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Abstract: In this work, milk samples collected in a cohort of intensive dairy farms of the Po Valley
(Italy) were screened for their (poly)-phenolic profile to check the occurrence of phenolic metabolites
of biological interest. The selected dairy farms were previously classified on the basis of their cow
feeding system, considering the utilization of corn silage as the main ingredient of the rations. Overall,
ultra-high-pressure liquid chromatography coupled with mass spectrometry using an Orbitrap ana-
lyzer, followed by unsupervised and supervised statistics, allowed identifying clear different phenolic
distributions in the milk samples. Accordingly, a great variability in the phenolic profiles of the
different milk samples was observed, with two main phenolic clusters outlined by the unsupervised
hierarchical clustering approach and not fully correlated to the nutritional strategy considered. The
variables’ importance in the projection approach allowed selecting the most important metabolites,
resulting in samples’ discrimination. Among the most discriminative compounds, we found phenolic
metabolites (such as hippuric acid and 4-hydroxyhippuric acid), followed by lignans (such as entero-
lactone) and isoflavonoids (such as equol and O-desmethylangolensin). Taken together, our findings
suggested that both the feeding systems and the ability of dairy cows to process parent phenolic
compounds were the main factors providing the final (poly)-phenolic profile of the milk samples.
Future targeted and ad hoc studies appear of great interest to evaluate the potential biological effects
of these compounds on cow health.

Keywords: equol; hippuric acid; isoflavonoids; soybean; foodomics

1. Introduction

Cow’s milk is characterized by bioactive phenolic compounds (PC) usually arising
from the processing of plant compounds promoted by the bovine gut microbiota [1]. The
occurrence of polyphenols in milk and dairy products has been associated with different
factors, namely, the consumption of fodder crops by cattle, the catabolic activity of bacteria
on proteins, contamination with sanitizing agents, process-related addition, or their delib-
erate addition as flavoring/functional ingredients [2]. Noteworthy, the consumption of
PC-rich feeds by cattle could affect not only ruminant health, but also the final yield and
overall quality of milk and milk-derived products [2].

The scientific literature on milk polyphenols is mainly focused on some metabolites of
biological interest, among which, equol represents one of the most targeted compounds.
Equol is classified as an isoflavone metabolite, derived from daidzein, and processed in
the gut of humans and animals by certain bacterial biotypes. According to the scientific
literature, all the animal species tested (including cows) can produce equol in response
to soy or daidzein consumption [3]. Regarding humans, only the 25–50% of the tested
subjects are classified as equol producers; the percentage variation largely depends on
the community in question and the dietary habits of its members [4]. Additionally, most
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humans (around 80%) recognized as equol non-producers can convert daidzein into another
metabolite, namely, O-desmethylangolensin (O-DMA), showing no estrogenic activity [5].
Overall, O-DMA and equol have been described to be likely produced by different bacterial
taxa [4].

Another studied compound, widely assessed as a potential biomarker of different
animal feeding regimen, is the phenolic metabolite hippuric acid. In this regard, a high
content of hippuric acid has been previously reported in milk from cows administered a diet
based on grazing grassland pasture, when compared with diets of concentrates and silage
or hay forages [6]. These authors related hippuric acid in milk to the presence of phenolic
acids, such as chlorogenic acid, neochlorogenic acid, and caffeoyl compounds, in grassland
pasture-based diets. Accordingly, forages contain large amounts of phenolic compounds
both in the insoluble cell wall and as soluble (free) phenolic compounds, specific to each
plant taxon. These parent compounds are partially degraded in the rumen and partly
absorbed in the rumen and intestinal mucosa, and then conjugated before transformation
in the liver and excretion in urine or milk [7]. Therefore, the feeding regimen and fodder
quality represent two very important factors driving the quantitative/qualitative variation
of polyphenols and their metabolites in milk.

