Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Milk Fat Globules
2.2. Lipid Extraction
2.2.1. Total Lipid Extraction
2.2.2. Solid-Phase Extraction (SPE)
2.3. Lipid Analysis by High-Performance Thin Layer Chromatography
2.3.1. Preparation of Standard Solutions
2.3.2. Chromatographic Conditions
2.4. Determination of Particle Size and Zeta Potential
2.5. Microstructural Analysis of Milk Fat Globule
2.6. Statistical Analysis
2.7. Chemicals and Reagents
3. Results
3.1. Separation and Identification of PL and NL Classes in Cow, Goat, and Water Buffalo Milk Fat Globules
3.2. Quantification of Polar Lipid and Neutral Lipid Classes by HPTLC in Cow, Goat, and Water Buffalo Milk Fat Globules
3.3. Particle Size Distribution of Milk Fat Globules in Cow, Goat, and Water Buffalo
3.4. Microstructure, Zeta Potential, and Correlation of Milk Fat Globule Size and Lipids Classes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hettinga, K.; van Valenberg, H.; de Vries, S.; Boeren, S.; van Hooijdonk, T.; van Arendonk, J.; Vervoort, J. The host defense proteome of human and bovine milk. PLoS ONE 2011, 6, e19433. [Google Scholar] [CrossRef]
- Lopez, C.; Madec, M.-N.; Jimenez-Flores, R. Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chem. 2010, 120, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Lopez, C.; Briard-Bion, V.; Menard, O.; Rousseau, F.; Pradel, P.; Besle, J.M. Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. J. Agric. Food Chem. 2008, 56, 5226–5236. [Google Scholar] [CrossRef]
- Liu, Z.; Rochfort, S.; Cocks, B. Milk lipidomics: What we know and what we don’t. Prog Lipid Res 2018, 71, 70–85. [Google Scholar] [CrossRef]
- Deeth, H.C. The role of phospholipids in the stability of milk fat gobules. Aust. J. Dairy Technol. 1997, 52, 44–46. [Google Scholar]
- Gallier, S.; Gragson, D.; Jimenez-Flores, R.; Everett, D. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. J. Agric. Food Chem. 2010, 58, 4250–4257. [Google Scholar] [CrossRef] [Green Version]
- Wat, E.; Tandy, S.; Kapera, E.; Kamili, A.; Chung, R.W.; Brown, A.; Rowney, M.; Cohn, J.S. Dietary phospholipid-rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat diet. Atherosclerosis 2009, 205, 144–150. [Google Scholar] [CrossRef]
- Nagai, K. Bovine milk phospholipid fraction protects Neuro2a cells from endoplasmic reticulum stress via PKC activation and autophagy. J. Biosci. Bioeng. 2012, 114, 466–471. [Google Scholar] [CrossRef]
- Lee, H.; Padhi, E.; Hasegawa, Y.; Larke, J.; Parenti, M.; Wang, A.; Hernell, O.; Lönnerdal, B.; Slupsky, C. Compositional dynamics of the milk fat globule and its role in infant development. Front. Pediatr. 2018, 6, 313. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Hosozawa, M.; Kudo, N.; Yoshikawa, N.; Hisata, K.; Shoji, H.; Shinohara, K.; Shimizu, T. The pilot study: Sphingomyelin-fortified milk has a positive association with the neurobehavioural development of very low birth weight infants during infancy, randomized control trial. Brain Dev. 2013, 35, 45–52. [Google Scholar] [CrossRef]
- Watanabe, K.; Holobar, A.; Tomita, A.; Mita, Y. Effect of milk fat globule membrane supplementation on motor unit adaptation following resistance training in older adults. Physiol. Rep. 2020, 8, e14491. [Google Scholar] [CrossRef]
- Gurnida, D.A.; Rowan, A.M.; Idjradinata, P.; Muchtadi, D.; Sekarwana, N. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Hum. Dev. 2012, 88, 595–601. [Google Scholar] [CrossRef]
- Rombaut, R.; Camp, J.V.; Dewettinck, K. Analysis of phospho-and sphingolipids in dairy products by a new HPLC method. J. Dairy Sci. 2005, 88, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Yang, J.; Yang, D.; Wang, X.; Yang, Z.; Jin, Q.; Wang, M.; Lai, J.; Wang, X. Phospholipid composition and fat globule structure I: Comparison of human milk fat from different gestational ages, lactation stages, and infant formulas. J. Agric. Food Chem. 2019, 67, 13922–13928. [Google Scholar] [CrossRef]
- Fuchs, B.; Süß, R.; Teuber, K.; Eibisch, M.; Schiller, J. Lipid analysis by thin-layer chromatography—A review of the current state. J. Chromatogr. A 2011, 1218, 2754–2774. [Google Scholar] [CrossRef]
