Developing New High-Protein-Content Traditional-Type Greek Yoghurts Based on Jersey Cow Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Milk Collection and Pasteurization Process
2.2. Preparation of Traditional-Type Yoghurts
2.3. Sampling Procedure
2.4. Physicochemical Analyses
Determination of Fatty Acid Methyl Esters (FAMEs) in Milk
2.5. Microbiological Analyses
2.6. Preliminary Sensory Evaluation of Yoghurts
2.7. Statistical Analysis
3. Results
3.1. Milk Analyses
3.1.1. Physicochemical Properties of Milk Samples
3.1.2. Microbiological Properties of Milk Samples
3.2. Yoghurts
3.2.1. Physicochemical Properties of Yoghurts
3.2.2. Microbiological Quality of Yoghurts
3.2.3. Preliminary Sensory Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uduwerella, G.; Chandrapala, J.; Vasiljevic, T. Minimising generation of acid whey during Greek yoghurt manufacturing. J. Dairy Res. 2017, 84, 346–354. [Google Scholar] [CrossRef]
- Gyawali, R.; Feng, X.; Chen, Y.P.; Lorenzo, J.M.; Ibrahim, S.A. A review of factors influencing the quality and sensory evaluation techniques applied to Greek yogurt. J. Dairy Res. 2022, 89, 213–219. [Google Scholar] [CrossRef]
- Vareltzis, P.; Adamopoulos, K.; Stavrakakis, E.; Stefanakis, A.; Goula, A.M. Approaches to minimise yoghurt syneresis in simulated tzatziki sauce preparation. Int. J. Dairy Technol. 2016, 69, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Naik, A. Production Cost Analysis and Marketing of Fermented Foods: Yoghurt. In Food Microbiology Based Entrepreneurship: Making Money from Microbes; Amaresan, N., Dharumadurai, D., Babalola, O.O., Eds.; Springer Nature: Singapore, 2021; p. 217. [Google Scholar]
- Serafeimidou, A.; Zlatanos, S.; Laskaridis, K.; Sagredos, A. Chemical characteristics, fatty acid composition and conjugated linoleic acid (CLA) content of traditional Greek yogurts. Food Chem. 2012, 134, 1839–1846. [Google Scholar] [CrossRef]
- Megalemou, K.; Sioriki, E.; Lordan, R.; Dermiki, M.; Nasopoulou, C.; Zabetakis, I. Evaluation of sensory and in vitro anti-thrombotic properties of traditional Greek yogurts derived from different types of milk. Heliyon 2017, 3, e00227. [Google Scholar] [CrossRef] [Green Version]
- Maragkoudakis, P.A.; Miaris, C.; Rojez, P.; Manalis, N.; Magkanari, F.; Kalantzopoulos, G.; Tsakalidou, E. Production of traditional Greek yoghurt using Lactobacillus strains with probiotic potential as starter adjuncts. Int. Dairy J. 2006, 16, 52–60. [Google Scholar] [CrossRef]
- Kasapis, S. Textural Characteristics of Greek Foods. In Textural Characteristics of World Foods; Nishinari, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 299–300. [Google Scholar]
- Teter, A.; Kędzierska-Matysek, M.; Barłowska, J.; Król, J.; Brodziak, A.; Florek, M. The effect of humic mineral substances from oxyhumolite on the coagulation properties and mineral content of the milk of holstein-friesian cows. Animals 2021, 11, 1970. [Google Scholar] [CrossRef] [PubMed]
- Meena, G.S.; Singh, A.K.; Arora, S.; Borad, S.; Sharma, R.; Gupta, V.K. Physico-chemical, functional and rheological properties of milk protein concentrate 60 as affected by disodium phosphate addition, diafiltration and homogenization. J. Food Sci. Technol. 2017, 54, 1678–1688. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, C.E.; Abrahamsen, R.K.; Rukke, E.O.; Hoffmann, T.K.; Johansen, A.G.; Skeie, S.B. Processing of high-protein yoghurt—A review. Int. Dairy J. 2019, 88, 42–59. [Google Scholar] [CrossRef]