In previous years, several analytical methods have been developed to maximize the
extraction and recovery of phenolic compounds from milk [8]; however, no comprehensive
studies targeting the comprehensive screening of these compounds in milk and dairy
products have been published. Therefore, considering the great interest in polyphenols
as bioactive compounds, in this work, an untargeted profiling based on a high-resolution
mass spectrometry approach was used to screen polyphenols and their metabolites in bulk
milk samples collected from different dairy farms using corn silages as the main ingredient
of the total mixed rations. In this regard, in our previous work [9], an observational study
was carried out to assess the impact of different nutritional corn silage-based strategies
on several parameters, such as the efficient use of dietary nutrients, the fecal fermentation
profile, and the profitability of intensive dairy farms characterizing the Po valley (Northern
Italy). Therefore, in this work, the distribution of phenolic compounds and metabolites
was assessed considering as discriminant factors six different feeding regimens that were
identified. To this aim, the untargeted phenolic profile of the different milk samples was
evaluated through both unsupervised and supervised multivariate statistical methods to
find possible correlations with the feeding systems and to extrapolate potential biomarker
compounds, respectively.

2. Materials and Methods
2.1. Collection and Classification of Bulk Milk Samples

In this research survey, 36 raw bulk tank milk samples (500 mL) were randomly
collected between January and June 2018 in a cohort of intensive dairy farms (in the
Po Valley, Northern Italy), being this period the best of the year in terms of productive
performance, low influence of seasonal changes on herd composition, overall milk quality
and silage bunker. The farms visited are representative of the intensive dairy farm system
in Italy, raising Holstein-Friesian cows, housed in free-stall barns, fed total mixed ration
(TMR), and with no access to pasture. In a previous work by our research group [9], an
observational study was carried out to evaluate the impact of different nutritional corn
silage-based strategies on several parameters related to both dairy farms and milk quality. In
particular, an unsupervised clustering approach (multivariate statistics) allowed observing
6 different clusters, according to the nutritional strategies adopted, namely: (a) high-
moisture ear corn (HMC) and legume silage (cluster 1), (b) compound feed (cluster 2), (c)
corn and soy meals (cluster 3), (d) HMC and soy meal (cluster 4), (e) corn meal and protein
compound feeds (cluster 5), and (f) HMC and protein compound feed strategies (cluster 6).
More details regarding the different nutritional strategies considered in this work can be
found in [9].
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2.2. Extraction of Phenolic Compounds

In this work, phenolic compounds were extracted according to a method previously
reported [10]. Following a skimming process (by centrifugation), 2 mL of milk samples
was extracted in 14 mL of acetonitrile, adding 3% of formic acid (both LC–MS-grade, from
Sigma-Aldrich, Milan, Italy). Milk samples were vortexed for 3 min and then incubated
for ultrasound-assisted extraction (UAE) for 5 min. The samples were then centrifuged at
12,000× g for 15 min in cold temperature (4 ◦C) and incubated overnight in a freezer at
–18 ◦C to facilitate the precipitation of proteins. Finally, the supernatants were filtered using
cellulose syringe filters (diameter: 0.2 µm) in UHPLC vials until untargeted metabolomic
profiling was performed.

2.3. Phenolic Profiling Based on High-Resolution Mass Spectrometry

The milk extracts were then analyzed trough a high-resolution mass spectrometry
(HRMS) approach, based on a Q-Exactive™ Focus Hybrid Quadrupole-Orbitrap Mass
Spectrometer (Thermo Scientific, Waltham, MA, USA) coupled to a Vanquish ultra-high-
pressure liquid chromatographer (UHPLC). UHPLC was based on a gradient separation of
35 min, using water and acetonitrile (both of LC–MS grade, from Sigma-Aldrich, Milan,
Italy) as mobile phases (both acidified with 0.1% formic acid). The separation was achieved
on an Agilent Zorbax Eclipse Plus C18 column (50 × 2.1 mm, 1.8 µm). The UHPLC–HRMS
conditions are fully described in a previous work by our research group [11]. The milk
extracts were analyzed using a full scan MS-data-dependent (Top N = 3) MS/MS mode,
in the range of 100–1200 m/z, with a positive ionization mode and a mass resolution of
70,000 FWHM. The Top N ions were selected for fragmentation using typical normalized
collision energies, namely, 10, 20, 40 eV. The HESI parameters are fully reported in a previ-
ous work [12]. The raw data (.RAW files) generated were then processed using the software
MS-DIAL (version 4.70) for post-acquisition data filtering, then achieving annotation via
spectral matching against the databases FooDB and Phenol-Explorer. In our experimen-
tal conditions, the identification step was based on mass accuracy (using a 5 ppm mass
tolerance), isotopic pattern, and spectral matching, thus working according to a level 2 of
confidence in annotation (i.e., putatively annotated compounds and structural confirmation
according to spectral matching), typical for untargeted metabolomics-based strategies.

