Compositional and Functional Considerations for Bovine-, Caprine- and Plant-Based Infant Formulas
Abstract
:1. Introduction
2. Proteins in Infant Formula
3. Protein Quality and Amino Acid Requirements in Infant Formula
4. Carbohydrates in Infant Formula
4.1. Glycaemic Carbohydrates
4.2. Non-Glycaemic Carbohydrates
5. Lipids in Infant Formula
6. Micronutrients and Infant Formula
6.1. Minerals
6.2. Vitamins
6.3. Other Nutrients
7. Digestibility of Infant Formula from Bovine, Caprine, and Plant Sources
8. Aspects of Protein Functionality of Relevance to Infant Formula
9. Metabolomics and Infant Formula
10. Alternative Protein Sources with Potential Use in Infant Formula Manufacture
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Michaelsen, K.F.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; Shamir, R.; et al. Breast-feeding: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 112–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victora, C.G.; Bahl, R.; Barros, A.J.; França, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Eidelman, A.I.; Schanler, R.J. Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. Nutrition through the life-course. In Essential Nutrition Actions: Mainstreaming Nutrition through the Lifecourse; WHO: Geneva, Switzerland, 2019; pp. 33–139. [Google Scholar]
- Scientific Advisory Committee on Nutrition. Feeding in the First Year of Life. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/725530/SACN_report_on_Feeding_in_the_First_Year_of_Life.pdf (accessed on 20 February 2021).
- McMahon, L.; McGrane, K.; McKenna, P.; Turner, M. Irish Maternity Indicator System National Report. 2019. Available online: https://www.hse.ie/eng/about/who/acute-hospitals-division/woman-infants/national-reports-on-womens-health/imis-national-report-2019.pdf (accessed on 18 February 2021).
- European Union Regulation (EU) No. 609/2013 of the European Parliament and of the Council of 12 June 2013 on Food Intended for Infants and Young Children, Food for Special Medical Purposes, and Total Diet Replacement for Weight Control and Repealing Council Directive 92/52/EEC, Commission Directives 96/8/EC, 1999/21/EC, 2006/125/EC and 2006/141/EC, Directive 2009/39/EC of the European Parliament and of the Council and Commission Regulations (EC) No. 41/2009 and (EC) No. 953/2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02013R0609-20170711&from=EN (accessed on 21 February 2021).
- Crowley, S.V.; Kelly, A.L.; Lucey, J.A.; O’Mahony, J.A. Potential Applications of Non-Bovine Mammalian Milk in Infant Nutrition. In Handbook of Milk of Non-Bovine Mammals, 2nd ed.; Park, Y.W., Haenlein, G.F.W., Wendorff, W.L., Eds.; John Wiley & Sons: Hoboken, UK, 2017; pp. 625–654. [Google Scholar]
- Schoemaker, A.A.; Sprikkelman, A.B.; Grimshaw, K.E.; Roberts, G.; Grabenhenrich, L.; Rosenfeld, L.; Siegert, S.; Dubakiene, R.; Rudzeviciene, O.; Reche, M.; et al. Incidence and Natural History of Challenge-Proven Cow’s Milk Allergy in European Children—EuroPrevall Birth Cohort. Allergy 2015, 70, 963–972. [Google Scholar] [CrossRef]
- Koletzko, S.; Niggemann, B.; Arato, A.; Dias, J.A.; Heuschkel, R.; Husby, S.; Mearin, M.L.; Papadopoulou, A.; Ruemmele, F.M.; Staiano, A.; et al. Diagnostic Approach and Management of Cow’s-Milk Protein Allergy in Infants and Children: ESPGHAN GI Committee Practical Guidelines. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 221–229. [Google Scholar] [CrossRef]
- Janssen, M.; Busch, C.; Rodiger, M.; Hamm, U. Motives of Consumers Following a Vegan Diet and their Attitudes Towards Animal Agriculture. Appetite 2016, 105, 643–651. [Google Scholar] [CrossRef]
- Bhatia, J.; Greer, F.; Comm, N. Use of Soy Protein-based Formulas in Infant Feeding. Pediatrics 2008, 121, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Agostoni, C.; Axelsson, I.; Goulet, O.; Koletzko, B.; Michaelsen, K.F.; Puntis, J.; Rieu, D.; Rigo, J.; Shamir, R.; Szajewska, H.; et al. Soy Protein Infant Formulae and Follow-on Formulae: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2006, 42, 352–361. [Google Scholar] [CrossRef] [Green Version]
- European Union. Commission Delegated Regulation (EU) 2016/127 of 25th September 2015 Supplementing Regulation (EU) No 609/2013 of the European Parliament and of the Council as Regards the Specific Compositional and Information Requirements for Infant Formula and Follow-On Formula and as Regards Requirements on Information Relating to Infant and Young Child Feeding. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02016R0127-20190612&from=EN (accessed on 21 February 2021).
