Rehydration Properties of Whey Protein Isolate Powders Containing Nanoparticulated Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Powder Preparation
2.3. Composition of Whey Protein Isolate Powders
2.4. Surface Elemental Composition of Whey Protein Isolate Powders
2.5. Surface Topography of Whey Protein Isolate Powders
2.6. Wettability and Dissolution Characteristics of Whey Protein Isolate Powders
2.7. Powder Particle Morphology, Wetting, Swelling, and Dissolution
2.7.1. Scanning Electron Microscopy
2.7.2. Environmental Scanning Electron Microscopy
2.7.3. Particle Wetting and Dissolution Analysis by Light Backscatter Analysis
2.7.4. Acoustic Resonance Dissolution Spectroscopy for Occluded Gas Release
2.7.5. Measurement of Ion Release from Powder Particles
2.8. Data Analysis
3. Results and Discussion
3.1. Powder Chemical, Bulk and Surface Composition
3.2. Powder Surface Structure
3.3. Rehydration Characteristics of WPI Powder
3.3.1. Powder Wetting and Dissolution
3.3.2. Powder Particle Hydration
3.3.3. Particle Dissolution by Backscattering Analysis
3.3.4. Gas Release from WPI Powders during Rehydration
3.3.5. Mineral Release from WPI Powders
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilara, A.; Vaghela, M.N. Whey proteins. In Proteins in Food Processing, 2nd ed.; Rickey, Y.Y., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 93–126. [Google Scholar]
- Chung, C.; Degner, B.; McClements, D.J. Development of Reduced-calorie foods: Microparticulated whey proteins as fat mimetics in semi-solid food emulsions. Food Res. Int. 2014, 56, 136–145. [Google Scholar] [CrossRef]
- Esfanjani, A.F.; Jafari, S.M.; Assadpoor, E.; Mohammadi, A. Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. J. Food Eng. 2015, 165, 149–155. [Google Scholar] [CrossRef]
- Lagrange, V.; Whitsett, D.; Burris, C. Global Market for Dairy Proteins. J. Food Sci. 2015, 80, A16–A22. [Google Scholar] [CrossRef]
- Bogue, J.; Collins, O.; Troy, A.J. Market analysis and concept development of functional foods. In Developing New Functional Food and Nutraceutical Products, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 29–45. [Google Scholar]
- Ji, J.; Fitzpatrick, J.; Cronin, K.; Crean, A.; Miao, S. Assessment of measurement characteristics for rehydration of milk protein based powders. Food Hydrocoll. 2016, 54, 151–161. [Google Scholar] [CrossRef]
- Gaiani, C.; Morand, M.; Sanchez, C.; Tehrany, E.A.; Jacquot, M.; Schuck, P.; Jeantet, R.; Scher, J. How surface composition of high milk proteins powders is influenced by spray-drying temperature. Colloids Surf. B Biointerfaces 2010, 75, 377–384. [Google Scholar] [CrossRef]
- Barone, G.; O’Regan, J.; O’Mahony, J.A. Influence of composition and microstructure on bulk handling and rehydration properties of whey protein concentrate powder ingredients enriched in α-lactalbumin. J. Food Eng. 2019, 255, 41–49. [Google Scholar] [CrossRef]
- Gulzar, M.; Bouhallab, S.; Jeantet, R.; Schuck, P.; Croguennec, T. Influence of pH on the dry heat-induced denaturation/aggregation of whey proteins. Food Chem. 2011, 129, 110–116. [Google Scholar] [CrossRef]
- Burgain, J.; El Zein, R.; Scher, J.; Petit, J.; Norwood, E.-A.; Francius, G.; Gaiani, C. Local modifications of whey protein isolate powder surface during high temperature storage. J. Food Eng. 2016, 178, 39–46. [Google Scholar] [CrossRef]
- Chantrapornchai, W.; McClements, D.J. Influence of NaCl on optical properties, large-strain rheology and water holding capacity of heat-induced whey protein isolate gels. Food Hydrocoll. 2002, 16, 467–476. [Google Scholar] [CrossRef]
- Joyce, A.M.; Kelly, A.L.; O’Mahony, J.A. Controlling denaturation and aggregation of whey proteins during thermal processing by modifying temperature and calcium concentration. Int. J. Dairy Technol. 2018, 71, 446–453. [Google Scholar] [CrossRef]