- Sanjayaranj, I.; Lopez-villalobos, N.; Blair, H.T.; Janssen, P.W.M.; Holroyd, S.E.; Macgibbon, A.K.H. A Study of Milk Composition and Coagulation Properties of Holstein-Friesian, Jersey, and Their Cross Milked Once or Twice a Day. Dairy 2023, 4, 167–179. [Google Scholar] [CrossRef]
- Yoo, J.; Song, M.; Park, W.; Oh, S.; Ham, J.S.; Jeong, S.G.; Kim, Y. A comparison of quality characteristics in dairy products made from Jersey and Holstein milk. Food Sci. Anim. Resour. 2019, 39, 255–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, D.H.; Mayakrishnan, V.; Lee, H.J.; Ki, K.S.; Kim, T.I.; Kim, Y. A comparative study on milk composition of Jersey and Holstein dairy cows during the early lactation. J. Anim. Sci. Technol. 2020, 62, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Auldist, M.J.; Johnston, K.A.; White, N.J.; Fitzsimons, W.P.; Boland, M.J. A comparison of the composition, coagulation characteristics and cheesemaking capacity of milk from Friesian and Jersey dairy cows. J. Dairy Res. 2004, 71, 51–57. [Google Scholar] [CrossRef]
- Rodríguez-Bermúdez, R.; Miranda, M.; Baudracco, J.; Fouz, R.; Pereira, V.; López-Alonso, M. Breeding for organic dairy farming: What types of cows are needed? J. Dairy Res. 2019, 86, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capper, J.L.; Cady, R.A. A comparison of the environmental impact of Jersey compared with Holstein milk for cheese production. J. Dairy Sci. 2012, 95, 165–176. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Assessment of freeze-dried immobilized Lactobacillus casei as probiotic adjunct culture in yogurts. Foods 2019, 8, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, R.K.; Itsaranuwat, P. Properties of Yoghurt and Their Appraisal. In Fermented Milks; Wiley-Blackwell: Hoboken, NJ, USA, 2006; pp. 76–94. [Google Scholar] [CrossRef]
- European Commission Regulation (EC). N° 853/2004 of the European Parlamient and of the Council of 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs. J. Eur. Union L 2004, 139, 55–205. [Google Scholar]
- World Health Organization; Food and Agriculture Organization of the United Nations. Milk and Milk Products, 2nd ed.; FAO: Rome, Italy, 2011. [Google Scholar]
- Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef]
- Red, P.; Cows, P.H.; Najgebauer-lejko, D.; Pluta-kubica, A.; Domagała, J.; Turek, K.; Duda, I. Effect of Bear Garlic Addition on the Chemical Composition, Microbiological Quality, Antioxidant Capacity, and Degree of Proteolysis in Soft Rennet Cheeses Produced from Milk of Polish Red and Polish Holstein-Friesian Cows. Molecules 2022, 27, 8930. [Google Scholar]
- Tian, R.; Pitchford, W.S.; Morris, C.A.; Cullen, N.G.; Bottema, C.D.K. Genetic variation in the β, β-carotene-9′, 10′-dioxygenase gene and association with fat colour in bovine adipose tissue and milk. Anim. Genet. 2010, 41, 253–259. [Google Scholar] [CrossRef]
- Khaldi, Z.; Nafti, M.; Jilani, M.T. Small ruminants milk from Tunisian oasis: Physicochemical characteristics, mineral contents, and microbiological quality. Trop. Anim. Health Prod. 2022, 54, 1. [Google Scholar] [CrossRef] [PubMed]
- Stocco, G.; Summer, A.; Malacarne, M.; Cecchinato, A.; Bittante, G. Detailed macro- and micromineral profile of milk: Effects of herd productivity, parity, and stage of lactation of cows of 6 dairy and dual-purpose breeds. J. Dairy Sci. 2019, 102, 9727–9739. [Google Scholar] [CrossRef]