- Food and Drug Administration. Code of Federal Regulations, Title 21, Chapter 21, Subchapter B, Part 107—Infant Formula. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-107 (accessed on 26 October 2021).
- Joint FAO/WHO Codex Alimentarius Commission. Codex Alimentarius Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants CXS 72-1981. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B72-1981%252FCXS_072e.pdf (accessed on 26 October 2021).
- Dupont, C.; Bocquet, A.; Tomé, D.; Bernard, M.; Campeotto, F.; Dumond, P.; Essex, A.; Frelut, M.-L.; Guénard-Bilbault, L.; Lack, G.; et al. Hydrolyzed Rice Protein-Based Formulas, a Vegetal Alternative in Cow’s Milk Allergy. Nutrients 2020, 12, 2654. [Google Scholar] [CrossRef]
- Prosser, C.G. Compositional and Functional Characteristics of Goat Milk and Relevance as a Base for Infant Formula. J. Food Sci. 2021, 86, 257–265. [Google Scholar] [CrossRef]
- Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A. Dairy Chemistry and Biochemistry, 2nd ed.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of Raw or Heated Milk from Different Species: An Evaluation of the Nutritional and Potential Health Benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Park, Y.W. Goat Milk—Chemistry and Nutrition. In Handbook of Milk of Non-Bovine Mammals, 2nd ed.; Park, Y.W., Hanlein, G.F.W., Wendorff, W.L., Eds.; John Wiley & Sons: Hoboken, UK, 2017; pp. 42–83. [Google Scholar]
- Amigo, L.; Fontecha, J. Milk: Goat Milk. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.F., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: London, UK, 2011; Volume 3, pp. 484–493. [Google Scholar]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, D.M.; O’Mahony, J.A.; Ramanujam, K.S.; Burgher, A.M. Dehydrated Dairy Products:Infant Formulae. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.F., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: London, UK, 2011; Volume 2, pp. 135–145. [Google Scholar]
- McSweeney, S.; O’Regan, J.; O’Callaghan, D. Nutritional Formulae for Infants and Young Children. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health; Park, Y.W., Haenlein, G.F.W., Eds.; Wiley-Blackwell: Chichester, UK, 2013; pp. 458–476. [Google Scholar]
- EFSA Panel on Dietetic Products Nutrition and Allergies. Scientific Opinion on the Suitability of Goat Milk Protein as a Source of Protein in infant formulae and in follow-on formulae. EFSA J. 2012, 10, 2603. [Google Scholar] [CrossRef] [Green Version]
- Medic, J.; Atkinson, C.; Hurburgh, C.R. Current Knowledge in Soybean Composition. J. Am. Oil. Chem. Soc. 2014, 91, 363–384. [Google Scholar] [CrossRef]
- Mojica, L.; Dia, V.P.; de Majía, E.G. Soy Proteins. In Applied Food Protein Chemistry; Ustunol, Z., Ed.; Wiley-Blackwell: Chicester, UK, 2014; pp. 141–192. [Google Scholar]
- Ma, C.Y. Soybean: Soy Concentrates and Isolates. In Encyclopedia of Food Grains, 2nd ed.; Wrigley, C.W., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Oxford, UK, 2016; Volume 3, pp. 482–488. [Google Scholar]
- Vandenplas, Y.; Castrellon, P.G.; Rivas, R.; Gutiérrez, C.J.; Garcia, L.D.; Jimenez, J.E.; Anzo, A.; Hegar, B.; Alarcon, P. Safety of soya-based infant formulas in children. Br. J. Nutr. 2014, 111, 1340–1360. [Google Scholar] [CrossRef]
- Amagliani, L.; O’Regan, J.; Schmitt, C.; Kelly, A.L.; O’Mahony, J.A. Characterisation of the physicochemical properties of intact and hydrolysed rice protein ingredients. J. Cereal Sci. 2019, 88, 16–23. [Google Scholar] [CrossRef]
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. The composition, extraction, functionality and applications of rice proteins: A review. Trends Food Sci. Technol. 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Romero, M.V. Rice Proteins. In Applied Food Protein Chemistry; Ustunol, Z., Ed.; Wiley-Blackwell: Chicester, UK, 2015; pp. 305–322. [Google Scholar]
- Boye, J.; Wijesinha-Bettoni, R.; Burlingame, B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br. J. Nutr. 2012, 108, S183–S211. [Google Scholar] [CrossRef] [Green Version]
- FAO Expert Consultation. Dietary Protein Quality Evaluation in Human Nutrition. Available online: https://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf (accessed on 20 March 2021).
