Sustainable Approaches in Whey Cheese Production: A Review
Abstract
:1. Introduction
2. Whey Types and Composition
3. Sustainable Valorization of Whey
4. The Manufacture of Traditional Whey cheeses
5. Aspects of the Microbiology of Whey Cheese
6. Sustainable Preservation Approaches of Whey cheeses
6.1. Modified Atmosphere Packaging
6.2. Addition of Herbs and/or Plant Extracts
6.3. Bio-Preservation
6.4. Novel Treatments for Extending the Shelf Life
7. Novel Whey Cheeses and Whey Products
8. Functional and Probiotic Products
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, M.; Wang, G. History of whey production and whey protein manufacturing. In Whey Protein Production, Chemistry, Functionality and Applications; Guo, M., Ed.; John Wiley & Sons Ltd: Chichester, UK, 2019; pp. 1–12. [Google Scholar]
- Smithers, G.W. Whey-ing up the options: Yesterday, today and tomorrow. Int. Dairy J. 2015, 48, 2–14. [Google Scholar] [CrossRef]
- Kindstedt, P.S. The history of cheese. In Global Cheesemaking Technology—Cheese Quality and Characteristics; Papademas, P., Bintsis, T., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2018; pp. 3–19. [Google Scholar]
- Kindar, S.S. A review of the world’ s whey cheeses. In Research & reviews in Agriculture, Foresty and Aquaculture; Akar, T., Ed.; Gece Publishing: Ankara, Turkey, 2022; pp. 174–200. [Google Scholar]
- Gobbetti, M.; Neviani, E.; Fox, P. (Eds.) The origins of cheesemaking. In The cheeses of Italy: Science and Technology; Springer International Publishing AG: Cham, Switzerland; pp. 1–12.
- Licitra, G.; Carpino, S. The microfloras and sensory profiles of selected protected designation of origin Italian cheeses. Microbiol. Spectr. 2014, 2, CM-0007-2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papademas, P.; Bintsis, T.; Alichanidis, E.; Ardö, Y. Whey cheeses (Heat coagulated). In Global Cheesemaking Technology—Cheese Quality and Characteristics; Papademas, P., Bintsis, T., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2018; pp. 446–452. [Google Scholar]
- Kosikowski, F.V.; Mistry, V.V. Whey cheese. In Cheese and Fermented Milk Foods, Vol I: Origins and Principles, 3rd ed.; Kosikowski, L.L.C.: Westport, CT, USA, 1997; pp. 314–317. [Google Scholar]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. (Eds.) Whey and whey products. In Fundamentals of Cheese Science, 2nd ed.; Springer: New York, NY, USA, 2017; pp. 755–770. [Google Scholar]
- eAmbrosia—The EU Geographical Indications Register. 2003. Available online: https://ec.europa.eu/info/food-farming-fisheries/food-safety-and-quality/certification/quality-labels/geographical-indications-register/ (accessed on 3 February 2023).
- Pappa, E.C.; Samelis, J.; Kondyli, E.; Pappas, A.C. Characterisation of Urda whey cheese: Evolution of main biochemical and microbiological parameters during ripening and vacuum packaged cold storage. Int. Dairy J. 2016, 58, 54–57. [Google Scholar] [CrossRef]
- Codex Alimentarius CODEX STAN 284-1971; FAO/WHO Standard for Whey cheeses. FAO/WHO Food Standards: Rome, Italy, 2010.
- Ryan, M.P.; Walsh, G. The biotechnological potential of whey. Rev. Environ. Sci. Bio Technol. 2016, 15, 479–498. [Google Scholar] [CrossRef] [Green Version]
- Pintado, M.E.; Macedo, A.C.; Malcata, F.X. Review: Technology, chemistry and microbiology of whey cheeses. Food Sci. Technol. Int. 2001, 7, 105–116. [Google Scholar] [CrossRef]
- Lavelli, V.; Beccalli, M.P. Cheese whey recycling in the perspective of the circular economy: Modeling processes and the supply chain to design the involvement of the small and medium enterprises. Trends Food Sci. Technol. 2022, 126, 86–98. [Google Scholar] [CrossRef]
- Barba, F.J. An integrated approach for the valorization of cheese whey. Foods 2021, 10, 564. [Google Scholar] [CrossRef]
- Jelen, P. Whey Processing—Utilization and Products. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: Oxford, UK, 2011; pp. 731–737. [Google Scholar]
- Gregg, J.S.; Jürgens, J.; Happel, M.K.; Strom-Andersen, N.; Tanner, A.N.; Bolwig, S.; Klitkou, A. Valorization of bio-residuals in the food and foresty sectors in support of a circular bioeconomy: A review. J. Cleaner. Prod. 2020, 267, 122093. [Google Scholar] [CrossRef]
- Moatsou, G.; Moschopoulou, E. Cheese and whey: The outcome of milk curdling. Foods 2021, 10, 1008. [Google Scholar] [CrossRef]
- Akpinar, A.; Yerlikaya, O.; Akan Karagozlu, C.; Kinik, O.; Uysal, H.R. The effect of packaging materials on physicochemical, microbiological, and sensorial properties of Turkish whey (Lor) cheese with some plants. J. Food Process. Preserv. 2022, 46, e17060. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy by-products: A review on the valorization of whey and second cheese whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Zotta, T.; Solieri, L.; Iacumin, L.; Picozzi, C.; Gullo, M. Valorization of cheese whey using microbial fermentations. Appl. Microbiol. Biotechnol. 2020, 104, 2749–2764. [Google Scholar] [CrossRef] [PubMed]
- Bintsis, T.; Papademas, P. The evolution of fermented milks, from artisanal to industrial products: A critical review. Fermentation 2022, 8, 679. [Google Scholar] [CrossRef]
- Pala, C.; Scarano, C.; Venusti, M.; Sardo, D.; Casti, D.; Cossu, F.; Lamon, S.; Spanu, V.; Ibba, M.; Marras, M. Shelf life evaluation of ricotta fresca sheep cheese in modified atmosphere packaging. Ital. J. Food Saf. 2016, 5, 5502. [Google Scholar] [CrossRef] [Green Version]
- Macedo, A.; Bilau, J.; Cambóias, E.; Duarte, E. Integration of membrane processes for by-product valorization to improve the ecoefficiency of small/medium size cheese dairy plants. Foods 2021, 10, 1740. [Google Scholar] [CrossRef]
- Macedo, A.; Azedo, D.; Duarte, E.; Pereira, C. Valorization of goat cheese whey through an integrated process of ultrafiltration and nanofiltration. Membranes 2021, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Kaminarides, S.; Zagari, H.; Zoidou, E. Effect of whey fat content on the properties and yields of whey cheese and serum. J. Hellenic Vet. Medical Soc. 2020, 71, 2149–2156. [Google Scholar] [CrossRef]
- Macedo, R.F.; Freitas, R.J.S.; Pandey, A.; Soccol, C.R. Production and shelf-life studies of low cost beverage with soymilk, buffalo cheese whey and cow milk fermented by mixed cultures of Lactobacillus casei ssp. shirota and Bifidobacterium adolescentis. J. Basic Microbiol. 1999, 39, 243–251. [Google Scholar] [CrossRef]
- Blaschek, K.M.; Wendorff, W.L.; Rankin, S.A. Survey of salty and sweet whey composition from various cheese plants in Wisconsin. J. Dairy Sci. 2007, 90, 2029–2034. [Google Scholar] [CrossRef] [Green Version]
- Kandarakis, J.G. Traditional whey cheeses. Bull. Int. Dairy Fed. 1986, 202, 118–123. [Google Scholar]
- Kalatzopoulos, G.C. Cheeses from ewes’ and goats’ milk. In Cheese: Chemistry, Physics and Microbiology; Fox, P.F., Ed.; Springer: Boston, MA, USA, 1993; pp. 507–553. [Google Scholar]
- Anand, S.; Khanal, S.N.; Marella, C. Whey and whey products. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health; Park, Y.W., Haenlein, G.F.W., Eds.; Wiley-Blackwell: Chichester, UK, 2013; pp. 477–497. [Google Scholar]