2.4. Multivariate Statistical Analysis

The phenolic dataset exported from MS-DIAL was then elaborated using the software
MetaboAnalyst 5.0 [13]. Following normalization, the data were processed for both unsu-
pervised (i.e., hierarchical cluster analysis, HCA) and supervised (orthogonal projection
to latent structures discriminant analysis, OPLS-DA) multivariate statistics. Additionally,
those parameters related to the goodness of fit and prediction of the model were also
recorded, namely, R2Y and Q2Y, respectively, whilst a permutation testing (N > 100) was
used to exclude model over-fitting. The variable selection method VIP (i.e., variables
importance in projection) was used to evaluate the discriminant power of each phenolic
metabolite, considering values >1 as the minimum significant threshold, also inspecting the
corresponding S-plot. Volcano plots were produced for the comparison between the two
phenolic groups revealed by cluster analysis, by coupling a Fold-Change analysis (cut-off
value >1.2) and ANOVA (p-value < 0.05, with a False Discovery Rate correction). Finally,
Pearson’s correlation coefficients (p-value < 0.05, two-tailed) were inspected to identify
those discriminative phenolic metabolites more influenced by the different ingredients of
the feeding rations.

3. Results and Discussion
3.1. Profiling of Phenolic Compounds in the Different Milk Samples

In this work, the untargeted screening of phenolic compounds in the different milk
samples from different cow feeding regimens revealed a total of 267 annotated metabo-
lites. Each identified compound is reported in Supplementary File S1, considering adduct
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type, reference m/z, formula, total ID score (as provided by the MS-Dial software), MS1
isotopic spectrum, MS/MS spectrum (when available), and relative abundance values
when considering three replicates for each sample. Interestingly, 70 phenolics (26% of total
compounds) were structurally confirmed by MS/MS, according to the annotation step
provided by the QC samples and against the comprehensive FooDB spectral library. Among
the most abundant and structurally confirmed compounds, the highest annotation scores
were found when considering three compounds, namely, hippuric acid, hydroxycaffeic
acid, and umbelliferone (Supplementary File S1). Regarding the phenolic classes annotated,
we found a clear abundance of flavonoids (120 compounds), followed by phenolic acids
(65 compounds), low-molecular-weight phenolics (i.e., tyrosol equivalents; 61 compounds),
lignans (14 compounds), and stilbenes (7 compounds). Overall, the untargeted screen-
ing of phenolic compounds in the different milk samples revealed a great distribution
of phenolic metabolites such as phenolic glucuronides and sulfates. According to the
scientific literature, it is known that the quantification of polyphenols in biological samples
collected from animals might be underestimated; in particular, many phenolic metabolites
resulting from the catabolism of parent compounds by the colonic microbiota can still be
absorbed into the blood and are usually not considered [14]. Many of these compounds
can undergo further metabolism and be conjugated by phase II enzymes, to form sulfated,
glucuronidated, and methylated compounds. In our experimental conditions, several com-
pounds potentially associated with phase II metabolism were detected, such as quercetin
3-O-xylosyl-glucuronide, apigenin 7-O-glucuronide, daidzein 4′-O-glucuronide, daidzin
4′-O-glucuronide, formononetin 7-O-glucuronide, luteolin 7-O-glucuronide, hesperetin
3′,7-O-diglucuronide, caffeic acid 3-O-glucuronide, 5-(3′,5′-dihydroxyphenyl)-gamma-
valerolactone 3-O-glucuronide, hesperetin 3′-sulfate, tyrosol 4-sulfate, dihydroferulic acid
4-sulfate, and others (Supplementary File S1).