- Mathai, J.K.; Liu, Y.H.; Stein, H.H. Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). Br. J. Nutr. 2017, 117, 490–499. [Google Scholar] [CrossRef]
- Maathuis, A.; Havenaar, R.; He, T.; Bellmann, S. Protein Digestion and Quality of Goat and Cow Milk Infant Formula and Human Milk Under Simulated Infant Conditions. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Lien, E.L. Infant formulas with increased concentrations of alpha-lactalbumin. Am. J. Clin. Nutr. 2003, 77, 1555S–1558S. [Google Scholar] [CrossRef] [Green Version]
- Lönnerdal, B. Infant formula and infant nutrition: Bioactive proteins of human milk and implications for composition of infant formulas. Am. J. Clin. Nutr. 2014, 99, 712s–717s. [Google Scholar] [CrossRef] [Green Version]
- Lönnerdal, B.; Lien, E.L. Nutritional and physiologic significance of alpha-lactalbumin in infants. Nutr. Rev. 2003, 61, 295–305. [Google Scholar] [CrossRef]
- Davis, A.M.; Harris, B.J.; Lien, E.L.; Pramuk, K.; Trabulsi, J. Alpha-Lactalbumin-rich infant formula fed to healthy term infants in a multicenter study: Plasma essential amino acids and gastrointestinal tolerance. Eur. J. Clin. Nutr. 2008, 62, 1294–1301. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products Nutrition and Allergies. Scientific Opinion on the Essential Composition of Infant and Follow-on Formulae. EFSA J. 2014, 12, 3760. [Google Scholar] [CrossRef] [Green Version]
- Hofman, D.L.; Van Buul, V.J.; Brouns, F. Nutrition, Health, and Regulatory Aspects of Digestible Maltodextrins. Crit. Rev. Food Sci. Nutr. 2016, 56, 2091–2100. [Google Scholar] [CrossRef]
- Salvatore, S.; Savino, F.; Singendonk, M.; Tabbers, M.; Benninga, M.A.; Staiano, A.; Vandenplas, Y. Thickened infant formula: What to know. Nutrition 2018, 49, 51–56. [Google Scholar] [CrossRef]
- Giorgio, D.; Di Trana, A.; Claps, S. Oligosaccharides, polyamines and sphingolipids in ruminant milk. Small Rumin. Res. 2018, 160, 23–30. [Google Scholar] [CrossRef]
- Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 2012, 22, 1147–1162. [Google Scholar] [CrossRef] [Green Version]
- Bych, K.; Miks, M.H.; Johanson, T.; Hederos, M.J.; Vigsnaes, L.K.; Becker, P. Production of HMOs using microbial hosts—From cell engineering to large scale production. Curr. Opin. Biotechnol. 2019, 56, 130–137. [Google Scholar] [CrossRef]
- Delplanque, B.; Gibson, R.; Koletzko, B.; Lapillonne, A.; Strandvik, B. Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heird, W.C.; Lapillonne, A. The Role of Essential Fatty Acids in Development. Annu. Rev. Nutr. 2005, 25, 549–571. [Google Scholar] [CrossRef] [PubMed]
- Bar-Yoseph, F.; Lifshitz, Y.; Cohen, T. Review of sn-2 palmitate oil implications for infant health. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourlieu, C.; Bouzerzour, K.; Ferret-Bernard, S.; Le Bourgot, C.; Chever, S.; Menard, O.; Deglaire, A.; Cuinet, I.; Le Ruyet, P.; Bonhomme, C.; et al. Infant formula interface and fat source impact on neonatal digestion and gut microbiota. Eur. J. Lipid Sci. Technol. 2015, 117, 1500–1512. [Google Scholar] [CrossRef]
- Chen, M.; Sun, Q. Current knowledge in the stabilization/destabilization of infant formula emulsions during processing as affected by formulations. Trends Food Sci. Technol. 2021, 109, 435–447. [Google Scholar] [CrossRef]
