaline phosphatase in bovine and caprine milk and buffer. Intern. Dairy J. 2007, 17, 579–586. [Google Scholar] [CrossRef]
- Dumitraşcu, L.; Stănciuc, N.; Stanciu, S.; Râpeanu, G. Thermal inactivation of lactoperoxidase in goat, sheep and bovine milk—A comparative kinetic and thermodynamic study. J. Food Engineer. 2012, 113, 47–52. [Google Scholar] [CrossRef]
- Zou, Z.; Bauland, J.; Hewavitharana, A.K.; Al-Shehri, S.S.; Duley, J.A.; Cowley, D.M.; Koorts, P.; Shaw, P.N.; Bansal, N. A sensitive, high-throughput fluorescent method for the determination of lactoperoxidase activities in milk and comparison in human, bovine, goat and camel milk. Food Chem. 2021, 339, 128090. [Google Scholar] [CrossRef]
- Sakkas, L.; Moutafi, A.; Moschopoulou, E.; Moatsou, G. Assessment of heat treatment of various types of milk. Food Chem. 2014, 159, 293–301. [Google Scholar] [CrossRef]
- International Standard. IDF 63/ISO 3356 Milk—Determination of Alkaline Phosphatase; International Dairy Federation: Brussels, Belgium, 2009. [Google Scholar]
- International Standard. IDF 155-1/ISO 11816-1 Milk and Milk Products—Determination of Alkaline Phosphatase Activity—Part 1: Fluorometric Method for Milk and Milk-Based Drinks; International Dairy Federation: Brussels, Belgium, 2013. [Google Scholar]
- International Standard. IDF_RM 208/ISO_TS17193 Milk: Determination of Lactoperoxidase Activity—Photometric Method (Reference Method); International Dairy Federation: Brussels, Belgium, 2011. [Google Scholar]
- Bakopanos, C.; Moatsou, G.; Kandarakis, I.; Taoukis, P.; Politis, I. Effect of High-Pressure treatment at various temperatures on the rennet clotting behavior of bovine and ovine milk. Milchwissenschaft 2010, 65, 266–269. [Google Scholar]
- Moschopoulou, E.; Sakkas, L.; Zoidou, E.; Theodorou, G.; Sgouridou, E.; Kalathaki, C.; Liarakou, A.; Chatzigeorgiou, A.; Politis, I.; Moatsou, G. Effect of milk kind and storage on the biochemical textural and biofunctional characteristics of set-style yoghurt. Intern. Dairy J. 2018, 77, 47–55. [Google Scholar] [CrossRef]
- Moatsou, G.; Hatzinaki, A.; Samolada, M.; Anifantakis, E. Major whey proteins in ovine and caprine acid wheys from indigenous Greek breeds. Intern. Dairy J. 2005, 15, 123–131. [Google Scholar] [CrossRef]