In the last years, the interest in plant polyphenols and in their impact on animal
nutrition has increased. These compounds, ubiquitously distributed in the plant kingdom,
characterize some plants exploited as feeding resources alternative to cultivated crops and
can be found in several agro-industry by-products [15]. Polyphenols can also interact with
the rumen microbiota, thus affecting carbohydrate fermentation, protein degradation, and
lipid metabolism. Some of these key aspects have been largely reviewed, especially for
tannins (polymeric phenolic compounds). Among the most studied effects of polyphenols
on ruminant nutrition, it is important to list their ability to depress (condensed tannins)
or modulate (hydrolyzable tannins) the biohydrogenation of unsaturated fatty acids by
a perturbation of the ruminal microbiota composition [15], together with a potential re-
duction of methane emission by directly interacting with the rumen microbiota (without
affecting fiber digestion) [16]. Another very studied topic regarding plant polyphenols and
farming animals is their potential ability to affect reproductive events [17]. In particular, the
presence of phenolic compounds in the diets of farming animals during their reproductive
cycle was found to improve or interfere with their reproductive performance; however,
there are still associated unknown reproductive hazards and a great source of variability
regarding the biological effects that need to be assessed in future research [17]. Starting
from these background conditions on the importance of polyphenols in animal nutrition,
in the next paragraphs, we evaluated the ability of phenolic compounds to distinguish the
milk samples under investigation and their potential correlation with the feeding systems
of the visited dairy farms.

3.2. Discrimination of the Milk Samples According to Their Comprehensive Phenolic Profiles

The phenolic dataset resulting from the UHPLC–HRMS analysis was then elaborated
trough an unsupervised statistical approach, namely, hierarchical cluster analysis. The
corresponding heat map built according to the fold-change variation of each annotated
metabolite in the different milk samples is reported in Figure 1. As a first consideration,
it was clear that the unsupervised clustering identified two main groups (Cluster 1: blue-
colored; Cluster 2: red-colored) of milk samples according to the measured phenolic profiles.
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Overall, it is important to state that the sample grouping outlined by the cluster analysis
was built without supervision, thus revealing a huge variability in the phenolic composition
of the different milk samples that, likely, was not related only to the feeding systems under
investigation. In this regard, it is known that phenolic compounds in cow’s milk are
derived from the feed, although a proportion of these compounds may also result from
amino acid catabolism and by the catabolic activity of rumen and intestinal bacteria [2].
In addition, the typical deglycosylation, dehydroxylation, and dehydrogenation reactions
in humans are known to play an essential role in the metabolism of polyphenols, but
few information is to date available regarding the ruminal bacteria species or consortia
involved in these reactions. In a previous work by our research group, an unsupervised
hierarchical clustering approach was used to discriminate farms’ feeding choices when
considering the visited dairy farms. As reported in Table 1, the farms’ feeding choices were
grouped based on the high use of high moisture corn (HMC) and legume silage (cluster
1), compound feed (cluster 2), corn and soy meals (cluster 3), HMC and soy meal (cluster
4), corn meal and protein compound feeds (cluster 5), and HMC and protein compound
feed strategies (cluster 6). Therefore, by comparing the heat maps of the milk phenolic
profiles with the feeding strategies previously reported [9], it was possible to conclude
that the phenolic compounds were not good predictors of the feeding strategies adopted
by the different intensive dairy farms. As highlighted in Table 1, it was difficult to find a
clear relationship between the feeding regimen and the phenolic group, considering the
many factors of variability involved. Therefore, in the next part of this work, we used a
supervised statistical approach to highlight the differences driving the separation of the
two main phenolic groups observed.

Dairy 2022, 3, x FOR PEER REVIEW  5 of 12 
 

 

3.2. Discrimination of the Milk Samples According to Their Comprehensive Phenolic Profiles 

The phenolic dataset resulting from the UHPLC–HRMS analysis was then elaborated 

trough an unsupervised statistical approach, namely, hierarchical cluster analysis. The 

corresponding heat map built according to the fold-change variation of each annotated 

metabolite in the different milk samples is reported in Figure 1. As a first consideration, it 

was clear that the unsupervised clustering identified two main groups (Cluster 1: blue-

colored; Cluster 2: red-colored) of milk samples according to the measured phenolic pro-

files. Overall, it is important to state that the sample grouping outlined by the cluster anal-

ysis was built without supervision, thus revealing a huge variability in the phenolic com-

position of the different milk samples that, likely, was not related only to the feeding sys-

tems under investigation. In this regard, it is known that phenolic compounds in cow’s 

milk are derived from the feed, although a proportion of these compounds may also result 

from amino acid catabolism and by the catabolic activity of rumen and intestinal bacteria 