- Gallier, S.; Tolenaars, L.; Prosser, C. Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula. Nutrients 2020, 12, 3486. [Google Scholar] [CrossRef]
- Lopez, C.; Menard, O. Human milk fat globules: Polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids Surf. B Biointerfaces 2011, 83, 29–41. [Google Scholar] [CrossRef]
- Walter, L.; Shrestha, P.; Fry, R.; Leury, B.J.; Logan, A. Lipid metabolic differences in cows producing small or large milk fat globules: Fatty acid origin and degree of saturation. J. Dairy Sci. 2020, 103, 1920–1930. [Google Scholar] [CrossRef]
- Nguyen, T.T.P.; Bhandari, B.; Cichero, J.; Prakash, S. A comprehensive review on in vitro digestion of infant formula. Food Res. Int. 2015, 76, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Gallier, S.; Vocking, K.; Post, J.A.; Van De Heijning, B.; Acton, D.; Van Der Beek, E.M.; Van Baalen, T. A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids Surf. B Biointerfaces 2015, 136, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Prosser, C.G.; Svetashev, V.I.; Vyssotski, M.V.; Lowry, D.J. Composition and distribution of fatty acids in triglycerides from goat infant formulas with milk fat. J. Diary Sci. 2010, 93, 2857–2862. [Google Scholar] [CrossRef] [Green Version]
- Amagliani, L.; O’Regan, J.; Keny, A.L.; O’Mahony, J.A. Composition and protein profile analysis of rice protein ingredients. J. Food Compos. Anal. 2017, 59, 18–26. [Google Scholar] [CrossRef]
- Omoarukhe, E.D.; On-Nom, N.; Grandison, A.S.; Lewis, M.J. Effects of different calcium salts on properties of milk related to heat stability. Int. J. Dairy Technol. 2010, 63, 504–511. [Google Scholar] [CrossRef]
- Ryan, M.; McEvoy, E.; Duignan, S.; Crowley, C.; Fenelon, M.; O’Callaghan, D.M.; FitzGerald, R.J. Thermal stability of soy protein isolate and hydrolysate ingredients. Food Chem. 2008, 108, 503–510. [Google Scholar] [CrossRef]
- Gilani, G.S.; Xiao, C.W.; Cockell, K.A. Impact of Antinutritional Factors in Food Proteins on the Digestibility of Protein and the Bioavailability of Amino Acids and on Protein Quality. Br. J. Nutr. 2012, 108, S315–S332. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assuncao, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carriere, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Egger, L.; Menard, O.; Baumann, C.; Duerr, D.; Schlegel, P.; Stoll, P.; Vergeres, G.; Dupont, D.; Portmann, R. Digestion of milk proteins: Comparing static and dynamic in vitro digestion systems with in vivo data. Food Res. Int. 2019, 118, 32–39. [Google Scholar] [CrossRef]
- Li, C.; Yu, W.W.; Wu, P.; Chen, X.D. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends Food Sci. Technol. 2020, 96, 114–126. [Google Scholar] [CrossRef]
- Menard, O.; Bourlieu, C.; De Oliveira, S.C.; Dellarosa, N.; Laghi, L.; Carriere, F.; Capozzi, F.; Dupont, D.; Deglaire, A. A first step towards a consensus static in vitro model for simulating full-term infant digestion. Food Chem. 2018, 240, 338–345. [Google Scholar] [CrossRef]
- Ye, A.Q.; Cui, J.; Carpenter, E.; Prosser, C.; Singh, H. Dynamic in vitro gastric digestion of infant formulae made with goat milk and cow milk: Influence of protein composition. Int. Dairy J. 2019, 97, 76–85. [Google Scholar] [CrossRef]