- Jandal, J.M. Comparative aspects of goat and sheep milk. Small Rumin. Res. 1996, 22, 177–185. [Google Scholar] [CrossRef]
- Jaeggi, J.J.; Wendorff, W.L.; Romero, J.; Berger, Y.M.; Johnson, M.E. Impact of seasonal changes in ovine milk on composition and yield of a hard-pressed cheese. J. Dairy Sci. 2005, 88, 1358–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siso, M.I.G. The biotechnological utilization of cheese whey: A review. Bioresour. Technol. 1996, 57, 1–11. [Google Scholar] [CrossRef]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C.G. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Rumin. Res. 2010, 89, 110–120. [Google Scholar] [CrossRef]
- Pereira, C.D.; Henriques, M.; Gomes, D.; Gouveia, R.; Gomez-Zavaglia, A.; de Antoni, G. Fermented dairy products based on ovine cheese whey. J. Food Sci. Technol. 2015, 52, 7401–7408. [Google Scholar] [CrossRef]
- Henriques, M.H.F.; Gomes, D.M.G.S.; Pereira, C.J.D.; Gil, M.H.M. Effects of liquid whey protein concentrate on functional and sensorial properties of set yoghurts and fresh cheese. Food Bioprocess Technol. 2012, 6, 952–963. [Google Scholar] [CrossRef] [Green Version]
- Casper, J.L.; Wendorff, W.L.; Thomas, D.L. Seasonal changes in protein composition of whey from commercial manufacture of caprine and ovine specialty cheeses. J. Dairy Sci. 1998, 81, 3117–3122. [Google Scholar] [CrossRef]
- Milani, F.X.; Wendorff, W.L. Goat and sheep milk products in the United States (USA). Small Rumin. Res. 2011, 101, 134–139. [Google Scholar] [CrossRef]
- Smithers, G.W. Whey and whey proteins-from ‘gutter-to-gold’. Int. Dairy J. 2008, 18, 695–704. [Google Scholar] [CrossRef]
- Hejtmánková, A.; Pivec, V.; Trnková, E.; Dragounová, H. Differences in the composition of total and whey proteins in goat and ewe milk and their changes throughout the lactation period. Czech J. Anim. Sci. 2012, 57, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Moatsou, G.; Hatzinaki, A.; Samolada, M.; Anifantakis, E. Major whey proteins in ovine and caprine acid wheys from indigenous Greek breeds. Int. Dairy J. 2005, 15, 123–131. [Google Scholar] [CrossRef]
- Pintado, M.E.; Lopes da Silva, J.A.; Malcata, F.X. Comparative characterization of whey protein concentrates from ovine, caprine and bovine breeds. LWT Food Sci. Technol. 1999, 32, 231–237. [Google Scholar] [CrossRef]
- Nudda, A.; McGuire, M.A.; Battacone, G.; Pulina, G. Seasonal variation in conjugated linoleic acid and vaccenic acid in milk fat of sheep and its transfer to cheese and ricotta. J. Dairy Sci. 2005, 88, 1311–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangano, K.M.; Bao, Y.; Zhao, C. Nutritional properties of whey proteins. In Whey Protein Production, Chemistry, Functionality and Applications; Guo, M., Ed.; John Wiley & Sons Ltd: Chichester, UK, 2019; pp. 103–140. [Google Scholar]
- Madadlou, A.; Abbaspourrad, A. Bioactive whey peptide particles: An emerging class of nutraceutical carriers. Critic. Rev. Food Sci. Nutrit. 2018, 58, 1468–1477. [Google Scholar] [CrossRef]
- Gupta, C.; Prakash, D. Therapeutic potential of milk whey. Beverages 2017, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Patel, S. Functional food relevance of whey protein: A review of recent findings and scopes ahead. J. Function. Foods 2015, 19, 308–319. [Google Scholar] [CrossRef]
- Kilara, A. Whey and whey products. In Dairy Processing and Quality Assurance, 2nd ed.; Chandan, R.C., Kilara, A., Shah, N.P., Eds.; John Wiley & Sons Ltd.: Oxford, UK, 2016; pp. 349–366. [Google Scholar]
- Sommella, E.; Pepe, G.; Ventre, G.; Pagano, F.; Conte, G.M.; Ostacolo, C.; Campiglia, P. Detailed peptide profiling of “Scotta”: From a dairy waste to a source of potential health-promoting compounds. Dairy Sci. Technol. 2016, 96, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Kareb, O.; Aider, M. Whey and its derivatives for probiotics, prebiotics, symbiotics, and functional foods: A critical review. Prob. Antimicrob. Prot. 2019, 11, 348–369. [Google Scholar] [CrossRef]
- Yadav, J.S.S.; Yan, S.; Pilli, S.; Kumar, L.; Tyagi, R.D.; Surampalli, R.Y. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechn. Adv. 2015, 33, 756–774. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, N.; Ashaolu, T.J. Whey proteins and peptides in health-promoting functions—A review. Int. Dairy J. 2022, 126, 105269. [Google Scholar] [CrossRef]
- Teixeira, F.J.; Santos, H.O.; Howell, S.L.; Pimentel, G.D. Whey protein in cancer therapy: A narrative review. Pharmacol. Res. 2019, 144, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, Y.; Liu, J.; Meng, Z.; Huang, A.; Xu, F.; Wang, X. Identification, characterization and in vitro activity of hypoglycemic peptides in whey hydrolysates from rubing cheese by-product. Food Res. Int. 2023, 164, 112382. [Google Scholar] [CrossRef]
- Lorieau, L.; Halabi, A.; Ligneul, A.; Hazart, E.; Dupont, D.; Floury, J. Impact of the dairy product structure and protein nature on the proteolysis and amino acid bioaccessibility during in vitro digestion. Food Hydrocoll. 2018, 82, 399–411. [Google Scholar] [CrossRef]
- Lorieau, L.; Le Gouar, Y.; Henry, G.; Mao, T.T.; Ligneul, A.; Hazart, E.; Dupont, D.; Floury, J. Whey-based cheese provides more postprandial plasma leucine than casein-based cheese: A pig study. Food Chem. 2019, 277, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Boscaini, S.; Skuse, P.; Nilaweera, K.N.; Cryan, J.F.; Cotter, P.D. The ‘Whey’ to good health: Whey protein and its beneficial effect on metabolism, gut microbiota and mental health. Trends Food Sci. Technol. 2023, 133, 1–14. [Google Scholar] [CrossRef]
- Pontonio, E.; Montemurro, M.; De Gennaro, G.V.; Miceli, V.; Rizzello, C.G. Antihypertensive peptides from ultrafiltration and fermentation of the Ricotta cheese exhausted whey: Design and characterization of a functional Ricotta cheese. Foods 2021, 10, 2573. [Google Scholar] [CrossRef] [PubMed]
- Augustin, M.A.; Udabage, P.; Juliano, P.; Clarke, P.T. Towards a more sustainable dairy industry: Integration across the farm—Factory interface and the dairy factory of the future. Int. Dairy J. 2013, 31, 2–11. [Google Scholar] [CrossRef]
- Minj, S.; Anand, S. Whey proteins and its derivatives: Bioactivity, functionality, and current applications. Dairy 2020, 1, 233–258. [Google Scholar] [CrossRef]
- Papademas, P.; Kotsaki, P. Technological utilization of whey towards sustainable exploitation. J. Adv. Dairy Res. 2019, 7, 231. [Google Scholar]
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manag. 2012, 110, 48–68. [Google Scholar] [CrossRef]
- Panghal, A.; Patidar, R.; Jaglan, S.; Chhikara, N.; Khatkar, S.; Gat, Y.; Sindhu, N. Whey valorization: Current options and future scenario—A critical review. Nutr. Food Sci. 2018, 48, 520–535. [Google Scholar] [CrossRef]
- Wang, C.; Killpatrick, A.; Humphrey, A.; Guo, M. Whey protein functional properties and applications in food formulations. In Whey Protein Production, Chemistry, Functionality and Applications; Guo, M., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2019; pp. 157–204. [Google Scholar]