[2]. In addition, the typical deglycosylation, dehydroxylation, and dehydrogenation reac-

tions in humans are known to play an essential role in the metabolism of polyphenols, but 

few information is to date available regarding the ruminal bacteria species or consortia 

involved in these reactions. In a previous work by our research group, an unsupervised 

hierarchical clustering approach was used to discriminate farms’ feeding choices when 

considering the visited dairy farms. As reported in Table 1, the farms’ feeding choices 

were grouped based on the high use of high moisture corn (HMC) and legume silage 

(cluster 1), compound feed (cluster 2), corn and soy meals (cluster 3), HMC and soy meal 

(cluster 4), corn meal and protein compound feeds (cluster 5), and HMC and protein com-

pound feed strategies (cluster 6). Therefore, by comparing the heat maps of the milk phe-

nolic profiles with the feeding strategies previously reported [9], it was possible to con-

clude that the phenolic compounds were not good predictors of the feeding strategies 

adopted by the different intensive dairy farms. As highlighted in Table 1, it was difficult 

to find a clear relationship between the feeding regimen and the phenolic group, consid-

ering the many factors of variability involved. Therefore, in the next part of this work, we 

used a supervised statistical approach to highlight the differences driving the separation 

of the two main phenolic groups observed.  

 

Figure 1. Heat map resulting from the unsupervised hierarchical cluster analysis of the different milk
samples under investigation. Two main clusters (i.e., blue on the left and red on the right) could
be identified.



Dairy 2022, 3 319

Table 1. Bulk milk samples under investigation, classified according to both the feeding regimen and
the phenolic group.

Feeding Cluster * Feeding Regimen Milk Sample (ID) Phenolic Cluster **

CL1 HMC and legume
silage strategy Sample 4 Cluster 2

− Sample 15 Cluster 1
− Sample 34 Cluster 1

CL2 Compound feed
strategy Sample 20 Cluster 2

Sample 33 Cluster 1

CL3 Corn and soy meals
strategy Sample 5 Cluster 2

− Sample 6 Cluster 2
− Sample 9 Cluster 1
− Sample 19 Cluster 1
− Sample 22 Cluster 1
− Sample 23 Cluster 2
− Sample 24 Cluster 1
− Sample 36 Cluster 1

CL4 HMC and soy meal
strategy Sample 1 Cluster 2

− Sample 3 Cluster 2
− Sample 8 Cluster 1
− Sample 11 Cluster 2
− Sample 12 Cluster 1
− Sample 17 Cluster 1
− Sample 18 Cluster 1
− Sample 21 Cluster 2
− Sample 25 Cluster 1
− Sample 27 Cluster 2
− Sample 28 Cluster 2
− Sample 29 Cluster 1
− Sample 31 Cluster 1

CL5 Protein compound
feed strategy Sample 2 Cluster 2

− Sample 10 Cluster 2
− Sample 13 Cluster 2
− Sample 16 Cluster 2
− Sample 26 Cluster 2
− Sample 32 Cluster 2
− Sample 37 Cluster 1

CL6
HMC and protein
compound feeds

strategy
Sample 7 Cluster 1

− Sample 14 Cluster 2
− Sample 30 Cluster 1

* According to [9]. ** According to the unsupervised hierarchical cluster analysis of the phenolic profile of the
milk samples. HMC = High-Moisture Corn. CL = feeding cluster.

3.3. Discriminative Phenolic Metabolites According to the Supervised OPLS-DA Prediction Model

Considering that hierarchical clustering (Figure 1) showed a clear difference between
the phenolic profiles of two milk groups (i.e., Cluster 1 vs. Cluster 2), we used a supervised
prediction model, namely, OPLS-DA to maximize the separation between these two groups
and to extrapolate the marker compounds of the observed trend. The orthogonal signal
correction characterizing this supervised method was particularly effective in maximizing
the covariance existing between the measured data (i.e., MS peak intensities) and the
response variable (i.e., predictive classification based on the phenolic clusters outlined
by hierarchical clustering). Overall, the OPLS-DA score plot (Figure 2) was particularly
effective in separating the milk samples when considering the orthogonal latent vector,
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revealing a strong prediction ability given by the Q2 goodness parameter (0.975). In
addition, the output of permutation test cross-validation (N = 200) revealed no over-fitting.
The OPLS-DA score plot also showed a higher variability of the milk samples belonging to
cluster 2, as highlighted by the wider confidence ellipse in the score plot (Figure 2).
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Figure 2. Orthogonal projection to latent structures discriminant analysis (OPLS-DA) score plot
when considering the two phenolic groups (Cluster 1 and Cluster 2) outlined by unsupervised
clustering analysis.