- Considine, T.; Patel, H.A.; Anema, S.G.; Singh, H.; Creamer, L.K. Interactions of milk proteins during heat and high hydrostatic pressure treatments—A Review. Innov. Food Sci. Emerg. Technol. 2007, 8, 1–23. [Google Scholar] [CrossRef]
- Pazzola, M.; Stocco, G.; Paschino, P.; Dettori, M.L.; Cipolat-Gotet, C.; Bittante, G.; Vacca, G.M. Modeling of coagulation, curd firming, and syneresis of goat milk from 6 breeds. J. Dairy Sci. 2018, 101, 7027–7039. [Google Scholar] [CrossRef] [Green Version]
- Donato, L.; Guyomarc’h, F. Formation and properties of the whey protein/k-casein complexes in heated skim milk—A review. Dairy Sci. Technol. 2009, 89, 3–29. [Google Scholar] [CrossRef]
- Giroux, H.J.; Dupont, F.; Villeneuve, G.; Britten, M. Effect of heating milk on whey protein denaturation and cheese-making properties. Intern. Dairy J. 2020, 111, 104831. [Google Scholar] [CrossRef]
- Kethireddipalli, P.; Hill, A.R.; Dalgleish, D.G. Protein interactions in heat treated milk and effect on rennet coagulation. Intern. Dairy J. 2010, 20, 838–843. [Google Scholar] [CrossRef]
- Balcones, E.; Olano, A.; Calvo, M.M. Factors affecting the rennet clotting properties of ewe’s milk. J. Agric. Food Chem. 1996, 44, 1993–1996. [Google Scholar] [CrossRef]
- Calvo, M.M. Influence of fat, heat treatments and species on milk rennet clotting properties and glycomacropeptide formation. Europ. Food Res. Technol. 2002, 214, 182–185. [Google Scholar] [CrossRef]
- Moatsou, G. Indigenous enzymatic activities in ovine and caprine milks. Intern. J. Dairy Technol. 2010, 63, 16–31. [Google Scholar] [CrossRef]
- European Union Commission. Amending Regulation (EC) No 2074/2005 as Regards Implementing Measures for Certain Products of Animal Origin Intended for Human Consumption and Repealing Certain Implementing Measures. Off. J. Eur. Union L 2006, 320. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:338:0027:0059:EN:PDF (accessed on 3 August 2021).
Treatment | Goat Milk | Sheep Milk | ||
---|---|---|---|---|
pH | Acidity (%) | pH | Acidity (%) | |
raw | 6.65 ± 0.105 b | 0.15 ± 0.005 | 6.59 ± 0.070 | 0.18 ± 0.009 |
68 °C/16 s 1 | 6.55 ± 0.025 a,b | 0.15 ± 0.010 | 6.55 ± 0.069 | 0.19 ± 0.010 |
73 °C/16 s 1 | 6.56 ± 0.065 a,b | 0.14 ± 0.006 | 6.56 ± 0.071 | 0.18 ± 0.019 |
78 °C/16 s 1 | 6.52 ± 0.106 a,b | 0.15 ± 0.006 | 6.55 ± 0.090 | 0.19 ± 0.017 |
85 °C/16 s 1 | 6.49 ± 0.064 a | 0.15 ± 0.006 | 6.53 ± 0.115 | 0.18 ± 0.016 |