- Lappa, I.K.; Papadaki, A.; Kachrimanidou, V.; Terpou, A.; Koulougliotis, D.; Eriotou, E.; Kopsahelis, N. Cheese whey processing: Integrated biorefinery concepts and emerging food applications. Foods 2019, 8, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asunis, F.; De Gioannis, G.; Dessi, P.; Isipato, M.; Lens, P.N.L.; Muntoni, A.; Polettini, A.; Pomi, R.; Rossi, A.; Spiga, D. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. J. Environ. Manag. 2020, 276, 111240. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Mendoza, D.; Kosmeri, E.; Krentz, A.; Zhang, L.; Badiger, S.; Miyagusuku-Cruzado, G.; Mayta-Apaza, A.; Giusti, M.; Jimenez-Flores, R.; Garcia-Cano, I. 2021 Invited review: Acid whey trends and health benefits. J. Dairy Sci. 2021, 104, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Tsermoula, P.; Khakimov, B.; Nielsen, J.H.; Engelsen, S.B. WHEY—The waste-stream that became more valuable than the food product. Trends Food Sci. Technol. 2021, 118, 230–241. [Google Scholar] [CrossRef]
- Arshad, U.-e.-T.; Hassan, A.; Ahmad, T.; Naeem, M.; Chaudhary, M.T.; Abbas, S.Q.; Randhawa, M.A.; Pimentel, T.C.; Gomes da Cruz, A.; Aadil, R.M. A recent glance on the valorisation of cheese whey for industrial prerogative: High-value-added products development and integrated reutilising strategies. Int. J. Food Sci. Technol. 2022, 58, 2001–2013. [Google Scholar] [CrossRef]
- Osorio-González, C.S.; Gómez-Falcon, N.; Brar, S.K.; Ramírez, A.A. Cheese whey as a potential feedstock for producing Renewable Biofuels: A Review. Energies 2022, 15, 6828. [Google Scholar] [CrossRef]
- León-López, A.; Pérez-Marroquín, X.A.; Estrada-Fernández, A.G.; Campos-Lozada, G.; Morales-Peñaloza, A.; Campos-Montiel, R.G.; Aguirre-Álvarez, G. Milk whey hydrolysates as high value-added natural polymers: Functional properties and ppplications. Polymers 2022, 14, 1258. [Google Scholar] [CrossRef]
- Buchanan, D.; Martindale, W.; Romeih, E.; Hebishy, E. Recent advances in whey processing and valorisation: Technological and environmental perspectives. Int. J. Dairy Technol. 2023. [Google Scholar] [CrossRef]
- Gergihon, G.; Schuck, P.; Jeantet, R. Processing of Mozzarella cheese wheys and stretchwaters: A preliminary review. Dairy Sci. Technol. 2010, 90, 27–46. [Google Scholar]
- Rocha, J.M.; Guerra, A. On the valorization of lactose and its derivatives from cheese whey as a dairy industry by-product: An overview. Eur. Food Res. Technol. 2020, 246, 2161–2174. [Google Scholar] [CrossRef]
- Rama, G.R.; Kuhn, D.; Beux, S.; Maciel, M.J.; de Souza, C.F.V. Potential applications of dairy whey for the production of lactic acid bacteria cultures. Int. Dairy J. 2019, 98, 25–37. [Google Scholar] [CrossRef]
- Valta, K.; Damala, P.; Angeli, E.; Antonopoulou, G.; Malamis, D.; Haralambous, K.J. Current treatment technologies of cheese whey and wastewater by Greek cheese manufacturing units and potential valorisation opportunities. Waste Biomass Valor. 2017, 8, 1649–1663. [Google Scholar] [CrossRef]
- Johnson, M.E.; Lucey, J.A. Major technological advances and trends in cheese. J. Dairy Sci. 2006, 89, 1174–1178. [Google Scholar] [CrossRef]
- Riera, F.; González, P.; Muro, C. Whey cheese: Membrane technology to increase yields. J. Dairy Res. 2016, 83, 96–103. [Google Scholar] [CrossRef]
- Carter, B.G.; Cheng, N.; Kapoor, R.; Melethatayil, G.H.; Drake, M.A. Invited review: Microfiltration-derived casein and whey proteins from milk. J. Dairy Sci. 2021, 104, 2465–2479. [Google Scholar] [CrossRef]
- Macedo, A.; Duarte, E.; Fragoso, R. Assessment of the performance of three ultrafiltration membranes for fractionation of ovine second cheese whey. Int. Dairy J. 2015, 48, 31–37. [Google Scholar] [CrossRef]
- Macedo, A.; Monteiro, J.; Duarte, E. A contribution for the valorisation of sheep and goat cheese whey through nanofiltration. Membranes 2018, 8, 114. [Google Scholar] [CrossRef] [Green Version]
- Trindade, M.B.; Soares, B.C.; Scudino, H.; Guimaraes, J.T.; Esmerino, E.A.; Freitas, M.Q.; Pimentel, T.C.; Silva, M.C.; Souza, S.L.; Almada, R.B.; et al. Cheese whey exploitation in Brazil: A questionnaire survey. Food Sci. Technol. 2019, 39, 788–791. [Google Scholar] [CrossRef] [Green Version]
- Kotoupas, A.; Rigas, F.; Chalaris, M. Computer-aided process design, economic evaluation and environmental impact assessment for treatment of cheese whey wastewater. Desalination 2007, 213, 238–252. [Google Scholar] [CrossRef]
- Masotti, F.; Cattaneo, S.; Stuknyté, M.; De Noni, I. Technological tools to include whey proteins in cheese: Current status and perspectives. Trends Food Sci. Technol. 2017, 64, 102–114. [Google Scholar] [CrossRef]
- Bintsis, T.; Papademas, P. An overview of the cheesemaking process. In Global Cheesemaking Technology—Cheese Quality and Characteristics; Papademas, P., Bintsis, T., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2018; pp. 120–156. [Google Scholar]
- Robinson, R.K.; Wilbey, R.A. (Eds.) Cheese Whey and Its Uses; Cheesemaking Practice R. Scott: New York, NY, USA, 1998; pp. 320–326. [Google Scholar]
- Tsiotsias, A.; Savvaidis, I.; Vassila, A.; Kontominas, M.; Kotzekidou, P. Control of Listeria monocytogenes by low-dose irradation in combination with refrigeration in the soft whey cheese Anthotyros. Food Microbiol. 2002, 19, 117–126. [Google Scholar] [CrossRef]
- Hassan, H.F.; Tabarani, P.; Abiad, M.G. Microbiological, chemical, and sensory characteristics of Arishi cheese. J. Food Process. Preserv. 2022, 46, e16383. [Google Scholar] [CrossRef]
- Rako, A.; Kalit, T.M.; Kalit, S.; Soldo, B.; Ljubenkov, I. Nutritional characteristics of Croatian whey cheese (Bračka skuta) produced in different stages of lactation. LWT—Food Sci. Technol. 2018, 96, 657–662. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Ribeiro, S.D.A. Specialty products made from goat milk. Small Rumin. Res. 2010, 89, 225–233. [Google Scholar] [CrossRef]
- Loewenstein, M.; Speck, S.J.; Barnhart, H.M. Research on goat milk products: A review. J. Dairy Sci. 1980, 63, 1631–1648. [Google Scholar] [CrossRef]
- Park, Y.W.; Guo, M.R. Goat milk products: Processing technology, types and consumption trends. In Handbook of Milk of Non-bovine Mammals. Blackwell Publishers, Ames; Park, Y.W., Haenlein, G.F.W., Eds.; John Wiley & Sons: Oxford, UK, 2006; pp. 59–106. [Google Scholar]
- Skeie, S.B. Quality aspects of goat milk for cheese production in Norway: A review. Small Rumin. Res. 2014, 122, 10–17. [Google Scholar] [CrossRef]
- Kamber, U. The traditional cheeses of Turkey: Cheeses common to all regions. Food Rev. Int. 2007, 24, 1–38. [Google Scholar] [CrossRef]
- Dermiki, M.; Ntzimani, A.; Badeka, A.; Savvaidis, I.N.; Kontominas, M.G. Shelf-life extension and quality attributes of the whey cheese “Myzithra Kalathaki” using modified atmosphere packaging. LWT—Food Sci. Technol. 2008, 41, 284–294. [Google Scholar] [CrossRef]
- Pintado, M.E.; Lopes da Silva, J.A.; Malcata, F.X. Characterization of Requeijão and technological optimization of its manufacturing process. J. Food Eng. 1996, 30, 363–376. [Google Scholar] [CrossRef]
- Villarruel-López, A.; Castro-Rosas, J.; Gómez-Aldapa, C.A.; Nuňo, K.; Torres-Vitela, M.R.; Martinez-Gonzáles, N.E.; Garay-Martinez, L.E. Indicator microorganisms, Salmonella, Listeria monocytogenes, Staphylococcal enterotoxin, and physicochemical parameters in requeson cheese. Afric. J. Food Sci. 2016, 10, 178–184. [Google Scholar]