The variable importance in projection (VIP) approach was then used to select the most
significant phenolic markers involved in the separation between the two milk clusters. The
VIP selection method revealed 20 discriminative milk metabolites possessing a VIP score > 1
(i.e., highly discriminant) and, therefore, driving the hyperspace separation observed in
Figure 2. A detailed list containing all the phenolic compounds and metabolites collected
in the major subclasses is provided in Table 2. Additionally, for each VIP phenolic marker,
we evaluated its Log2 fold-change (FC) variation and the significance (p < 0.05) of this
variation according to a volcano plot analysis.
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Table 2. VIP discriminant phenolic metabolites resulting from the OPLS-DA prediction model. Each
compound is provided with its prediction (VIP) score, Log2 fold-change (FC) value, and p-value.

Discriminant Metabolites Phenolic Subclass VIP Score
(OPLS-DA)

Log2 Fold-Change
“Cluster 1 vs.

Cluster 2”

p-Value
(ANOVA, FDR)

Enterolactone Lignans 2.290 3.58 7.9 × 10−36

p-Anisaldehyde Hydroxybenzaldehydes 2.271 3.05 8.5 × 10−35

4′,7-Dihydroxy-3′-
methoxyisoflavan Isoflavonoids 2.287 −5.39 3.5 × 10−34

Quercetin
3-O-xylosyl-glucuronide Flavonols 2.254 3.42 7.85 × 10−34

Vanillic acid Hydroxybenzoic acids 2.238 2.83 2.14 × 10−33

Gardenin B Flavones 2.217 −6.50 6.71 × 10−31

Piceatannol Stilbenes 2.199 −4.35 8.84 × 10−31

Ellagic acid Hydroxybenzoic acids 2.236 −1.38 1.14 × 10−30

7-Hydroxysecoisolariciresinol Lignans 2.161 −4.19 1.28 × 10−28

O-Desmethylangolensin Isoflavonoids 2.147 −5.02 7.83 × 10−28

4′-Hydroxy-3,4,5-
trimethoxystilbene Stilbenes 2.132 −4.98 2.51 × 10−26

Hesperetin
3′,7-O-diglucuronide Flavanones 1.967 −12.23 3.15 × 10−20

6′′-O-Malonylgenistin Isoflavonoids 1.805 −1.84 2.23 × 10−16

Cinnamic acid Hydroxycinnamic acids 1.773 −1.38 1.57 × 10−15

Homoveratric acid Hydroxyphenylacetic
acids 1.608 −1.13 1.52 × 10−12

Equol Isoflavonoids 1.588 −1.60 1.39 × 10−10

3-Caffeoylquinic acid Hydroxycinnamic acids 1.398 1.09 8.51 × 10−9

Formononetin Isoflavonoids 1.318 0.77 7.02 × 10−8

Hippuric acid Hydroxybenzoic acids 1.176 0.56 7.97 × 10−7

4-Hydroxyhippuric acid Hydroxybenzoic acids 1.162 1.03 1.44 × 10−6

Overall, the highest VIP score and significance were found for the lignan-related
compound enterolactone, being an exclusive marker of the milk samples belonging to
Cluster 1 (Log2 FC = 3.58). Also, the compound 7-hydroxysecoisolariciresinol showed a
strong and significant down-accumulation in milk samples belonging to cluster 1 (i.e., Log2
FC = −4.19). Lignans are phytoestrogen compounds known for their biological functions
and bioactive properties, such as weak estrogenic and cardioprotective activities, together
with antiestrogenic, antioxidant, anti-inflammatory, and anticarcinogenic potential [18]. The
weak and antiestrogenic effects of lignans are caused by distinct transactivation activities
of estrogen receptors of the enterolignans enterodiol and enterolactone [19]. The outer
fibrous-containing layers of flaxseed (Linum usitatissimum L.) is reported to be the richest
source of the lignan secoisolariciresinol diglucoside. Additionally, plant lignans have been
also detected in soybeans and other legumes [20]. In ruminants, the rumen appears to be
the main site for the conversion of secoisolariciresinol diglucoside into the mammalian
lignans enterodiol and enterolactone [21]. However, only enterolactone has been detected in
the milk of dairy cows fed flaxseed meal [22], possibly because of ruminal dehydrogenation
reactions converting enterodiol to enterolactone, like those occurring in humans [19]. In our
experimental conditions, enterolactone was found mainly in milk samples characterizing
the nutritional strategies classified by [9] as cluster 3 and cluster 4, i.e., those characterized
by the ingredient full fat seeds, consisting of soybean grain and flax seeds. Therefore, a
certain impact of the feeding strategy on the milk phenolic profile was outlined when
considering lignans metabolism.

Among the other VIP discriminant compounds, we found several isoflavonoids, such