- Phosanam, A.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. In vitro digestion of infant formula model systems: Influence of casein to whey protein ratio. Int. Dairy J. 2021, 117, 105008. [Google Scholar] [CrossRef]
- Hodgkinson, A.J.; Wallace, O.A.M.; Boggs, I.; Broadhurst, M.; Prosser, C.G. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chem. 2018, 245, 275–281. [Google Scholar] [CrossRef]
- Nguyen, T.T.P.; Bhandari, B.; Cichero, J.; Prakash, S. Gastrointestinal digestion of dairy and soy proteins in infant formulas: An in vitro study. Food Res. Int. 2015, 76, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Carbonaro, M.; Maselli, P.; Nucara, A. Relationship between digestibility and secondary structure of raw and thermally treated legume proteins: A Fourier transform infrared (FT-IR) spectroscopic study. Amino Acids 2012, 43, 911–921. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.J.; Wang, R.; Sui, X.N.; Qi, B.K.; Han, F.F.; Li, Y.; Jiang, L.Z. Secondary Structure and Subunit Composition of Soy Protein In Vitro Digested by Pepsin and Its Relation with Digestibility. BioMed Res. Int. 2016, 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, L.; Chacon, R.; Dupont, D.; Jeantet, R.; Deglaire, A.; Nau, F. In vitro static digestion reveals how plant proteins modulate model infant formula digestibility. Food Res. Int. 2020, 130, 108917. [Google Scholar] [CrossRef]
- Alonso-Miravalles, L.; Barone, G.; Waldron, D.; Bez, J.; Joehnke, M.S.; Petersen, I.L.; Zannini, E.; Arendt, E.K.; O’Mahony, J.A. Formulation, Pilot-Scale Preparation, Physicochemical Characterisation and Digestibility of a Lentil Protein-Based Model Infant Formula Powder. J. Sci. Food Agric. 2021. [Google Scholar] [CrossRef]
- Bourlieu, C.; Menard, O.; De La Chevasnerie, A.; Sams, L.; Rousseau, F.; Madec, M.-N.; Robert, B.; Deglaire, A.; Pezennec, S.; Bouhallab, S.; et al. The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chem. 2015, 182, 224–235. [Google Scholar] [CrossRef]
- Fondaco, D.; AlHasawi, F.; Lan, Y.; Ben-Elazar, S.; Connolly, K.; Rogers, M.A. Biophysical Aspects of Lipid Digestion in Human Breast Milk and SimilacTM Infant Formulas. Food Biophys. 2015, 10, 282–291. [Google Scholar] [CrossRef]
- Nguyen, T.T.P.; Bhandari, B.; Cichero, J.; Prakash, S. In vitro lipolysis of dairy and soy based infant formula. Food Res. Int. 2018, 106, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Gnoth, M.J.; Kunz, C.; Kinne-Saffran, E.; Rudloff, S. Human milk oligosaccharides are minimally digested in vitro. J. Nutr. 2000, 130, 3014–3020. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.J.; Atkinson, F.S.; Ramalingam, N.; Buyken, A.E.; Brand-Miller, J.C. Effects of human milk and formula on postprandial glycaemia and insulinaemia. Eur. J. Clin. Nutr. 2015, 69, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Fenelon, M.A.; Hickey, R.M.; Buggy, A.; McCarthy, N.; Murphy, E.G. Whey Proteins in Infant Formula. In Whey Proteins: From Milk to Medicine; Deeth, H.C., Bansal, N., Eds.; Academic Press: London, UK, 2019; pp. 439–494. [Google Scholar]