- Cavaliere, A. Characteristics of some dairy products produced in Diano Valley from ewe’s milk. Mondo Latte 1988, 42, 599–604. [Google Scholar]
- Tripaldi, C.; Rinaldi, S.; Palocci, G.; Di Giovanni, S.; Campagna, M.C.; Di Russo, C.; Zottola, T. Chemical and microbiological characteristics of homogenized Ricotta cheese produced from buffalo whey. Ital. J. Food Sci. 2020, 32, 292–309. [Google Scholar]
- Paskaš, S.; Mioćinović, J.; Savić, M.; Ješić, G.; Rašeta, M.; Becskei, Z. Comparison of the chemical composition of whey cheeses: Urda and Ricotta. Mac. Vet. Rev. 2019, 42, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Modler, H.W. Development of a continuous process for the production of Ricotta cheese. J. Dairy Sci. 1988, 71, 2003–2009. [Google Scholar] [CrossRef]
- Weaterup, W. The effect of processing variables on the yield and quality of Ricotta cheese. Dairy Ind. Int. 1986, 51, 414345. [Google Scholar]
- Montone, A.; De felice, A.; Brunetti, R.; Mollica, D.; Capo, S.; Capuano, F.; Guarino, A.; Nava, D. Evaluation of some microbiological and chemical parameters of Campania buffalo ricotta cheese. Ital. J. Food Saf. 2017, 6, 6316. [Google Scholar] [CrossRef] [Green Version]
- Faccia, M.; Trani, A.; Natrella, G.; Gambacorta, G. Chemical-sensory and volatile compound characterization of ricotta forte, a traditional fermented whey cheese. J. Dairy Sci. 2018, 101, 5751–5757. [Google Scholar] [CrossRef] [Green Version]
- Filippetti, F.; Giangolini, G.; Boselli, C.; Amatiste, S.; Patriarca, D.; Rosati, R. Ricotta Romana: Manufacturing technique, chemical and microbiological conditions. In Proceedings of the FIL-IDF World Dairy Summit Exibition, Dublin, Ireland, 11–14 November 2007. [Google Scholar]
- Giangolini, G.; Amatiste, S.; Filippetti, F.; Boselli, C.; Fagiolo, A.; Rosati, R. Caratteristiche chimiche della Ricotta Romana DOP. Sci. Tecn. Latt-Cas. 2009, 60, 131–135. [Google Scholar]
- Casti, D.; Scarano, C.; Pala, C.; Cossu, F.; Lamon, S.; Spanu, V.; Ibba, M.; Mocci, A.M.; Tedde, F.; Nieddu, G.; et al. Evolution of the microbiological profile of vacuum-packed ricotta salata cheese during shelf-life. Ital. J. Food Safety 2016, 5, 5501. [Google Scholar] [CrossRef] [Green Version]
- Rasovic, B.M.; Nikolic, N.; Rasovic, R. Quality of “urda” obtained after production of montenegrin semi-hard cheese. Food Res. 2017, 1, 166–170. [Google Scholar] [CrossRef]
- Litopoulou-Tzanetaki, E.; Tzanetakis, N. The microfloras of traditional Greek cheeses. Microbiol. Spectr. 2014, 2, CM-0009-2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alichanidis, E.; Polychroniadou, A. Characteristics of major traditional regional cheese varieties of East-Mediterranean countries: A review. Dairy Sci. Technol. 2008, 88, 495–510. [Google Scholar] [CrossRef] [Green Version]
- Baruzzi, F.; Morea, M.; Matarante, A.; Cocconcelli, P.S. Changes in the Lactobacillus community during Ricotta forte cheese natural fermentation. J. Appl. Microbiol. 2000, 89, 807–814. [Google Scholar] [CrossRef]
- Hill, A.R.; Irvine, D.M.; Bullock, D.H. Precipitation and recovery of whey proteins: A review. Canad. Instit. Food Sci. Technol. J. 1982, 15, 155–160. [Google Scholar] [CrossRef]
- Kaminarides, S.; Nestoratos, K.; Massouras, T. Effect of added milk and cream on the physicochemical, rheological and volatile compounds of Greek whey cheeses. Small Rumin. Res. 2013, 113, 446–453. [Google Scholar] [CrossRef]
- Biancolillo, A.; Reale, S.; Foschi, M.; Bertini, E.; Antonelli, L.; D’Archivio, A.A. Characterization and authentication of “Ricotta” whey cheeses through GC-FID analysis of fatty acid profile and chemometrics. Molecules 2022, 27, 7401. [Google Scholar] [CrossRef]
- Ramírez-Rivas, I.K.; Gutiérrez-Méndez, N.; Rentería-Monterrubio, A.L.; Sánchez-Vega, R.; Tirado-Gallegos, J.M.; Santellano-Estrada, E.; Chávez-Martínez, A. Effect of different types and concentrations of salts added to Requeson cheese on texture, sensory, and physiochemical characteristics. J. Food Process Preserv. 2022, 46, e16336. [Google Scholar] [CrossRef]
- Pizzillo, M.; Claps, S.; Cifuni, G.F.; Fedele, V.; Rubino, R. Effect of goat breed on the sensory, chemical and nutritional characteristics of ricotta cheese. Livest. Prod. Sci. 2005, 94, 33–40. [Google Scholar] [CrossRef]
- Govaris, A.; Koidis, P.; Papatheodorou, K. The fate of Escherichia coli O157:H7 in Myzithra, Anthotyros, and Manouri whey cheeses during storage at 2 and 12 °C. Food Microbiol. 2001, 18, 565–570. [Google Scholar] [CrossRef]
- Melas, D.S.; Papageorgiou, D.K.; Mantis, A.I. Enumeration and Confirmation of Aeromonas hydrophila, Aeromonas caviae, and Aeromonas sobria Isolated from Raw Milk and Other Milk Products in Northern Greece. J. Food Protect. 1999, 62, 463–466. [Google Scholar] [CrossRef]
- Papageorgiou, D.K.; Bori, M.; Mantis, A. Growth of Listeria monocytogenes in the whey cheeses Myzithra, Anthotyros, and Manouri during storage at 5, 12, and 22 C. J. Food Prot. 1996, 59, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, D.K.; Melas, D.S.; Abrahim, A.; Angelidis, A.S. Growth of Aeromonas hydrophila in the whey cheeses Myzithra, Anthotyros, and Manouri during storage at 4 and 12 °C. J. Food Protect. 2006, 69, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Kalogridou-Vassiliadou, D.; Tzanetakis, N.; Litopoulou-Tzanetaki, E. Microbiological and physicochemical characteristics of “Anthotyro”, a Greek traditional whey cheese. Food Microbiol. 1994, 11, 15–19. [Google Scholar] [CrossRef]
- Lioliou, K.; Litopoulou-Tzanetaki, E.; Tzanetakis, N.; Robinson, R.K. Changes in the microflora of Manouri, a traditional Greek whey cheese, during storage. Int. J. Dairy Technol. 2001, 54, 100–106. [Google Scholar] [CrossRef]
- Suzzi, G.; Schirone, M.; Martuscelli, M.; Gatti, M.; Fornasari, M.E.; Neviani, E. Yeasts associated with Manteca. FEMS Yeast Res. 2003, 3, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodoridis, A.; Abrahim, A.; Sarimvei, A.; Panoulis, C.; Karaioannoglou, P.; Genigeorgis, C.; Mantis, A. Prevalence and significance of Listeria monocytogenes in Greek whey cheeses. A comparison between the years 1990 and 1996. Milchwissenschaft 1998, 53, 147–148. [Google Scholar]
- Angelidis, A.S.; Georgiadou, S.S.; Zafeiropoulou, V.; Velonakis, E.N.; Papageorgiou, D.K.; Vatopoulos, A. A survey of soft cheeses in Greek retail outlets highlights a low prevalence of Listeria spp. Dairy Sci. Technol. 2012, 92, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Kapetanakou, A.E.; Gkerekou, M.A.; Vitzilaiou, E.S.; Skandamis, P.N. Assessing the capacity of growth, survival, and acid adaptive response of Listeria monocytogenes during storage of various cheeses and subsequent simulated gastric digestion. Int. J. Food Microbiol. 2017, 246, 50–63. [Google Scholar] [CrossRef]
- Pilo, A.L.; Marongiu, P.; Corgiolu, G.; Virdis, S.; Scarano, C.; De Santis, E.P.L. Listeria monocytogenes contamination sources in sheep cheese processing plants and strains virulence genes typing. In Proceedings of the 5th IDF International Symposium on the Challenge to Sheep and Goats Milk Sectors, Alghero, Italy, 18–20 April 2008. [Google Scholar]