- Pinault, M.; Guimaraes, C.; Dumas, J.F.; Servais, S.; Chevalier, S.; Besson, P.; Goupille, C. A 1D High Performance Thin Layer Chromatography Method Validated to Quantify Phospholipids Including Cardiolipin and Monolysocardiolipin from Biological Samples. Eur. J. Lipid Sci. Technol. 2020, 122, 1900240. [Google Scholar] [CrossRef]
- Kaltbach, P.; Ballert, S.; Kabrodt, K.; Schellenberg, I. New HPTLC methods for analysis of major bioactive compounds in mate (Ilex paraguariensis) tea. J. Food Compos. Anal. 2020, 92, 103568. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Oraby, M.; Khorshed, A.A. HPTLC Determination of ergosterol in wheat and structure elucidation by NMR: Toward confirming method selectivity. J. Food Compos. Anal. 2022, 114, 104763. [Google Scholar] [CrossRef]
- Puscas, A.; Hosu, A.; Cimpoiu, C. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J. Chromatogr. A 2013, 1272, 132–135. [Google Scholar] [CrossRef]
- Pedan, V.; Stamm, E.; Do, T.; Holinger, M.; Reich, E. HPTLC fingerprint profile analysis of coffee polyphenols during different roast trials. J. Food Compos. Anal. 2020, 94, 103610. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Avalli, A.; Contarini, G. Determination of phospholipids in dairy products by SPE/HPLC/ELSD. J Chromatogr A 2005, 1071, 185–190. [Google Scholar] [CrossRef]
- Hamilton, J.G.; Comai, K. Rapid separation of neutral lipids, free fatty acids and polar lipids using prepacked silica Sep-Pak columns. Lipids 1988, 23, 1146–1149. [Google Scholar] [CrossRef]
- Guideline, I.H.T. Validation of analytical procedures: Text and methodology. 2005, Q2 (R1), 5.
- Menard, O.; Ahmad, S.; Rousseau, F.; Briard-Bion, V.; Gaucheron, F.; Lopez, C. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 2010, 120, 544–551. [Google Scholar] [CrossRef]
- Verma, A.; Ghosh, T.; Bhushan, B.; Packirisamy, G.; Navani, N.K.; Sarangi, P.P.; Ambatipudi, K. Characterization of difference in structure and function of fresh and mastitic bovine milk fat globules. PLoS ONE 2019, 14, e0221830. [Google Scholar] [CrossRef]
- Teuber, K.; Riemer, T.; Schiller, J. Thin-layer chromatography combined with MALDI-TOF-MS and 31P-NMR to study possible selective bindings of phospholipids to silica gel. Anal. Bioanal. Chem. 2010, 398, 2833–2842. [Google Scholar] [CrossRef]
- Oellig, C.; Brandle, K.; Schwack, W. Characterization of E 471 food emulsifiers by high-performance thin-layer chromatography-fluorescence detection. J. Chromatogr. A 2018, 1558, 69–76. [Google Scholar] [CrossRef]
- Meena, S.; Rajput, Y.S.; Sharma, R. Comparative fat digestibility of goat, camel, cow and buffalo milk. Int. Dairy J. 2014, 35, 153–156. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, G.; Yan, Y.; Mu, H.; Jin, Q.; Zou, X.; Wang, X. Milk fat globules by confocal Raman microscopy: Differences in human, bovine and caprine milk. Food Res. Int. 2016, 80, 61–69. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, J.; Mao, X. Composition and interfacial properties play key roles in different lipid digestion between goat and cow milk fat globules in vitro. Food Chem. 2022, 374, 131538. [Google Scholar] [CrossRef]
- Mesilati-Stahy, R.; Argov-Argaman, N. The relationship between size and lipid composition of the bovine milk fat globule is modulated by lactation stage. Food Chem. 2014, 145, 562–570. [Google Scholar] [CrossRef]
- Michalski, M.C.; Gassi, J.Y.; Famelart, M.H.; Leconte, N.; Camier, B.; Michel, F.; Briard, V. The size of native milk fat globules affects physico-chemical and sensory properties of Camembert cheese. Le Lait 2003, 83, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Gallier, S.; Tolenaars, L.; Prosser, C. Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula. Nutrients 2020, 12, 3486. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Madec, M.N.; Ong, L.; Kentish, S.E.; Gras, S.L.; Lopez, C. The dynamics of the biological membrane surrounding the buffalo milk fat globule investigated as a function of temperature. Food Chem. 2016, 204, 343–351. [Google Scholar] [CrossRef]