- Dissanayake, M.; Vasiljevic, T. Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. J. Dairy Sci. 2009, 92, 1387–1397. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, M.; Liyanaarachchi, W.; Vasiljevic, T. Functional properties of whey proteins microparticulated at low pH. J. Dairy Sci. 2012, 95, 1667–1679. [Google Scholar] [CrossRef]
- Krešic, G.; Lelas, V.; Herceg, Z.; Režek, A. Effects of high pressure on functionality of whey protein concentrate and whey protein isolate. Le Lait 2006, 86, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Ks, S.; Bimlesh, M.; Rajan, S.; Rajesh, K. Preparation and functional characterization of whey protein-maltodextrin conjugates. Res. Rev. J. Food Dairy Technol. 2017, 5, 7–16. [Google Scholar]
- Ooi, J.Y. Whey Protein Denaturation and Aggregation during High Temperature-Short Time Thermal Processing as Influenced by Temperature and Ionic Strength. Master’s Thesis, University College Cork, Cork, UK, 2015. [Google Scholar]
- Joyce, A.M.; Brodkorb, A.; Kelly, A.; O’Mahony, J.A. Separation of the effects of denaturation and aggregation on whey-casein protein interactions during the manufacture of a model infant formula. Dairy Sci. Technol. 2017, 96, 787–806. [Google Scholar] [CrossRef] [Green Version]
- Gaiani, C.; Scher, J.; Schuck, P.; Desobry, S.; Banon, S. Use of a turbidity sensor to determine dairy powder rehydration properties. Powder Technol. 2009, 190, 2–5. [Google Scholar] [CrossRef]
- Cenini, V.; Gallagher, L.; McKerr, G.; McCarthy, N.; McSweeney, D.; Auty, M.; O’Hagan, B. A novel approach for dynamic in-situ surface characterisation of milk protein concentrate hydration and reconstitution using an environmental scanning electron microscope. Food Hydrocoll. 2020, 108, 105881. [Google Scholar] [CrossRef]
- Vos, B.; Crowley, S.V.; O’Sullivan, J.; Evans-Hurson, R.; McSweeney, S.; Krüse, J.; Ahmed, M.R.; Fitzpatrick, D.; O’Mahony, J.A. New insights into the mechanism of rehydration of milk protein concentrate powders determined by Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS). Food Hydrocoll. 2016, 61, 933–945. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Fitzpatrick, J.; Cronin, K.; Ahmed, M.R.; Fitzpatrick, D.; Miao, S. Application of broadband acoustic resonance dissolution spectroscopy (BARDS) to the gas release behaviour during rehydration of milk protein isolate agglomerates. J. Food Eng. 2019, 253, 14–20. [Google Scholar] [CrossRef]
- Guralnick, J.R.; Panthi, R.R.; Bot, F.; Cenini, V.L.; O’Hagan, B.M.; Crowley, S.V.; O’Mahony, J.A. Pilot-scale production and physicochemical characterisation of spray-dried nanoparticulated whey protein powders. Int. J. Dairy Technol. 2021, 74, 581–591. [Google Scholar] [CrossRef]
- IDF. International IDF Standard 20A. In Milk and Milk Products—Determination of Nitrogen Content—Part 1: Kjeldahl Principle and Crude Protein Calculation; International Dairy Federation: Brussels, Belgium, 2014. [Google Scholar]
- IDF. International IDF standard 20A. In Dried Milk—Determination of Moisture Content; International Dairy Federation: Brussels, Belgium, 2004. [Google Scholar]
- McCarthy, N.A.; Gee, V.L.; Hickey, D.K.; Kelly, A.; O’Mahony, S.; Fenelon, M.A. Effect of protein content on the physical stability and microstructure of a model infant formula. Int. Dairy J. 2013, 29, 53–59. [Google Scholar] [CrossRef]
- Hutter, J.L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instruments 1993, 64, 1868–1873. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, J.J.; Salmon, J.; Ji, J.; Miao, S. Characterisation of the Wetting Behaviour of Poor Wetting Food Powders and the Influence of Temperature and Film Formation. KONA Powder Part. J. 2017, 34, 282–289. [Google Scholar] [CrossRef] [Green Version]
- GEA. A 5 b-Wettability. In GEA Process Engineering A/S; GEA: Gladsaxevej, Denmark, 2006. [Google Scholar]