- Rosas-Barbosa, B.T.; Morales, A.L.J.; Alaniz-de la, O.R.; Ramirez-Alvarez, A.; Soltero-Ramos, J.P.; de la Mora-Quiroz, R.; Martin, P.; Jacquet, C. Presence and persistence of Listeria in four artisanal cheese plants in Jalisco, Mexico. E-CUCBA 2014, 2, 3–37. [Google Scholar]
- Gérard, A.; El-Hajjaji, S.; Niyonzima, E.; Daube, G.; Sindic, M. Prevalence and survival of Listeria monocytogenes in various types of cheese—A review. Int. J. Dairy Technol. 2018, 71, 825–843. [Google Scholar] [CrossRef]
- Parisi, A.; Latorre, L.; Fraccalvieri, R.; Miccolupo, A.; Normanno, G.; Caruso, M.; Santagada, G. Occurrence of Listeria spp. in dairy plants in Southern Italy and molecular subtyping of isolates using ALP. Food Control 2013, 29, 91–97. [Google Scholar] [CrossRef]
- Scatassa, M.L.; Mancuso, I.; Sciortino, S.; Macaluso, G.; Palmeri, M.; Arcuri, L.; Todaro, M.; Cardamone, C. Retrospective study on the hygienic quality of fresh ricotta cheeses produced in Sicily, Italy. Ital. J. Food Saf. 2018, 7, 6911. [Google Scholar] [CrossRef] [PubMed]
- Spanu, C.; Scarano, C.; Spanu, V.; Penna, C.; Virdis, S.; De Santis, E.P.L. Listeria monocytogenes growth potential in Ricotta salata cheese. Int. Dairy J. 2012, 24, 120–122. [Google Scholar] [CrossRef]
- Spanu, C.; Spanu, V.; Pala, C.; Virdis, S.; Scarano, C.; De Santis, E.P.L. Evaluation of a post-lethality treatment against Listeria monocytogenes on Ricotta salata cheese. Food Control 2013, 30, 200–205. [Google Scholar] [CrossRef]
- Spanu, C.; Scarano, C.; Spanu, V.; Pala, C.; Di Salvo, R.; Piga, C.; Buschettu, L.; Casti, D.; Lamon, S.; Cossu, F. Comparison of post-lethality thermal treatment conditions on the reduction of Listeria monocytogenes and sensory properties of vacuum packed ricotta salata cheese. Food Control 2015, 50, 740–747. [Google Scholar] [CrossRef]
- Ibba, M.; Cossu, F.; Spanu, V.; Virdis, S.; Spanu, C.; Scarano, C.; De Santis, E.P.L. Listeria monocytogenes contamination in dairy plants: Evaluation of Listeria monocytogenes environmental contamination in two cheese-making plants using sheeps milk. Ital. J. Food Saf. 2013, 2, 109e112. [Google Scholar] [CrossRef] [Green Version]
- Allesandria, V.; Rantsiou, K.; Dolci, P.; Cocolin, L. Molecular methods to assess Listeria monocytogenes route of contamination in a dairy processing plant. Int. J. Food Microbiol. 2010, 141, S156–S162. [Google Scholar] [CrossRef]
- Adame-Gómez, R.; Muňoz-Barrios, S.; Castro-Alarcón, N.; Leyva-Vázquez, M.-A.; Toribio-Jiménez, J.; Ramirez-Peralta, A. Prevalence of the strains of Bacillus cereus group in artisanal Mexican cheese. Foodborne Pathog. Dis. 2019, 17, 8–14. [Google Scholar] [CrossRef]
- Sattin, E.; Andreani, N.A.; Carraro, L.; Fasolato, L.; Balzan, S.; Novelli, E.; Squartini, A.; Telatin, A.; Simionati, B.; Cardazzo, B. Microbial dynamics during shelf-life of industrial Ricotta cheese and identification of a Bacillus strain as a cause of a pink discolouration. Food Microbiol. 2016, 57, 8–15. [Google Scholar] [CrossRef]
- Cosentino, S.; Mulargia, A.F.; Pisano, B.; Tuveri, P.; Palmas, F. Incidence and biochemical characteristics of Bacillus flora in Sardinian dairy products. Int. J. Food Microbiol. 1997, 38, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Spanu, C.; Scarano, C.; Spanu, V.; Pala, C.; Casti, D.; Lamon, S.; Cossu, F.; Ibba, M.; Nieddu, G.; De Santis, E.P.L. Occurrence and behavior of Bacillus cereus in naturally contaminated ricotta salata cheese during refrigerated storage. Food Microbiol. 2016, 58, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Sattin, E.; Andreani, N.A.; Carraro, L.; Lucchini, R.; Fasolato, L.; Telatin, A.; Balzan, S.; Novelli, E.; Simionati, B.; Cardazzo, B. A multi-omics approach to evaluate the quality of milk whey used in ricotta cheese production. Front. Microbiol. 2016, 7, 1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sameli, N.; Samelis, J. Growth and biocontrol of Listeria monocytogenes in Greek Anthotyros whey cheese without or with a crude Enterocin A-B-P extract: Interactive effects of the native spoilage microbiota during vacuum-packed storage at 4 °C. Foods 2022, 11, 334. [Google Scholar] [CrossRef] [PubMed]
- Genigeorgis, C.; Carniciu, M.; Dutulescu, D.; Farver, T.B. Growth and survival of Listeria monocytogenes in market cheeses stored at 4 C to 30 C. J. Food Prot. 1991, 54, 662–668. [Google Scholar] [CrossRef]
- Coroneo, V.; Carraro, V.; Aissani, N.; Sanna, A.; Ruggeri, A.; Succa, S.; Meloni, B.; Pinna, A.; Sanna, C. Detection of virulence genes and growth potential in Listeria monocytogenes strains isolated from ricotta salata cheese. J. Food Sci. 2016, 81, M114–M120. [Google Scholar] [CrossRef]
- Angelidis, A.S.; Govaris, A. The behavior of Listeria monocytogenes during the manufacture and storage of Greek Protected Designation of Origin (PDO) cheeses. In Listeria Infections Epidemiology, Pathogenesis and Treatment; Romano, A., Giordano, C.F., Eds.; Nova Science Publishers: New York, NY, USA, 2012; pp. 1–34. [Google Scholar]
- Angelidis, A.S.; Smith, L.T.; Smith, G.M. Elevated carnitine accumulation by Listeria monocytogenes impaired in glycine betaine transport is insufficient to restore wild-type cryotolerance in milk whey. Int. J. Food Microbiol. 2002, 75, 1–9. [Google Scholar] [CrossRef]
- Santorum, P.; Garcia, R.; Lopez, V.; Martinez-Suarez, J.V. Review. Dairy farm management and production practices associated with the presence of Listeria monocytogenes in raw milk and beef. Span. J. Agric. Res. 2012, 10, 360–371. [Google Scholar] [CrossRef] [Green Version]
- Moula Ali, A.M.; Sant’ Ana, A.S.; Bavisetty, S.C.B. Sustainable preservation of cheese: Advanced technologies, physicochemical properties and sensory attributes. Trends Food Sci. Technol. 2022, 129, 306–326. [Google Scholar] [CrossRef]
- Phillips, C.A. Modified atmosphere packaging and its effects on the microbiological quality and safety of produce. A review. Int J. Food Sci. Technol. 1999, 31, 463–479. [Google Scholar] [CrossRef]
- Mortensen, G.; Sørensen, J.; Stapelfeldt, H. Effect of modified atmosphere packaging and storage conditions on photooxidation of sliced Havarti cheese. Eur. Food Res. Technol. 2003, 216, 57–62. [Google Scholar] [CrossRef]
- Floros, J.D.; Nielsen, P.V.; Farkas, J.K. Advances in modified atmosphere and active packaging with applications in the dairy industry. Bull. IDF 2000, 346, 22–28. [Google Scholar]
- Khoshgozaran, S.; Azizi, M.H.; Bagheripoor-Fallah, N. Evaluating the effect of modified atmosphere packaging on cheese characteristics: A review. Dairy Sci. Technol. 2011, 92, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Feeney, E.L.; Lamichhane, P.; Sheehan, J.J. The cheese matrix: Understanding the impact of cheese structure on aspects of cardiovascular health—A food science and a human nutrition perspective. Int. J. Dairy Technol. 2021, 74, 656–670. [Google Scholar] [CrossRef]