- Ferreiro, T.; Gayoso, L.; Rodríguez-Otero, J.L. Milk phospholipids: Organic milk and milk rich in conjugated linoleic acid compared with conventional milk. J. Dairy Sci. 2015, 98, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Kamili, A.; Wat, E.; Chung, R.W.; Tandy, S.; Weir, J.M.; Meikle, P.J.; Cohn, J.S. Hepatic accumulation of intestinal cholesterol is decreased and fecal cholesterol excretion is increased in mice fed a high-fat diet supplemented with milk phospholipids. Nutr. Metab. 2010, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cilla, A.; Diego Quintaes, K.; Barberá, R.; Alegria, A. Phospholipids in human milk and infant formulas: Benefits and needs for correct infant nutrition. Crit. Rev. Food Sci. Nutr. 2016, 56, 1880–1892. [Google Scholar] [CrossRef]
- Rocha-Mendoza, D.; Kosmerl, E.; Miyagusuku-Cruzado, G.; Giusti, M.M.; Jiménez-Flores, R.; García-Cano, I. Growth of lactic acid bacteria in milk phospholipids enhances their adhesion to Caco-2 cells. J. Dairy Sci. 2020, 103, 7707–7718. [Google Scholar] [CrossRef]
- Zhang, L.; García-Cano, I.; Jiménez-Flores, R. Characterization of adhesion between Limosilactobacillus reuteri and milk phospholipids by density gradient and gene expression. JDS Commun. 2020, 1, 29–35. [Google Scholar] [CrossRef]
- Kosmerl, E.; Rocha-Mendoza, D.; Ortega-Anaya, J.; Jiménez-Flores, R.; García-Cano, I. Improving human health with milk fat globule membrane, lactic acid bacteria, and bifidobacteria. Microorganisms 2021, 9, 341. [Google Scholar] [CrossRef]
- Ye, Z.; Li, R.; Cao, C.; Xu, Y.J.; Cao, P.; Li, Q.; Liu, Y. Fatty acid profiles of typical dietary lipids after gastrointestinal digestion and absorbtion: A combination study between in-vitro and in-vivo. Food Chem. 2019, 280, 34–44. [Google Scholar] [CrossRef]
- Garcia, C.; Antona, C.; Robert, B.; Lopez, C.; Armand, M. The size and interfacial composition of milk fat globules are key factors controlling triglycerides bioavailability in simulated human gastro-duodenal digestion. Food Hydrocoll. 2014, 35, 494–504. [Google Scholar] [CrossRef]
- Atehli, D.; Wang, J.; Yu, J.; Ali, F.; Wang, Y. Effects of mono- and diglycerides of fatty acids on the milk fat globule membrane after heat treatment. Int. J. Dairy Technol. 2020, 73, 667–673. [Google Scholar] [CrossRef]
- Castro-Gomez, M.P.; Rodriguez-Alcala, L.M.; Calvo, M.V.; Romero, J.; Mendiola, J.A.; Ibanez, E.; Fontecha, J. Total milk fat extraction and quantification of polar and neutral lipids of cow, goat, and ewe milk by using a pressurized liquid system and chromatographic techniques. J. Dairy Sci. 2014, 97, 6719–6728. [Google Scholar] [CrossRef] [Green Version]
- Et-Thakafy, O.; Guyomarc’h, F.; Lopez, C. Lipid domains in the milk fat globule membrane: Dynamics investigated in situ in milk in relation to temperature and time. Food Chem. 2017, 220, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Murthy, A.V.; Guyomarc’h, F.; Lopez, C. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains, in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane. Langmuir 2016, 32, 6757–6765. [Google Scholar] [CrossRef]
Parameters | Polar Lipids | Neutral Lipids | ||||||
---|---|---|---|---|---|---|---|---|
PC | SM | PS | PI | PE | DAG | TAG | Chl | |
Rf | 0.40 | 0.27 | 0.31 | 0.33 | 0.58 | 0.17 | 0.60 | 0.16 |
Linearity Range (μg/band) | 0.5–5.3 | 0.4–6.4 | 1–7 | 0.4–2 | 6–19 | 0.4–3.6 | 2–10 | 0.5–8.5 |
Correlation coefficient (r2) | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
LOD (ng/mL) | 554 | 933 | 437 | 120 | 1536 | 147 | 566 | 1036 |
LOQ (ng/mL) | 1680 | 2828 | 1326 | 365 | 4654 | 446 | 1716 | 3140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapoor, A.; Verma, A.; Ambatipudi, K. Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography. Dairy 2023, 4, 200-214. https://doi.org/10.3390/dairy4010014
Kapoor A, Verma A, Ambatipudi K. Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography. Dairy. 2023; 4(1):200-214. https://doi.org/10.3390/dairy4010014
Chicago/Turabian StyleKapoor, Ayushi, Aparna Verma, and Kiran Ambatipudi. 2023. "Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography" Dairy 4, no. 1: 200-214. https://doi.org/10.3390/dairy4010014
APA StyleKapoor, A., Verma, A., & Ambatipudi, K. (2023). Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography. Dairy, 4(1), 200-214. https://doi.org/10.3390/dairy4010014