100 °C/16 s 1 | 6.46 ± 0.086 a | 0.14 ± 0.015 | 6.53 ± 0.104 | 0.18 ± 0.014 |
90 °C/5 min 2 | 6.43 ± 0.105 | 0.14 ± 0.007 | 6.49 ± 0.025 | 0.18 ± 0.013 |
Treatment | Goat Milk | Sheep Milk | ||||
---|---|---|---|---|---|---|
% SN/TN | α-la | β-lg | % SN/TN | α-la | β-lg | |
Raw | 24.0 ± 1.28 a | 6.26 ± 0.305 a | 10.68 ± 1.327 a | 21.0 ± 1.05 a | 6.19 ± 0.439 a,b | 24.44 ± 1.605 a |
68 °C/16 s 1 | 23.3 ± 1.48 a | 6.42 ± 0.364 a | 10.61 ± 1.341 a | 20.1 ± 0.27 a | 6.16 ± 0.733 a,b | 24.76 ± 3.097 a |
73 °C/16 s 1 | 20.8 ± 0.91 b | 6.34 ± 0.366 a | 10.19 ± 1.257 a | 18.1 ± 1.42 b | 6.33 ± 0.384 a | 24.23 ± 1.872 a |
78 °C/16 s 1 | 19.1 ± 1.08 b | 6.62 ± 0.197 a | 9.87 ± 1.746 a | 14.8 ± 0.56 c | 5.96 ± 0.628 a,b | 19.30 ± 1.838 b |
85 °C/16 s 1 | 15.4 ± 0.63 c | 5.69 ± 0.248 b | 4.82 ± 1.53 b | 10.9 ± 0.90 d | 5.32 ± 0.285 b | 8.91 ± 1.112 c |
100 °C/16 s 1 | 13.7 ± 1.09 c | 5.57 ± 0.161 b | 0.88 ± 158 c | 8.1 ± 0.44 e | 4.38 ± 0.454 c | 1.74 ± 0.247 d |
90 °C/5 min 2 | 8.7 ± 0.91 | 0.33 ± 0.283 | 0.044 ± 0.036 | 5.5 ± 0.89 | 0.32 ± 0.034 | 0.056 ± 0.015 |
Treatment | Goat Milk | Sheep Milk | ||
---|---|---|---|---|
RCT (min) | A30 (mm) | RCT (min) | A30 (mm) | |
Raw | 12.3 ± 0.21 a | 34.2 ± 3.44 e | 13.3 ± 1.0 | 43.0 ± 6.05 b |
68 °C/16 s 1 | 14.2 ± 0.87 b | 30.5 ± 2.75 d,e | 12.6 ± 1.44 | 43.8 ± 2.04 b |
73 °C/16 s 1 | 15.0 ± 0.79 b,c | 26.7 ± 0.48 c,d | 12.6 ± 1.40 | 43.5 ± 1.62 b |
78 °C/16 s 1 | 16.0 ± 0.96 c,d | 21.1 ± 2.99 a,b | 13.0 ± 1.05 | 39.3 ± 2.00 b |
85 °C/16 s 1 | 15.5 ± 1.00 b,c | 22.5 ± 3.71 b,c | 13.6 ± 1.04 | 39.4 ± 1.89 b |
100 °C/16 s 1 | 17.4 ± 1.05 d | 17.3 ± 3.21 a | 14.4 ± 0.34 | 33.9 ± 1.69 a |
90 °C/5 min 2 | 15.0 ± 0.51 | 23.7 ± 8.28 | 13.0 ± 0.69 | 36.6 ± 1.06 |
Min | Goat Milk | Cow RSMP | ||||
---|---|---|---|---|---|---|
73 °C/16 s (G2) | 78 °C/16 s (G3) | 85 °C/16 s (G4) | 100 °C/16 s (G5) | 90 °C/5 min (G6) | 90 °C/5 min (C7) | |
Acidity (% Lactic Acid) | ||||||
30 | 0.15 ± 0.012 a,A | 0.15 ± 0.013 a,A | 0.15 ± 0.009 a,A | 0.15 ± 0.005 a,A | 0.15 ± 0.008 a,A | 0.13 ± 0.087 a,B |
60 | 0.16 ± 0.016 a,A | 0.18 ± 0.039 a,A | 0.16 ± 0.018 a,A | 0.18 ± 0.025 a,b,A | 0.17 ± 0.005 a,A | 0.14 ± 0.013 a,B |
90 | 0.16 ± 0.016 a | 0.18 ± 0.039 a | 0.18 ± 0.018 a,b | 0.18 ± 0.025 a,b | 0.17 ± 0.005 a,b | 0.16 ± 0.032 a,b |