- Pintado, M.E.; Malcata, F.X. Characterization of whey cheese packaged under vacuum. J. Food Prot. 2000, 63, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Pintado, M.E.; Malcata, F.X. The effect of modified atmosphere packaging on the microbial ecology in Requeijao, a Portuguese whey cheese. J. Food Process. Preserv. 2000, 24, 107–124. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kargaki, G.K.; Hadjichristodoulou, C. Effect of three MAP compositions on the physical and microbiological properties of a low fat Greek cheese known as “Anthotyros”. Anaerobe 2011, 17, 295–297. [Google Scholar] [CrossRef]
- Papaioannou, G.; Chouliara, I.; Karatapanis, A.E.; Kontominas, M.G.; Savvaidis, I.N. Shelf-life of a Greek whey cheese under modified atmosphere packaging. Int. Dairy J. 2007, 17, 358–364. [Google Scholar] [CrossRef]
- Tsiraki, M.I.; Savvaidis, I.N. Effect of packaging and basil essential oil on the quality characteristics of whey cheese “Anthotyros”. Food Bioprocess Technol. 2013, 6, 124–132. [Google Scholar] [CrossRef]
- Temiz, H.; Aykut, U.; Hursit, A.K. Shelf life of Turkish whey cheese (Lor) under modified atmosphere packaging. Int. J. Dairy Technol. 2009, 62, 378–386. [Google Scholar] [CrossRef]
- Irkin, R. Shelf-life of unsalted and light ‘Lor’ whey cheese stored under various packaging conditions: Microbiological and sensory attributes. J. Food Process. Preserv. 2011, 35, 163–178. [Google Scholar] [CrossRef]
- Pintado, M.E.; Malcata, F.X. Optimization of modified atmosphere packaging with respect to physicochemical characteristics of Requeijao. Food Res. Int. 2000, 33, 821–832. [Google Scholar] [CrossRef]
- Ramírez-Rivas, I.K.; Gutiérrez-Méndez, N.; Rentería-Monterrubio, A.L.; Sánchez-Vega, R.; Tirado-Gallegos, J.M.; Santellano-Estrada, E.; Arevalos-Sánchez, M.M.; Chávez-Martínez, A. Effect of packaging and salt content and type on antioxidant and ACE-inhibitory activities in Requeson cheese. Foods 2022, 11, 1264. [Google Scholar] [CrossRef]
- Di Pierro, P.; Sorrentino, A.; Mariniello, L.; Giosafatto, C.V.L.; Porta, R. Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT—Food Sci. Technol. 2011, 44, 2324–2327. [Google Scholar] [CrossRef]
- Staszewski, M.; Jagus, R. Natural antimicrobials: Effect of MicrogardTM and nisin against Listeria innocua in liquid cheese whey. Int. Dairy J. 2008, 18, 255–259. [Google Scholar] [CrossRef]
- Kaptan, B.; Sivri, G.T. Products dairy in plants aromatic and medicinal of utilization. J. Adv. Plant Sci. 2018, 1, 205. [Google Scholar]
- Ritota, M.; Manzi, P. Natural Preservatives from Plant in Cheese Making. Animals 2020, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential application of essential oils as antimicrobial preservatives in cheese. Inn. Food Sci. Emerg. Technol. 2018, 45, 62–72. [Google Scholar] [CrossRef]
- Christaki, S.; Moschakis, T.; Hatzikamari, M.; Mourtzinos, I. Nanoemulsions of oregano essential oil and green extracts: Characterization and application in whey cheese. Food Control 2022, 14, 109190. [Google Scholar] [CrossRef]
- Davies, E.A.; Bevis, H.E.; Delves-Broughton, J. The use of bacteriocin nisin, as a preservative in ricotta-type cheeses to control the food-borne pathogen Listeria monocytogenes. Lett. Appl. Microbiol. 1997, 24, 343–346. [Google Scholar] [CrossRef]
- Ehsani, A.; Rezaeiyan, A.; Hashemi, M.; Aminzare, M.; Jannat, B.; Afshari, A. Antibacterial activity and sensory properties of Heracleum persicum essential oil, nisin, and Lactobacillus acidophilus against Listeria monocytogenes in cheese. Vet World 2019, 12, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Sánchez, L.A.; El-Haddad, N.; Mahmoud, D.; Miller, M.J.; Karam, L. Invited review: Advances in nisin use for preservation of dairy products. J. Dairy Sci. 2020, 103, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Sánchez, L.A.; Van Tassell, M.L.; Miller, M.J. Antimicrobial behavior of phage endolysin PlyP100 and its synergy with nisin to control Listeria monocytogenes in Queso Fresco. Food Microbiol. 2018, 72, 128–134. [Google Scholar] [CrossRef]
- Divsalar, E.; Tajik, H.; Moradi, M.; Forough, M.; Lotfi, M.; Kuswandi, B. Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese. Int. J. Biol. Macromol. 2018, 109, 1311–1318. [Google Scholar] [CrossRef]
- Hales, B.R.; Walsh, M.K.; Bastarrachea, L.J. Synergistic effect of high-intensity ultrasound, UV-A light, and natural preservatives on microbial inactivation in milk. J. Food Process. Preserv. 2022, 46, e1639. [Google Scholar] [CrossRef]
- Dwivedi, S.; Prajapati, P.; Vyas, N.; Malviya, S.; Kharia, A. A review on food preservation: Methods, harmful effects and better alternatives. Asian J. Pharm. Pharmacol. 2017, 3, 193–199. [Google Scholar]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef]
- Samelis, J.; Kakouri, A.; Rogga, K.J.; Savvaidis, I.N.; Kontominas, M.G. Nisin treatments to control Listeria monocytogenes post processing contamination on Anthotyros, a traditional Greek whey cheese, stored at 4 °C in vacuum packages. Food Microbiol. 2003, 20, 661–669. [Google Scholar] [CrossRef]
- Aspri, M.; O’Connor, P.M.; Field, D.; Cotter, P.D.; Ross, P.; Hill, C.; Papademas, P. Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. Int. Dairy J. 2017, 73, 1–9. [Google Scholar] [CrossRef]
- Spanu, C.; Scarano, C.; Piras, F.; Spanu, V.; Pala, C.; Casti, D.; Lamon, S.; Cossu, F.; Ibba, M.; Nieddu, G. Testing commercial biopreservative against spoilage microorganisms in MAP packed Ricotta fresca cheese. Food Microbiol. 2017, 66, 72–76. [Google Scholar] [CrossRef]
- Spanu, C.; Piras, F.; Mocci, A.M.; Nieddu, G.; De Santis, E.P.L.; Scarano, C. Use of Carnobacterium spp protective culture in MAP packed Ricotta fresca cheese to control Pseudomonas spp. Food Microbiol. 2018, 74, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Gould, G.W. Industry perspectives on the use of natural antimicrobials and inhibitors for food applications. J. Food Prot. 1996, 59, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Valdramidis, V.P.; O’Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Applications of natural antimicrobials for food preservation. J. Agric. Food Chem. 2009, 57, 5987–6000. [Google Scholar] [CrossRef] [Green Version]
- Sameli, N.; Sioziou, E.; Bosnea, L.; Kakouri, A.; Samelis, J. Assessment of the spoilage microbiota during refrigerated (4 °C) vacuum-packed storage of fresh Greek Anthotyros whey cheese without or with a crude enterocin A-B-P-containing extract. Foods 2021, 10, 2946. [Google Scholar] [CrossRef] [PubMed]
- Udayakumar, S.; Rasika, D.M.D.; Priyashantha, H.; Vidanarachchi, J.K.; Ranadheera, C.S. Probiotics and Beneficial Microorganisms in Biopreservation of Plant-Based Foods and Beverages. Appl. Sci. 2022, 12, 11737. [Google Scholar] [CrossRef]
- Fernández, M.V.; Jagus, R.J.; Mugliaroli, S.L. Effect of combined natural antimicrobials on spoilage microorganisms and Listeria innocua in a whey cheese “Ricotta”. Food Bioprocess Technol. 2014, 7, 2528–2537. [Google Scholar] [CrossRef]
- Wu, M.; Ma, Y.; Dou, X.; Aslam, M.Z.; Liu, Y.; Xia, X.; Yang, S.; Wang, X.; Qin, X.; Hirata, T.; et al. A review of potential antibacterial activities of nisin against Listeria monocytogenes: The combined use of nisin shows more advantages than single use. Food Res. Int. 2023, 164, 112363. [Google Scholar] [CrossRef]
- Aktypis, A.; Kalantzopoulos, G.; Huis in’t Veld, J.H.J.; Ten brink, B. Purification and characterization of thermophilin T, a novel bacteriocin produced by Streptococcus thermophilus ACA-DC 0040. J. Appl. Microbiol. 1998, 84, 568–576. [Google Scholar] [CrossRef]