- Poulsen, N.A.; Bertelsen, H.P.; Jensen, H.B.; Gustavsson, F.; Glantz, M.; Lindmark Månsson, H.; Andrén, A.; Paulsson, M.; Bendixen, C.; Buitenhuis, A.J.; et al. The occurrence of noncoagulating milk and the association of bovine milk coagulation properties with genetic variants of the caseins in 3 Scandinavian dairy breeds. J. Dairy Sci. 2013, 96, 4830–4842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulsen, N.A.; Buitenhuis, A.J.; Larsen, L.B. Phenotypic and genetic associations of milk traits with milk coagulation properties. J. Dairy Sci. 2015, 98, 2079–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffey, E.L.; Horan, B.; Evans, R.D.; Berry, D.P. Milk production and fertility performance of Holstein, Friesian, and Jersey purebred cows and their respective crosses in seasonal-calving commercial farms. J. Dairy Sci. 2016, 99, 5681–5689. [Google Scholar] [CrossRef] [Green Version]
- Czerniewicz, M.; Kielczewska, K.; Kruk, A. Comparison of some physicochemical properties of milk from Holstein-Friesian and Jersey cows. Polish J. Food Nutr. Sci. 2006, 15, 61. [Google Scholar]
- Ranadheera, C.S.; Evans, C.A.; Baines, S.K.; Balthazar, C.F.; Cruz, A.G.; Esmerino, E.A.; Freitas, M.Q.; Pimentel, T.C.; Wittwer, A.E.; Naumovski, N.; et al. Probiotics in Goat Milk Products: Delivery Capacity and Ability to Improve Sensory Attributes. Compr. Rev. Food Sci. Food Saf. 2019, 18, 867–882. [Google Scholar] [CrossRef] [Green Version]
- Lindmark Månsson, H. Fatty acids in bovine milk fat. Food Nutr. Res. 2008, 52, 1821. [Google Scholar] [CrossRef] [Green Version]
- White, S.L.; Bertrand, J.A.; Wade, M.R.; Washburn, S.P.; Green, J.T.; Jenkins, T.C. Comparison of fatty acid content of milk from jersey and holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 2001, 84, 2295–2301. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Denise Beaulieu, A.; Barbano, D.M. Feed and Animal Factors Influencing Milk Fat Composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Pesek, M.; Spicka, J.; Samkova, E. Comparison of fatty acid composition in milk fat of Czech Pied cattle and Holstein cattle. Czech J. Anim. Sci. 2005, 50, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Vranković, L.; Aladrović, J.; Octenjak, D.; Bijelić, D.; Cvetnić, L.; Stojević, Z. Milk fatty acid composition as an indicator of energy status in Holstein dairy cows. Arch. Anim. Breed. 2017, 60, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Mele, M.; Macciotta, N.P.P.; Cecchinato, A.; Conte, G.; Schiavon, S.; Bittante, G. Multivariate factor analysis of detailed milk fatty acid profile: Effects of dairy system, feeding, herd, parity, and stage of lactation. J. Dairy Sci. 2016, 99, 9820–9833. [Google Scholar] [CrossRef] [Green Version]
- Lock, A.L.; Garnsworthy, P.C. Seasonal variation in milk conjugated linoleic acid and δ9-desaturase activity in dairy cows. Livest. Prod. Sci. 2003, 79, 47–59. [Google Scholar] [CrossRef]
- Hanus, O.; Samkova, E.; Křížova, L.; Hasoňova, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their variability—A review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [Green Version]