- McCarthy, N.A.; Kelly, A.L.; O’Mahony, J.A.; Hickey, D.K.; Chaurin, V.; Fenelon, M.A. Effect of protein content on emulsion stability of a model infant formula. Int. Dairy J. 2012, 25, 80–86. [Google Scholar] [CrossRef]
- McSweeney, S.L.; Mulvihill, D.M.; O’Callaghan, D.M. The influence of pH on the heat-induced aggregation of model milk protein ingredient systems and model infant formula emulsions stabilized by milk protein ingredients. Food Hydrocoll. 2004, 18, 109–125. [Google Scholar] [CrossRef]
- Ryan, M.; McEvoy, E.; McSweeney, S.L.; O’Callaghan, D.M.; FitzGerald, R.J. Thermal behavior of emulsions manufactured with soy protein ingredients. Food Res. Int. 2008, 41, 813–818. [Google Scholar] [CrossRef]
- Sundekilde, U.K.; Larsen, L.B.; Bertram, H.C. NMR-Based Milk Metabolomics. Metabolites 2013, 3, 204–222. [Google Scholar] [CrossRef]
- Wishart, D.S. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol. 2008, 19, 482–493. [Google Scholar] [CrossRef]
- Foroutan, A.; Guo, A.C.; Vazquez-Fresno, R.; Lipfert, M.; Zhang, L.; Zheng, J.M.; Badran, H.; Budinski, Z.; Mandal, R.; Ametaj, B.N.; et al. Chemical Composition of Commercial Cow’s Milk. J. Agric. Food Chem. 2019, 67, 4897–4914. [Google Scholar] [CrossRef]
- Sen, C.; Ray, P.R.; Bhattacharyya, M. A critical review on metabolomic analysis of milk and milk products. Int. J. Dairy Technol. 2021, 74, 17–31. [Google Scholar] [CrossRef]
- Marincola, F.C.; Dessi, A.; Corbu, S.; Reali, A.; Fanos, V. Clinical impact of human breast milk metabolomics. Clin. Chim. Acta 2015, 451, 103–106. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Chen, H.; Feng, J.H.; Chen, Z.W.; Cai, S.H. H-1 NMR-based compositional identification of different powdered infant formulas. Food Chem. 2017, 230, 164–173. [Google Scholar] [CrossRef]
- Scano, P.; Murgia, A.; Demuru, M.; Consonni, R.; Caboni, P. Metabolite profiles of formula milk compared to breast milk. Food Res. Int. 2016, 87, 76–82. [Google Scholar] [CrossRef]
- Garwolinska, D.; Hewelt-Belka, W.; Kot-Wasik, A.; Sundekilde, U.K. Nuclear Magnetic Resonance Metabolomics Reveals Qualitative and Quantitative Differences in the Composition of Human Breast Milk and Milk Formulas. Nutrients 2020, 12, 921. [Google Scholar] [CrossRef] [Green Version]
- Thevenier, A.; Marchesini, G.; Schuh, S. WO/2018/115340—Infant Formula for Cow’s Milk Protein Allergic Infants. Available online: https://patentimages.storage.googleapis.com/8b/c5/80/137f1654e0d057/WO2018115340A1.pdf (accessed on 5 April 2021).
- El-Agamy, E.I.; Nawar, M.; Shamsia, S.M.; Awad, S.; Haenlein, G.F.W. Are camel milk proteins convenient to the nutrition of cow milk allergic children? Small Rumin. Res. 2009, 82, 1–6. [Google Scholar] [CrossRef]
- Polidori, P.; Cammertoni, N.; Santini, G.; Klimanova, Y.; Zhang, J.-J.; Vincenzetti, S. Nutritional Properties of Camelids and Equids Fresh and Fermented Milk. Dairy 2021, 2, 288–302. [Google Scholar] [CrossRef]
Bovine Milk | Caprine Milk | Human Milk | |
---|---|---|---|
Total casein | 24.6–28.0 | 23.4–46.3 | 2.4–4.2 |
αS1-casein | 8.0–10.7 | 0–13.0 | 0.77 |
αS2-casein | 2.8–3.4 | 2.4–11.6 | - |
β-casein | 8.6–9.3 | 0–29.6 | 3.87 |
κ-casein | 2.3–3.3 | 2.8–13.4 | 0.14 |
Total whey | 5.5–7.0 | 3.7–7.0 | 6.2–8.3 |