- Kaminarides, S.; Aktypis, A.; Koronios, G.; Massouras, T.; Papanikolaou, S. Effect of ‘in situ’ produced bacteriocin thermophilin T on the microbiological and physicochemical characteristics of Myzithra whey cheese. Int. J. Dairy Technol. 2018, 71, 213–222. [Google Scholar] [CrossRef]
- Duarte, R.; Moreira, S.A.; Fernandes, P.A.R.; Santos, D.; Inacio, R.S.; Alves, S.P.; Bessa, R.J.B.; Saraiva, J.A. Whey cheese longer shelf-life achievement at variable uncontrolled room temperature and comparison to refrigeration. J. Food Process Preserv. 2017, 41, e13307. [Google Scholar] [CrossRef]
- Urgu-Ozturk, M. Possibilities of using the continuous type of UV light on the surface of lor (whey) cheese: Impacts on mould growth, oxidative stability, sensory and colour attributes during storage. J. Dairy Res. 2022, 89, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, F.E.; Plazzotta, S.; Conte, A.; Manzocco, L. Effect of pulsed light on microbial inactivation, sensory properties and protein structure of fresh ricotta cheese. LWT Food Sci. Technol. 2021, 139, 110556. [Google Scholar] [CrossRef]
- Ricciardi, E.F.; del Nobile, M.A.; Conte, A.; Fracassi, F.; Sardella, E. Effects of plasma treatments applied to fresh ricotta cheese. Innov. Food Sci. Emerg. Technol. 2022, 76, 102935. [Google Scholar] [CrossRef]
- Kaminarides, S. A modified form of Myzithra cheese produced by substituting the fresh cheese whey by dried whey protein concentrate and ovine milk and cream. Small Rum. Res. 2015, 131, 118–122. [Google Scholar] [CrossRef]
- Aguilar-Raymundo, V.G.; Ramírez-Murillo, J.I.; Barajas-Ramírez, J.A. Assessing the yield, physicochemical, sensory characteristics, and acceptance of queso fresco added with whey cheese. Int. J Food Sci. Technol. 2022, 57, 6038–6045. [Google Scholar] [CrossRef]
- Awad, S.; Ahmed, N.; Soda, M. Application of Salt Whey from Egyptian Ras Cheese in Processed Cheese Making. Food Nutr. Sci. 2013, 4, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Semenium, C.A.; Zăpãrtan, L.; Stan, L.; Pop, C.R.; Borş, M.D.; Rotar, A.M. Physicochemical and sensory properties of whey cheese with pine nuts. Bul. UASVM Food Sci. Technol. 2015, 72, 177–181. [Google Scholar]
- Zoidou, E.; Andreadaki, I.; Massouras, T.; Kaminarides, S. A new whey cheese analogue made from whey protein concentrate and vegetable fat with 15% olive oil. J. Nutr. Medic. Diet Care 2016, 2, 17. [Google Scholar] [CrossRef]
- Moschopoulou, E.; Dernikos, D.; Zoidou, E. Ovine ice cream made with addition of whey protein concentrates of ovine-caprine origin. Int. Dairy J. 2021, 122, 105146. [Google Scholar] [CrossRef]
- Motamedzadegan, A.; Rahmani, S.; Reza kasaai, M.; Amiri, Z.R. Physicochemical and sensory characteristics of foam mat dried ricotta cheese as a function of raw material composition and drying temperature. J. Food Process Preserv. 2022, 46, e16510. [Google Scholar] [CrossRef]
- Marnotes, N.G.; Pires, A.F.; Díaz, O.; Cobos, A.; Pereira, C.D. Sheep’s and goat’s frozen yoghurts produced with ultrafiltrated whey concentrates. Appl. Sci. 2021, 11, 6568. [Google Scholar] [CrossRef]
- Maragkoudakis, P.; Vendramin, V.; Bovo, B.; Treu, L.; Corich, V.; Giacomini, A. Potential use of scotta, the by-product of the ricotta cheese manufacturing process, for the production of fermented drinks. J. Dairy Res. 2016, 83, 104. [Google Scholar] [CrossRef] [PubMed]
- Jinjarak, S.; Olabi, A.; Jiménez-Florez, R.; Sodini, I.; Walker, J.H. Sensory evaluation of whey and sweet cream buttermilk. J. Dairy Sci. 2006, 89, 2441–2450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadeem, M.; Mahud, A.; Imran, M.; Khalique, A. Enhancement of the oxidative stability of whey butter through almonds (Prunus dulcis) peel extract. J. Food Process. Preserv. 2015, 39, 591–598. [Google Scholar] [CrossRef]
- Costa, M.A.; Kuhn, D.; Rama, G.R.; Lehn, D.N.; Souza, C.F.V. Whey butter: A promising perspective for the dairy industry. Braz. J. Food Technol. 2022, 25, e2021088. [Google Scholar] [CrossRef]
- Martirosyan, D.M.; Singh, J. A new definition of functional food by FFC. Funct. Foods Health Dis. 2015, 5, 209–223. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [Green Version]
- Kaur, H.; Kaur, G.; Ali, S.A. Dairy-based probiotic-fermented functional foods: An update on their health-promoting properties. Fermentation 2022, 8, 425. [Google Scholar] [CrossRef]
- Khorshidian, N.; Yousefi, M.; Mortazavian, A.M. Fermented milk: The most popular probiotic food carrier. In Probiotic and Prebiotics in Foods: Challenges, Innovations and Advances; Gomes da Cruz, A., Prudencio, E.S., Esmerino, E.A., Cristina da Silva, M., Eds.; Academic Press: London, UK, 2020; Volume 94, pp. 91–114. [Google Scholar]
- Voidarou, C.; Antoniadou, M.; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T.; Lagiou, A.; Bezirtzoglou, E. Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods 2021, 10, 69. [Google Scholar] [CrossRef]
- Madureira, A.R.; Gião, M.S.; Pintado, M.E.; Gomes, A.M.P.; Freitas, A.C.; Malcata, F.X. Incorporation and survival of probiotic bacteria in whey cheese matrices. J. Food Sci. 2006, 70, M160–M165. [Google Scholar] [CrossRef]
- Madureira, A.R.; Pintado, M.E.; Gomes, A.M.P.; Malcata, F.X. Incorporation of probiotic bacteria in whey cheese: Decreasing the risk of microbial contamination. J. Food Prot. 2011, 74, 1194–1199. [Google Scholar] [CrossRef] [PubMed]
- Madureira, A.R.; Amorim, M.; Gomes, A.M.; Pintado, M.E.; Malcata, F.X. Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Res. Int. 2011, 44, 465–470. [Google Scholar] [CrossRef]
- Madureira, A.R.; Soares, J.C.; Amorim, M.; Tavares, T.; Gomes, A.M.; Pintado, M.M.; Malcata, F.X. Bioactivity of probiotic whey cheese: Characterization of the content of peptides and organic acids. J. Sci. Food Agric. 2013, 93, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ledesma, B.; Ramos, M.; Gómez-Ruiz, J.A. Bioactive components of ovine and caprine cheese whey. Small Rum. Res. 2011, 101, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Madureira, A.R.; Soares, J.C.; Pintado, M.E.; Gomes, A.M.P.; Freitas, A.C.; Xavier Malcata, F. Effect of the incorporation of salted additives on probiotic whey cheeses. Food Biosci. 2015, 10, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y.; Kanellaki, M. Novel probiotic whey cheese with immobilized lactobacilli on casein. LWT—Food Sci. Technol. 2017, 86, 627–634. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Bella, A.; Viegas, J.; Gomes, D.M.; Henriques, M.H.F.; Pereira, C.J.D. Use of ultrafiltrated cow’s whey for the production of whey cheese with Kefir or probiotics. J. Sci. Food Agric. 2021, 101, 555–563. [Google Scholar] [CrossRef]
- Carrero-Puentes, S.; Fuenmayor, C.; Jiménez-Pérez, C.; Guzmán-Rodríguez, F.; Gómez-Ruiz, L.; Rodríguez-Serrano, G.; Alatorre-Santamaría, S.; García-Garibay, M.; Cruz-Guerrero, A. Development and characterization of an exopolysaccharide-functionalized acid whey cheese (requesón) using Lactobacillus delbrueckii ssp. bulgaricus. J. Food Process Preserv. 2022, 46, e16095. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Alesi, A.; Vittori, S.; Sagratini, G.; Caprioli, G. Development of functional whey cheese enriched in vitamin D3: Nutritional composition, fortification, analysis, and stability study during cheese processing and storage. Int. J. Food Sci. Nutr. 2021, 72, 746–756. [Google Scholar] [CrossRef]