120 | 0.19 ± 0.010 a | 0.25 ± 0.069 a,b | 0.26 ± 0.103 b | 0.20 ± 0.017 b | 0.21 ± 0.022 b,c | 0.18 ± 0.020 a,b |
150 | 0.28 ± 0.068 b | 0.32 ± 0.117 b | 0.37 ± 0.133 c | 0.34 ± 0.060 c | 0.25 ± 0.013 c | 0.24 ± 0.071 b |
180 | 0.43 ± 0.108 c | 0.44 ± 0.126 c | 0.47 ± 0.031 d | 0.43 ± 0.020 d | 0.39 ± 0.061 d | 0.35 ± 0.082 c |
210 | 0.56 ± 0.067 d,A | 0.52 ± 0.055 c,d,A | 0.55 ± 0.025 d,e,A | 0.52 ± 0.005 e,A | 0.51 ± 0.006 e,A | 0.42 ± 0.041 c,d,B |
240 | 0.59 ± 0.014 d,e,A | 0.61 ± 0.035 d,e,A | 0.60 ± 0.029 e,A | 0.53 ± 0.044 e,A,B | 0.53 ± 0.068 e,A,B | 0.49 ± 0.053 d,e,B |
270 | 0.64 ± 0.016 d,e,A | 0.64 ± 0.041 e,A | 0.63 ± 0.014 e,A,B | 0.60 ± 0.015 f,A,B | 0.60 ± 0.008 f,A,B | 0.56 ± 0.822 e,B |
300 | 0.65 ± 0.023 e,A | 0.67 ± 0.023 e,A | 0.65 ± 0.01 e,A,B | 0.64 ± 0.042 f,A,B | 0.60 ± 0.007 f,A,B | 0.56 ± 0.080 e,B |
pH | ||||||
30 | 6.49 ± 0.314 d | 6.59 ± 0.177 f | 6.58 ± 0.111 f | 6.52 ± 0.121 f | 6.50 ± 0.092 f | 6.69 ± 0.121 f |
60 | 6.52 ± 0.179 d | 6.44 ± 0.176 f | 6.41 ± 0.131 e,f | 6.47 ± 0.144 e,f | 6.51 ± 0.021 f | 6.58 ± 0.226 f |
90 | 6.41 ± 0.270 c,d | 6.30 ± 0.121 e,f | 6.17 ± 0.225 d,e | 6.32 ± 0.125 e,f | 6.35 ± 0.22 e,f | 6.35 ± 0.194 e,f |
120 | 6.38 ± 0.517 c,d | 6.01 ± 0.229 d,e | 6.01 ± 0.450 d | 6.21 ± 0.213 e | 6.11 ± 0.193 d,e | 6.15 ± 0.122 e |
150 | 5.96 ± 0.45 c | 5.81 ± 0.375 d | 5.57 ± 0.298 c | 5.63 ± 0.248 d | 5.90 ± 0.187 d | 5.73 ± 0.366 d |
180 | 5.28 ± 0.329 b | 5.38 ± 0.198 c | 5.21 ± 0.135 b,c | 5.34 ± 0.031 c | 5.39 ± 0.270 c | 5.40 ± 0.226 c,d |
210 | 4.94 ± 0.091 a,b,A | 4.99 ± 0.157 b,A | 4.96 ± 0.038 a,b,A,B | 5.04 ± 0.045 b,A,B | 5.02 ± 0.078 b,A,B | 5.15 ± 0.131 b,c,B |
240 | 4.97 ± 0.129 a,b | 4.85 ± 0.104 a,b | 4.91 ± 0.251 a,b | 4.99 ± 0.222 b | 4.87 ± 0.173 a,b | 4.93 ± 0.056 a,b |
270 | 4.72 ± 0.108 a | 4.64 ± 0.060 a | 4.64 ± 0.078 a | 4.67 ± 0.106 a | 4.72 ± 0.114 a | 4.74 ± 0.127 a |
300 | 4.61 ± 0.085 a | 4.58 ± 0.067 a | 4.53 ± 0.078 a | 4.63 ± 0.106 a | 4.69 ± 0.155 a | 4.62 ± 0.106 a |
Yoghurt-Type Gels | Water Holding Capacity (%) | ||
---|---|---|---|
7 Days | 14 Days | 20 Days | |
From goat milk | |||
73 °C/16 s (G2) | 67.4 ± 9.22 b,c | 70.0 ± 8.16 b,c | 70.4 ± 5.33 a,b |
78 °C/16 s (G3) | 74.2 ± 9.80 c | 73.0 ± 9.72 c | 76.2 ± 8.73 b |
85 °C/16 s (G4) | 59.6 ± 4.48 a,b | 62.0 ± 3.32 a | 64.5 ± 6.31 a |
100 °C/16 s (G5) | 58.4 ± 5.40 a | 62.4 ± 3.28 a | 64.3 ± 5.93 a |