as 4′,7-dihydroxy-3′-methoxyisoflavan, O-desmethylangolensin, 6′′-O-malonylgenistin,
equol, and formononetin (Table 2). The abundance of isoflavonoids as discriminative and
highly predictive compounds is not surprising. As already known [23], the concentration
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of isoflavones in bovine milk ranges from non-detectable amounts to few ng/mL, when
considering biochanin A, formononetin, daidzein, glycitein, and genistein. The concentra-
tion of equol, the major metabolic product of isoflavones, is generally higher, ranging from
4 up to 1000 ng/mL in raw milk, whereas dairy processing may affect its final content. The
detection of isoflavonoids in bovine milk is likely due to a direct transfer from the feeds,
considering that some leguminous plants are naturally rich in isoflavones [24]. Accord-
ingly, soybean (Glycine max) is a great source of isoflavones, such as 6′′-O-malonylgenistin,
6′′-O-malonyldaidzin, genistin, and daidzin. Therefore, looking at the nutritional strategies
reported in [9] outlining the utilization of soybean meal, de-hulled soybean meal, expeller
or extruded soybean, and soybean grains as single feeds used in the rations of the visited
dairy farms, it is possible to conclude that soybean was highly able to affect the pheno-
lic profile of the milk samples under investigation. In our experimental conditions, the
isoflavonoid metabolite equol was found to be a marker of the milk samples included
in cluster 2 (Table 2). In ruminants, the metabolites of soybean isoflavonoids mainly in-
clude equol, p-ethyl-phenol, and O-desmethylangolensin [25]. The metabolic conversion of
isoflavonoids mainly takes place in the rumen, and the dominant isoflavone found in the
digesta of cattle is equol. Relatively large proportions of isoflavonoids are extracted in milk,
where the dominant metabolite is, again, equol. Therefore, milk and dairy products have
been proposed as potential sources of equol for humans classified as equol non-producers.
Interestingly, our findings outlined both O-desmethylangolensin and equol as markers of
cluster 2, although these two metabolites are likely produced by different bacterial taxa. In
addition, O-desmethylangolensin (derived from daidzein) is a phenolic metabolite showing
no estrogenic activity when compared with the equol. It is also important to cite the impor-
tance of alfalfa silage and hay [9] in providing the phenolic profiles observed. In this regard,
the most abundant isoflavone characterizing alfalfa sprouts is formononetin, although
its absolute content could be affected by the degree of germination [26]. Isoflavones are
natural phytoestrogens with antioxidant and endocrine-disrupting potencies. Specifically,
dairy cow milk has recently been shown to contain various phytoestrogens, including
coumestans, lignans, and, most importantly, isoflavones (genistein, daidzein, formononetin,
and biochanin A) and equol (a metabolite of formononetin). Isoflavones occur in biological
fluids in two major forms; from the rumen, they are absorbed mainly as aglycones (i.e., the
basic non-conjugated form). Then, metabolization in animals leads to the formation of
conjugates with sulfate or glucuronic acid, and these metabolites are transferred to the milk.
Aglycones represent the biologically active form associated with the endocrine disruptors’
properties of isoflavones [27]. Additionally, several studies based on ruminants as a model,
revealed that phytoestrogen exposure may affect cattle in terms of reproductive health.
It is also known that the effects of phytoestrogens mainly depend on the dose and route
of exposure, that can impact the final serum levels. In particular, the timing of exposure
is critical in determining the related effects, and different tissues have species-specific
windows of sensitivity to morphological and functional disruption. Therefore, it seems
extremely important to carefully assess the impact of these compounds on reproductive
outcomes [28]. Our study suggests that monitoring isoflavones’ levels is important to
ensure the high quality and safety of milk and dairy products.