- Schwendel, B.H.; Wester, T.J.; Morel, P.C.H.; Tavendale, M.H.; Deadman, C.; Shadbolt, N.M.; Otter, D.E. Invited review: Organic and conventionally produced milk-An evaluation of factors influencing milk composition. J. Dairy Sci. 2015, 98, 721–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benbrook, C.M.; Davis, D.R.; Heins, B.J.; Latif, M.A.; Leifert, C.; Peterman, L.; Butler, G.; Faergeman, O.; Abel-Caines, S.; Baranski, M. Enhancing the fatty acid profile of milk through forage-based rations, with nutrition modeling of diet outcomes. Food Sci. Nutr. 2018, 6, 681–700. [Google Scholar] [CrossRef]
- Heinrichs, J.; Jones, C.; Bailey, K. Milk Components: Understanding the Causes and Importance of Milk Fat and Protein Variation in Your Dairy Herd. Dairy Anim. Sci. Fact Sheet 1997, 5, 1–8. [Google Scholar]
- Markiewicz-Keszycka, M.; Czyzak-Runowska, G.; Lipinska, P.; Wójtowski, J. Fatty acid profile of milk—A review. Bull. Vet. Inst. Pulawy 2013, 57, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.B.; Zhang, Y.D.; Zheng, N.; Wang, Q.; Li, S.; Zhao, S.G.; Wen, F.; Meng, L.; Wang, J.Q. Short communication: Decrease of lipid profiles in cow milk by ultra-high-temperature treatment but not by pasteurization. J. Dairy Sci. 2020, 103, 1900–1907. [Google Scholar] [CrossRef]
- Herzallah, S.M.; Humeid, M.A.; Al-Ismail, K.M. Effect of heating and processing methods of milk and dairy products on conjugated linoleic acid and Trans fatty acid isomer content. J. Dairy Sci. 2005, 88, 1301–1310. [Google Scholar] [CrossRef]
- Pereda, J.; Ferragut, V.; Quevedo, J.M.; Guamis, B.; Trujillo, A.J. Effects of ultra-high-pressure homogenization treatment on the lipolysis and lipid oxidation of milk during refrigerated storage. J. Agric. Food Chem. 2008, 56, 7125–7130. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Oey, I.; Everett, D.W. Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk. Food Chem. 2016, 207, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Pestana, J.M.; Gennari, A.; Monteiro, B.W.; Lehn, D.N.; De Souza, C.F.V. Effects of pasteurization and ultra-high temperature processes on proximate composition and fatty acid profile in bovine milk. Am. J. Food Technol. 2015, 10, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Formaggioni, P.; Malacarne, M.; Franceschi, P.; Zucchelli, V.; Faccia, M.; Battelli, G.; Brasca, M.; Summer, A. Characterisation of Formaggella della Valle di Scalve cheese produced from cows reared in valley floor stall or in mountain pasture: Fatty acids profile and sensory properties. Foods 2020, 9, 383. [Google Scholar] [CrossRef] [Green Version]
- Michas, G.; Micha, R.; Zampelas, A. Dietary fats and cardiovascular disease: Putting together the pieces of a complicated puzzle. Atherosclerosis 2014, 234, 320–328. [Google Scholar] [CrossRef]
- Papadimitriou, C.G.; Vafopoulou-Mastrojiannaki, A.; Silva, S.V.; Gomes, A.M.; Malcata, F.X.; Alichanidis, E. Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I-converting enzyme (ACE)-inhibitory activity. Food Chem. 2007, 105, 647–656. [Google Scholar] [CrossRef]
- Moschopoulou, E.; Moatsou, G. Greek Dairy Products. In Mediterranean Foods: Composition and Processing; Cruz, R.M.S., Vieira, M.M.C., Eds.; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 304–306. [Google Scholar]
- Holstein.gr. I Fili Holstain. Available online: http://holstein.gr/index.php/i-fili-holstain/ (accessed on 27 February 2023).