90 °C/5 min (G6) | 59.3 ± 4.64 a,b,A | 62.6 ± 1.65 a,A,B | 64.8 ± 4.36 a,B |
From cow RSMP | |||
90 °C/5 min (C7) | 55.4 ± 3.43 a,A | 62.7 ± 6.84 a,b,A,B | 66.0 ± 4.55 a,B |
Treatment | Goat Milk | Sheep Milk | ||||
---|---|---|---|---|---|---|
ALP, μg/mL | ALP, mU/L | LPO, U/L | ALP, μg/mL | ALP, mU/L | LPO, U/L | |
Raw | 324.5 ± 47.28 a | 11,810 ± 3738 a | 199.3 ± 6.71 a | 7615 ± 141 a | n.r. | 319.1 ± 38.59 a |
68 °C/16 s 1 | 19.7 ± 5.14 b | 4682 ± 1935 b | 164.9 ± 1.68 a,b | 147 ± 37.21 b | n.r. | 167.7 ± 5.97 b |
73 °C/16 s 1 | 2.6 ± 1.86 b | 305.7 ± 78.7 c | 124.6 ± 31.88 b | 5.7 ± 1.61 c | 418 ± 98.8 a | 89.4 ± 7.25 c |
78 °C/16 s 1 | n.r. | 186.2 ± 23.68 c | 19 ± 0 c | 2.4 ± 0.19 c | 165.5 ± 18.24 b | 2.4 ± 3.36 d |
85 °C/16 s 1 | 0.8 ± 0.39 b | 196.5 ± 68.59 c | n.d. | 0.5 ± 0.26 c | 143 ± 22.77 b | n.d. |
100 °C/16 s 1 | 0.4 ± 0 b | 139.5 ± 39.32 c | n.d. | n.d. | 120.5 ± 9.1 b | n.d. |
90 °C/5 min 2 | n.d. | 15.6 ± 2.37 c | n.d. | 0.6 ± 0.06 c | 22.5 ± 1.27 c | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moatsou, G.; Moschopoulou, E.; Zoidou, E.; Kamvysi, A.; Liaskou, D.; Tsigkou, V.; Sakkas, L. Changes in Native Whey Protein Content, Gel Formation, and Endogenous Enzyme Activities Induced by Flow-Through Heat Treatments of Goat and Sheep Milk. Dairy 2021, 2, 410-421. https://doi.org/10.3390/dairy2030032
Moatsou G, Moschopoulou E, Zoidou E, Kamvysi A, Liaskou D, Tsigkou V, Sakkas L. Changes in Native Whey Protein Content, Gel Formation, and Endogenous Enzyme Activities Induced by Flow-Through Heat Treatments of Goat and Sheep Milk. Dairy. 2021; 2(3):410-421. https://doi.org/10.3390/dairy2030032
Chicago/Turabian StyleMoatsou, Golfo, Ekaterini Moschopoulou, Evangelia Zoidou, Aggeliki Kamvysi, Dimitra Liaskou, Vassiliki Tsigkou, and Lambros Sakkas. 2021. "Changes in Native Whey Protein Content, Gel Formation, and Endogenous Enzyme Activities Induced by Flow-Through Heat Treatments of Goat and Sheep Milk" Dairy 2, no. 3: 410-421. https://doi.org/10.3390/dairy2030032
APA StyleMoatsou, G., Moschopoulou, E., Zoidou, E., Kamvysi, A., Liaskou, D., Tsigkou, V., & Sakkas, L. (2021). Changes in Native Whey Protein Content, Gel Formation, and Endogenous Enzyme Activities Induced by Flow-Through Heat Treatments of Goat and Sheep Milk. Dairy, 2(3), 410-421. https://doi.org/10.3390/dairy2030032