Additionally, looking at the other discriminative compounds in Table 2, it is possible
to notice that hesperetin 3′,7-O-diglucuronide (flavanones) showed the highest down-
accumulation value (i.e., Log2 FC = −12.23), being a great marker of those milk sam-
ples included in cluster 2. Other discriminative compounds that deserve to be cited are
two phenolic metabolites, namely, hippuric acid (VIP score = 1.176; significant marker of
cluster 1) and 4-hydroxyhippuric acid (VIP score = 1.162; significant marker of cluster
1) (Table 2). Hippuric acid has been reported as a member of the non-protein nitrogen
fraction of milk [29]. This phenolic metabolite derives from caffeoylquinic compounds
characterizing the feeding systems, and increased levels of hippuric acid in cow’s milk
from pasture-based feeding systems have been previously reported [6,30]. Finally, several
discriminative compounds belonging to the category of phenolic acids (both hydroxycin-
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namics and hydroxybenzoics) were listed (Table 2). Overall, these compounds could be
related to the large utilization of corn silage in each nutritional feeding strategy consid-
ered [9,28]. Among the main phenolic acids previously reported in corn silage it is possible
to also list p-coumaric acid, trans-ferulic acid, and 4-hydroxybenzoic acid [31,32].

Finally, Pearson’s correlation coefficients between the VIP discriminant metabolites
(Table 2) and the composition of the feeding regimen associated with each milk sample
under investigation (Supplementary File S2) were inspected. Overall, a higher number
of significant correlations (p < 0.05) were found between the feeding system and the
phenolic profile of cluster 1. In this regard, nine VIP discriminant metabolites showed a
certain degree of correlation with five of the main ingredients. Enterolactone was inversely
correlated (−0.683; p < 0.01) to the utilization of hay from permanent meadows, while
ellagic acid was positively correlated (0.767; p < 0.01) with the inclusion of alfalfa silage in
the ration (Supplementary File S2). Regarding the milk samples classified as cluster 2, we
found only two significant correlation coefficients; in particular, equol was significantly
correlated to the utilization of hay from permanent meadows (0.645; p < 0.01), while
formononetin showed a significant correlation coefficient with alfalfa hay (0.522; p < 0.01).
Therefore, taken together, our findings suggest that the milk samples were mainly classified
as a function of the metabolic processes and biochemical pathways involving lignans
(cluster 1) and flavonoids (cluster 2), although further ad hoc feedomics-based works are
mandatory to evaluate potential carry-over phenomena from feed to milk and catabolism
of parent compounds.

4. Conclusions

In this preliminary observational study, we evaluated the untargeted phenolic profiles
of 36 milk samples collected in a cohort of intensive dairy farms in Italy (Po Valley).
In particular, the occurrence of phenolic metabolites of biological interest, such as to
isoflavonoids and lignans, was assessed. Overall, untargeted metabolomics coupled with
different multivariate statistical approaches allowed us to identify two main clusters of
milk samples, according to their phenolic profile. The two main phenolic clusters detected
were not fully correlated to the feeding strategies associated with the collected bulk milk
samples. Interestingly, the most discriminative compounds driving the separation of the
milk samples were phenolic metabolites (such as hippuric acid and 4-hydroxyhippuric
acid), enterolactone (an intestinal metabolite of lignans), and isoflavonoids (such as equol
and O-desmethylangolensin). Our findings showed that ad hoc targeted studies on selected
metabolites (such as isoflavones and their metabolites, presenting an estrogenic activity)
are required to evaluate the potential biological effects of these compounds on cows’ health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/dairy3020024/s1, File S1: Dataset resulting from the untargeted
phenolic profiling according to the UHPLC–HRMS analysis (level 2 of annotation). File S2: Pearson’s
correlation coefficients between the VIP discriminative metabolites and the amount of different
ingredients in the feeding rations.
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