- Tarrega, A.; Marcano, J.; Fiszman, S. Yogurt viscosity and fruit pieces affect satiating capacity expectations. Food Res. Int. 2016, 89, 574–581. [Google Scholar] [CrossRef]
- European Parliament. The EU dairy sector: Main features, challenges and prospects. Brief. Eur. Parliam. 2018, 1–12. [Google Scholar]
- González-Recio, O.; Ugarte, E.; Bach, A. Trans-Generational Effect of Maternal Lactation during Pregnancy: A Holstein Cow Model. PLoS ONE 2012, 7, e51816. [Google Scholar] [CrossRef]
- Baudracco, J.; Lopez-Villalobos, N.; Romero, L.A.; Scandolo, D.; Maciel, M.; Comeron, E.A.; Holmes, C.W.; Barry, T.N. Effects of stocking rate on pasture production, milk production and reproduction of supplemented crossbred Holstein-Jersey dairy cows grazing lucerne pasture. Anim. Feed Sci. Technol. 2011, 168, 131–143. [Google Scholar] [CrossRef]
- Pinto, S.S.; Fritzen-Freire, C.B.; Dias, C.O.; Amboni, R.D.M.C. A potential technological application of probiotic microcapsules in lactose-free Greek-style yoghurt. Int. Dairy J. 2019, 97, 131–138. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Mahmoud, M.A.A.; Loupassaki, S.; Hamdi, M. Quality mentoring of Greek yoghurt fortified with pomegranate juice and arils (Punica granatum L.) during storage. J. New Sci. 2017, 44, 2430–2437. [Google Scholar]
- Chen, L.; Li, Y.; Han, J.; Yuan, D.; Lu, Z.; Zhang, L. Influence of transglutaminase-induced modification of milk protein concentrate (MPC) on yoghurt texture. Int. Dairy J. 2018, 78, 65–72. [Google Scholar] [CrossRef]
Physicochemical Property | Pasteurized Jersey Milk | Pasteurized Holstein Friesian Milk |
---|---|---|
pH | 6.9 ± 0.1 | 6.9 ± 0.1 |
Total acidity | 0.14 ± 0.03 a | 0.12 ± 0.04 b |
Calcium content (mg/100 g) | 142 ± 6 a | 119 ± 4 b |
Total solids content (g/100 g) | 13.6 ± 0.5 a | 12.0 ± 0.2 b |
Lactose content (g/100 g) | 4.6 ± 0.1 | 4.6 ± 0.1 |
Total protein content (g/100 mL) | 4.05 ± 0.07 a | 3.35 ± 0.11 b |
Total fat content (g/100 g) | 4.4 ± 0.3 a | 3.5 ± 0.1 b |
Fatty Acid | Pasteurized Milk Samples | |
---|---|---|
Jersey (%) | Holstein Friesian (%) | |
C4:0 | 3.33 ± 0.63 | 3.79 ± 0.73 |
C6:0 | 1.51 ± 0.51 | 1.54 ± 0.41 |
C8:0 | 1.97 ± 0.58 | 1.58 ± 0.39 |
C10:0 | 3.72 ± 0.52 a | 2.96 ± 0.44 b |
C11:0 | 1.01 ± 0.28 | 1.15 ± 0.36 |
C12:0 | 2.79 ± 0.39 | 2.87 ± 0.36 |
C14:0 | 6.19 ± 0.49 | 5.93 ± 0.77 |
C15:0 | 0.46 ± 0.11 a | 0.72 ± 0.08 b |
C15:1 | 0.12 ± 0.03 a | 0.83 ± 0.28 b |
C16:0 | 24.14 ± 2.63 | 21.35 ± 2.26 |
C16:1 | 0.66 ± 0.20 | 0.70 ± 0.08 |
C17:0 | 16.79 ± 2.11 | 19.32 ± 2.23 |
C17:1 | 0.13 ± 0.03 a | 0.39 ± 0.1 b |
C18:0 | 16.51 ± 2.41 a | 13.00 ± 2.03 b |
C18:1n9c & 18:1n9t | 9.67 ± 1.55 | 11.30 ± 1.88 |
C18:2n6t | 4.39 ± 0.84 | 3.93 ± 0.69 |
C18:3n6 | 2.97 ± 0.71 | 3.38 ± 0.82 |
C18:3n3 | 0.26 ± 0.03 | 0.30 ± 0.06 |
C20:0 | 0.30 ± 0.07 a | 0.62 ± 0.14 b |
C20:2 | 1.53 ± 0.37 a | 1.95 ± 0.26 b |
C20:5n3 | 0.44 ± 0.11 a | 0.98 ± 0.28 b |
C22:0 | 0.28 ± 0.06 a | 0.15 ± 0.05 b |
C23:0 | 0.96 ± 0.16 | 0.84 ± 0.15 |
Physicochemical Properties | Type of Milk | Yoghurt Storage Time at 4 °C (Days) | ||
---|---|---|---|---|
2 | 14 | 22 | ||
pH | Jersey | 4.03 ± 0.06 A | 3.95 ± 0.06 A | 3.93 ± 0.07 B |
Holstein Friesian | 4.03 ± 0.01 A | 3.98 ± 0.06 AB | 3.96 ± 0.05 B | |
Total acidity (g lactic acid/100 g of yoghurt) | Jersey | 1.24 ± 0.07 A | 1.32 ± 0.08 AB | 1.36 ± 0.08 B |
Holstein Friesian | 1.24 ± 0.09 A | 1.30 ± 0.08 AB | 1.34 ± 0.04 B | |