β-lactoglobulin | 3.2–3.3 | 1.5–5.0 | - |
α-lactalbumin | 1.2–1.3 | 0.7–2.3 | 1.9–3.4 |
Serum albumin | 0.3–0.4 | - | 0.4–0.5 |
Immunoglobulins (Ig) | 0.5–1.0 | - | 0.96–1.3 |
IgG | 0.15–0.8 | 0.1–0.4 | 0.03 |
IgA | 0.05–0.14 | 0.03–0.08 | 0.96 |
IgM | 0.04–0.1 | 0.01–0.04 | 0.02 |
Lactoferrin | 0.02–0.5 | 0.02–0.2 |
Age Group | His 1 | Ile 2 | Leu 3 | Lys 4 | SAA 5 | AAA 6 | Thr 7 | Trp 8 | Val 9 |
---|---|---|---|---|---|---|---|---|---|
Infants (0–6 months) | 21 | 55 | 96 | 60 | 33 | 94 | 44 | 17 | 55 |
Child (6 months–3 years) | 20 | 32 | 66 | 57 | 27 | 52 | 31 | 8.5 | 43 |
Older child, adolescent, adult | 16 | 30 | 61 | 48 | 23 | 41 | 25 | 6.6 | 40 |
Per 100 kJ | Per 100 kcal | |
---|---|---|
Indispensable amino acids | ||
Histidine | 10 | 40 |
Isoleucine | 22 | 90 |
Leucine | 40 | 166 |
Lysine | 27 | 113 |
Methionine | 5 | 23 |
Phenylalanine | 20 | 83 |
Threonine | 18 | 77 |
Tryptophan | 8 | 32 |
Valine | 21 | 88 |
Conditionally indispensable amino acids | ||
Cysteine | 9 | 38 |
Tyrosine | 18 | 76 |
Per 100 kJ | Per 100 kcal | |||
---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | |
Sodium (mg) | 6 | 14.3 | 25 | 60 |
Potassium (mg) | 19.1 | 38.2 | 80 | 160 |
Chloride (mg) | 14.3 | 38.2 | 60 | 160 |
Calcium (mg) | 12 | 33.5 | 50 | 140 |
Phosphorus (mg) | 6 | 21.5 | 25 | 90 |
Magnesium (mg) | 1.2 | 3.6 | 5 | 15 |
Iron (mg) | 0.07 | 0.31 | 0.3 | 1.3 |
Zinc (mg) | 0.12 | 0.24 | 0.5 | 1 |
Copper (µg) | 14.3 | 24 | 60 | 100 |
Iodine (µg) | 3.6 | 6.9 | 15 | 49 |
Selenium (µg) | 0.72 | 2 | 3 | 8.6 |
Manganese (µg) | 0.24 | 24 | 1 | 100 |
Molybdenum (µg) | - | 3.3 | - | 14 |
Fluoride (µg) | - | 24 | - | 100 |
Per 100 kJ | Per 100 kcal | |||
---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | |
Vitamin A (µ-RE) 1 | 16.7 | 27.2 | 70 | 114 |
Vitamin D (µg) | 0.48 | 0.72 | 2 | 3 |
Thiamine (µg) | 9.6 | 72 | 40 | 300 |
Riboflavin (µg) | 14.3 | 95.6 | 60 | 400 |
Niacin (mg) 2 | 0.1 | 0.36 | 0.4 | 1.5 |
Pantothenic acid (mg) | 0.1 | 0.48 | 0.4 | 2 |
Vitamin B6 (µg) | 4.8 | 41.8 | 20 | 175 |
Biotin (µg) | 0.24 | 1.8 | 1 | 7.5 |
Folate (µg-DFE) 3 | 3.6 | 11.4 | 15 | 47.6 |
Vitamin B12 (µg) | 0.02 | 0.12 | 0.1 | 0.5 |
Vitamin C | 0.96 | 7.2 | 4 | 30 |
Vitamin K | 0.24 | 6 | 1 | 25 |
Vitamin E (mg α- tocopherol) 4 | 0.14 | 1.2 | 0.6 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrne, M.E.; O’Mahony, J.A.; O’Callaghan, T.F. Compositional and Functional Considerations for Bovine-, Caprine- and Plant-Based Infant Formulas. Dairy 2021, 2, 695-715. https://doi.org/10.3390/dairy2040054
Byrne ME, O’Mahony JA, O’Callaghan TF. Compositional and Functional Considerations for Bovine-, Caprine- and Plant-Based Infant Formulas. Dairy. 2021; 2(4):695-715. https://doi.org/10.3390/dairy2040054
Chicago/Turabian StyleByrne, Margaret E., James A. O’Mahony, and Tom F. O’Callaghan. 2021. "Compositional and Functional Considerations for Bovine-, Caprine- and Plant-Based Infant Formulas" Dairy 2, no. 4: 695-715. https://doi.org/10.3390/dairy2040054
APA StyleByrne, M. E., O’Mahony, J. A., & O’Callaghan, T. F. (2021). Compositional and Functional Considerations for Bovine-, Caprine- and Plant-Based Infant Formulas. Dairy, 2(4), 695-715. https://doi.org/10.3390/dairy2040054