- GEA. A 3 a-Insolubility index. In GEA Process Engineering A/S; GEA: Gladsaxevej, Denmark, 2006. [Google Scholar]
- Sun, Y.; Deac, A.; Zhang, G.G.Z. Assessing Physical Stability of Colloidal Dispersions Using a Turbiscan Optical Analyzer. Mol. Pharm. 2019, 16, 877–885. [Google Scholar] [CrossRef]
- Crowley, S.; Desautel, B.; Gazi, I.; Kelly, A.; Huppertz, T.; O’Mahony, J.A. Rehydration characteristics of milk protein concentrate powders. J. Food Eng. 2015, 149, 105–113. [Google Scholar] [CrossRef]
- Nikolova, Y.; Petit, J.; Sanders, C.; Gianfrancesco, A.; Scher, J.; Gaiani, C. Toward a better determination of dairy powders surface composition through XPS matrices development. Colloids Surf. B Biointerfaces 2015, 125, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Gaiani, C.; Jeandel, C.; Ghanbaja, J.; Scher, J. Combined effect of heat treatment and ionic strength on the functionality of whey proteins. J. Dairy Sci. 2012, 95, 6260–6273. [Google Scholar] [CrossRef]
- Codina-Torrella, I.; Guamis, B.; Ferragut, V.; Trujillo, A. Potential application of ultra-high pressure homogenization in the physico-chemical stabilization of tiger nuts’ milk beverage. Innov. Food Sci. Emerg. Technol. 2017, 40, 42–51. [Google Scholar] [CrossRef]
- Matsumiya, K.; Inoue, T.; Niida, J.; Katagiri, T.; Nishizu, T.; Matsumura, Y. Evaluation of long-term stability of milk beverages by a novel method for rapid determination of aggregation forces between colloidal particles. Food Hydrocoll. 2014, 34, 177–183. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Mason, T.J.; Lelas, V.; Herceg, Z.; Herceg, I.L. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. J. Food Eng. 2008, 86, 281–287. [Google Scholar] [CrossRef]
Relative Atomic Concentrations (%) | ||||
---|---|---|---|---|
Powder | Oxygen | Carbon | Nitrogen | Calcium |
WPIC | 15.3 ± 0.4 b | 69.7 ± 0.6 a | 13.5 ± 0.6 b | 0.0 b |
WPIUH | 17.3 ± 0.3 a | 66.9 ± 0.4 b | 13.3 ± 0.4 b | 0.0 b |
WPIH | 17.4 ± 0.3 a | 67.4 ± 0.4 b | 14.1 ± 0.1 a | 0.3 ± 0.1 a |
WPIHCa | 17.5 ± 0.3 a | 67.2 ± 0.4 b | 14.1 ± 0.4 a | 0.2 ± 0.1 a |
WPI Powders | Wetting (% w/w) | Insolubility Measurement (mL/50 mL) |
---|---|---|
WPIC | 66.5 ± 2.5 b | <0.1 |
WPIUH | 99.9 ± 0.1 a | <0.1 |
WPIH | 19.1 ± 1.6 c | <0.1 |
WPIHCa | 12.5 ± 1.6 c | 0.2 |
Cell Height | WPID | WPIC | WPIUH | WPIH | WPIHCa |
---|---|---|---|---|---|
0–10 mm | 5.7 ± 1.03 | 6.3 ± 1.28 | 7.4 ± 1.68 | 10.6 ± 2.69 | 11.3 ± 3.09 |
11–20 mm | 5.7 ± 0.05 | 6.4 ± 0.08 | 7.5 ± 0.08 | 11.0 ± 0.10 | 11.6 ± 0.17 |
21–30 mm | 5.6 ± 0.04 | 6.4 ± 0.09 | 7.4 ± 0.07 | 10.9 ± 0.11 | 11.6 ± 0.11 |
31–40 mm | 5.1 ± 1.25 | 8.8 ± 2.43 | 7.2 ± 1.58 | 11.0 ± 6.20 | 17.1 ± 13.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guralnick, J.R.; Panthi, R.R.; Cenini, V.L.; Mishra, V.S.N.; O’Hagan, B.M.G.; Crowley, S.V.; O’Mahony, J.A. Rehydration Properties of Whey Protein Isolate Powders Containing Nanoparticulated Proteins. Dairy 2021, 2, 602-616. https://doi.org/10.3390/dairy2040047
Guralnick JR, Panthi RR, Cenini VL, Mishra VSN, O’Hagan BMG, Crowley SV, O’Mahony JA. Rehydration Properties of Whey Protein Isolate Powders Containing Nanoparticulated Proteins. Dairy. 2021; 2(4):602-616. https://doi.org/10.3390/dairy2040047
Chicago/Turabian StyleGuralnick, Jacob R., Ram R. Panthi, Valeria L. Cenini, Vinay S. N. Mishra, Barry M. G. O’Hagan, Shane V. Crowley, and James A. O’Mahony. 2021. "Rehydration Properties of Whey Protein Isolate Powders Containing Nanoparticulated Proteins" Dairy 2, no. 4: 602-616. https://doi.org/10.3390/dairy2040047
APA StyleGuralnick, J. R., Panthi, R. R., Cenini, V. L., Mishra, V. S. N., O’Hagan, B. M. G., Crowley, S. V., & O’Mahony, J. A. (2021). Rehydration Properties of Whey Protein Isolate Powders Containing Nanoparticulated Proteins. Dairy, 2(4), 602-616. https://doi.org/10.3390/dairy2040047