Calcium (mg/100 g of yoghurt) | Jersey | 120 ± 5 | 119 ± 3 | 119 ± 2 |
Holstein Friesian | 121 ± 2 | 123 ± 3 | 118 ± 1 | |
Salt (g/100 g of yoghurt) | Jersey | 0.14 ± 0.01 | 0.15 ± 0.01 | 0.15 ± 0.01 |
Holstein Friesian | 0.14 ± 0.01 | 0.15 ± 0.01 | 0.14 ± 0.01 | |
Syneresis (%) | Jersey | 36.2 ± 1.5 | 35.4 ± 2.6 | 34.7 ± 1.9 |
Holstein Friesian | 38.2 ± 1.5 A | 36.9 ± 1.6 AB | 34.3 ± 1.8 B | |
Water holding capacity (%) | Jersey | 55.9 ± 2.3 Aa | 59.1 ± 1.5 Ba | 58.4 ± 1.3 Ba |
Holstein Friesian | 52.7 ± 2.7 b | 54.3 ± 2.5 b | 55.0 ± 1.6 b | |
Moisture content (%) | Jersey | 83.0 ± 1.0 | 83.4 ± 0.9 | 84.1 ± 1.1 |
Holstein Friesian | 83.3 ± 0.3 | 83.2 ± 1.1 | 83.7 ± 0.9 | |
Fat (%) | Jersey | 5.1 ± 0.5 a | 5.1 ± 0.6 a | 5.1 ± 0.5 a |
Holstein Friesian | 4.6 ± 0.5 b | 4.6 ± 0.6 b | 4.6 ± 0.6 b | |
Protein content (g/100 g of yoghurt) | Jersey | 4.01 ± 0.11 a | 4.02 ± 0.08 a | 4.04 ± 0.05 a |
Holstein Friesian | 4.28 ± 0.03 b | 4.27 ± 0.11 b | 4.29 ± 0.7 b |
Microbiological Properties | Type of Milk | Yoghurt Storage Time at 4 °C (Days) | ||
---|---|---|---|---|
2 | 14 | 22 | ||
TMC (logcfu/g) | Jersey | 8.75 ± 0.06 A | 8.56 ± 0.10 B | 8.33 ± 0.15 C |
Holstein Friesian | 8.65 ± 0.22 A | 8.54 ± 0.17 AB | 8.38 ± 0.14 B | |
Streptococcus thermophilus (logcfu/g) | Jersey | 8.71 ± 0.06 A | 8.53 ± 0.11 AB | 8.30 ± 0.15 B |
Holstein Friesian | 8.60 ± 0.24 A | 8.49 ± 0.18 AB | 8.35 ± 0.14 B | |
Lactobacillus delbrueckii subsp. bulgaricus (logcfu/g) | Jersey | 7.52 ± 0.32 A | 7.30 ± 0.36 AB | 7.06 ± 0.22 B |
Holstein Friesian | 7.58 ± 0.13 A | 7.49 ± 0.22 A | 7.20 ± 0.18 B | |
Yeasts/molds (cfu/g) | Jersey | <100 | <100 | <100 |
Holstein Friesian | <100 | <100 | <100 | |
Staphylococcus aureus (cfu/g) | Jersey | <100 | <100 | <100 |
Holstein Friesian | <100 | <100 | <100 | |
Listeria monocytogenes (+/−) | Jersey | - | - | - |
Holstein Friesian | - | - | - | |
Salmonella spp. (+/−) | Jersey | - | - | - |
Holstein Friesian | - | - | - |
Storage Time (Days) | Milk Type Used | Sensory Characteristic | ||
---|---|---|---|---|
Flavour | Aroma | Overall Assessment | ||
2 | Jersey | 3.9 ± 0.3 ac | 4.0 ± 0.1 a | 4.0 ± 0.1 a |
Holstein | 4.0 ± 0.1 a | 4.0 ± 0.5 a | 4.2 ± 0.4 a | |
14 | Jersey | 4.1 ± 0.3 a | 3.8 ± 0.4 a | 4.1 ± 0.3 a |
Holstein | 4.0 ± 0.1 a | 3.7 ± 0.5 a | 4.1 ± 0.3 a | |
22 | Jersey | 3.6 ± 0.5 bc | 3.1 ± 0.3 b | 3.2 ± 0.4 b |
Holstein | 3.4 ± 0.5 b | 3.3 ± 0.5 b | 3.0 ± 0.1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelios, G.; Nikolaou, A.; Papazilakis, P.; Kourkoutas, Y. Developing New High-Protein-Content Traditional-Type Greek Yoghurts Based on Jersey Cow Milk. Dairy 2023, 4, 235-248. https://doi.org/10.3390/dairy4010017
Nelios G, Nikolaou A, Papazilakis P, Kourkoutas Y. Developing New High-Protein-Content Traditional-Type Greek Yoghurts Based on Jersey Cow Milk. Dairy. 2023; 4(1):235-248. https://doi.org/10.3390/dairy4010017
Chicago/Turabian StyleNelios, Grigorios, Anastasios Nikolaou, Panagiotis Papazilakis, and Yiannis Kourkoutas. 2023. "Developing New High-Protein-Content Traditional-Type Greek Yoghurts Based on Jersey Cow Milk" Dairy 4, no. 1: 235-248. https://doi.org/10.3390/dairy4010017
APA StyleNelios, G., Nikolaou, A., Papazilakis, P., & Kourkoutas, Y. (2023). Developing New High-Protein-Content Traditional-Type Greek Yoghurts Based on Jersey Cow Milk. Dairy, 4(1), 235-248. https://doi.org/10.3390/dairy4010017