- Garcia, M.M.E.; Pereira, C.J.D.; Freitas, A.C.; Gomes, A.M.P.; Pintado, M.M.E. Development and Characterization of a Novel Sustainable Probiotic Goat Whey Cheese Containing Second Cheese Whey Powder and Stabilized with Thyme Essential Oil and Sodium Citrate. Foods 2022, 11, 2698. [Google Scholar] [CrossRef]
- Rosa, L.S.; Santos, M.L.; Abreu, J.P.; Rocha, R.S.; Esmerino, E.A.; Freitas, M.Q.; Mársico, E.T.; Campelo, P.H.; Pimentel, T.C.; Cristina Silva, M.; et al. Probiotic fermented whey-milk beverages: Effect of different probiotic strains on the physicochemical characteristics, biological activity, and bioactive peptides. Food Res. Int. 2023, 164, 112396. [Google Scholar] [CrossRef] [PubMed]
- Schlabitz, C.; Gennari, A.; De Mello Araújo, A.L.; Bald, J.A.; De Souza, C.F.V.; Hoehne, L. Shelf life of a synbiotic fermented dairy beverage using ricotta cheese whey. Am. J. Food Technol. 2015, 10, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Mileriene, J.; Serniene, L.; Kasparaviciene, B.; Lauciene, L.; Kasetiene, N.; Zakariene, G.; Kersiene, M.; Leskauskaite, D.; Viskelis, J.; Kourkoutas, Y.; et al. Exploring the potential of sustainable acid whey cheese supplemented with apple pomace and GABA-producing indigenous Lactococcus lactis strain. Microorganisms 2023, 11, 436. [Google Scholar] [CrossRef] [PubMed]
pH | Fat | Lactose | Protein | Total Solids | Reference | |
---|---|---|---|---|---|---|
Buffalo whey | na | 0.50 | 4.90 | 0.73 | 6.50 | [28] |
Cow whey | 5.7–6.3 | 0.20 | 5.00 | 0.80 | 6.60 | [29,30] |
Cow whey (from Feta-type) | 6.3 | 0.25 | 4.72 | 0.82 | 6.32 | [31] |
Cow whey (from Graviera) | 6.3 | 0.60 | 4.90 | 0.90 | 6.90 | [31] |
Cow whey (from Kefalotyri) | 6.4 | 0.40 | 4.85 | 0.80 | 6.55 | [31] |
Cow whey (from Cottage) | 4.6–4.5 | 0.04 | 4.90 | 0.75 | 5.50 | [31] |
Goat whey | na | na | 4.10 | 0.40 | 5.10 | [32,33] |
Sheep whey (from Feta) | na | 0.39 | 5.33 | 1.61 | 7.87 | [31] |
Sheep whey (from Graviera) | 6.3 | 1.26 | 5.27 | 1.52 | 8.74 | [31] |
Sheep whey (from Kefalotyri) | 6.2 | 0.70 | 4.99 | 1.41 | 7.48 | [31] |
Sheep whey | na | 1.50 | 3.70 | 1.80 | 9.50 | [32,34] |
Cheese | Country | Source of Whey | Specific Processing Conditions | pH | Fat | Protein | Salt | Moisture | Reference |
---|---|---|---|---|---|---|---|---|---|
Anari (fresh) | Cyprus | S, G | Fresh Anari has a short shelf life, that is 2–3 days once packaging is opened | na | 21.7 | 11.0 | na | 65.4 | [7] |
Anari (dry) | Cyprus | S, G | Salted fresh Anari cheese is dried until it becomes hard and easy to grate | na | 34.9 | 21.7 | na | 33.8 | [7] |
Anthotyros | Greece | S, G | Sheep or goat cream and/or milk is added | 6.4 | 16.6 | 6.9 | na | 68.4 | [31] |
Anthotyros | Greece | S, G | Sheep or goat cream and/or milk is added | 6.3–6.4 | 16.5–16.6 | 9.6–9.7 | 0.5–0.6 | 65.0–66.5 | [89] |
Arishi (from sweet whey) | Lebanon | C | Whey is coagulated by heating at 85 °C for 5–10 min | 5.8 | 4.9 | 14.4 | na | 70.2 | [90] |
Arishi (from acid whey) | Lebanon | C | Citric acid is added | 4.4 | 7.0 | 8.1 | na | 77.6 | [90] |
Bračka skuta | Croatia | S | The whey is heated until proteins are coagulated and then is further boiled at 95–97 °C | 6.5 | 27.9 | 10.9 | na | 58.7 | [91] |
Gjestost | Norway | G | Caramelized lactose in concentrated whey is combined with whey proteins and fat | na | 34 | 9.7 | na | 13.4 | [7,92,93,94,95] |
Lor | Turkey | S, G, C | The raw cheese is strained in a hemp or other straining cloth and press is applied | na | 5.3–15.3 | 9.7–13.5 | 0.9 | 64.3–72.4 | [96] |
Manouri PDO | Greece | S, G | Salt is added at 1% and milk and/or cream up to a proportion of 25% | 5.9 | 36.7 | 10.9 | 0.8 | 48.1 | [7,31] |
Mesost | Sweden | G, C | The whey is boiled to evaporate water | na | 17.0 | na | na | 20.0 | [7] |
Messmör | Sweden | G, C | The whey is boiled to evaporate water; the concentrated mass is homogenized | na | 2.0 | na | na | 30.0–35.0 | [7] |
Mysost | Norway | C, G | It is produced either as a hard or soft-spread cheese | na | 24.7 | 11.5 | na | 83.8 | [14] |
Myzithra | Greece | S, G | It is produced either from sweet or acid whey; in case of sweet whey, partial acidification is required during heating | 6.0 | 15.9 | 13.1 | 0.8 | 66.4 | [31] |
Myzithra dry | Greece | S, G | The cheese is dried in the air | 4.7 | 20.8 | 25.4 | 8.7 | 38.6 | [31] |
Myzithra Kalathaki | Greece | S, G | Similar to Myzithra | 6.8 | 15.0–20.0 | na | 1.0–1.5 | 75.0 | [97] |
Primost | Norway | G | Addition of cream | na | 35 | 10.9 | na | 13.8 | [7] |
Requeijão | Portugal | S, G | 90% S whey and 10% G milk; at 95 °C for at least 15 min under stirring; this cheese is usually eaten fresh | na | 29.5 | 8.5 | na | 59.0 | [98] |
Requesón | Mexico, Spain | C, S, G | 10% milk is added to the whey | 6.1 | 4.1–13.0 | 5.1–7.0 | na | na | [14,99] |
Ricotta | Italy | S | Sweet whey is used, mixed with 5–10% milk, salt is added at 0.1% and citric acid at 0.11 kg/L and heating is carried out up to 80–85 °C | na | 26.0 | 4.1 | na | 56.8 | [14,100] |
Ricotta | Italy | B | See above (Ricotta) | 6.6–6.9 | 22.5 | 5.63 | na | 65.5 | [101] |
Ricotta | Serbia | C | See above (Ricotta) | 5.7–5.9 | 6.4 | 16.9 | 2.2 | 69.8 | [102] |
Ricotta | US | C | Addition of 20% milk | na | 11.6 | 16.3 | na | 66.5 | [103] |
Ricotta | US | C | Addition of 5% milk | na | 3.3 | 7.0 | na | 81.6 | [104] |
Ricotta (buffalo) | Italy | B | See above (Ricotta) | na | 18.0 | 10.0 | na | 65.0 | [100] |
Ricotta (cow) | Italy | C | See above (Ricotta) | na | 10.0 | 9.0 | na | 76.0 | [100] |
Ricotta (sheep) | Italy | S | See above (Ricotta) | na | 18.0 | 8.0 | na | 70.0 | [100] |
Ricotta di Bufala Campana DOP | Italy | B | See above (Ricotta) | 6.2–6.7 | na | na | na | na | [105] |
Ricotta forte | Italy | na | Freshly produced Ricotta is put into a small tank and thoroughly mixed; then, the tank is covered and kept in a cool place for at least 6 months at room temperature; natural fermentation takes place; at the end of the ripening period, salt is added (20–40 g/kg) | 4.7 | 21.4 | 12.2 | na | 64.1 | [106] |
Ricotta Romana | Italy | S | See above (Ricotta) | na | 15.5 | 8.9 | na | 71.1 | [107,108] |
Ricotta salata (0 days) | Italy | S | See above (Ricotta) | 6.54 | 19.5 | 14.8 | 3.42 | 57.9 | [109] |
Ricotta salata (60 days) | Italy | S | See above (Ricotta) | 6.04 | 21.2 | 15.2 | 3.1 | 56.3 | [109] |
Ricotta salata (90 days) | Italy | S | See above (Ricotta) | 5.68 | 20.1 | 15.2 | 3.4 | 57.2 | [109] |
Skuta | Serbia | S, G | Milk and/or cream can be added to the whey, before or after coagulation | na | 11.7 | na | na | 30.0 | [102,110] |
Skuta Dalmatian | Croatia | na | Acidification of Skuta is achieved by the addition of sour whey in an amount up to 10%, vinegar or citric acid | na | 35.4 | na | na | 26.4 | [110] |
Urda | Serbia | C | Sweet whey is heated to 80–85 °C; citric acid is added | 5.77–5.97 | 5.63 | 10.7 | 1.9 | 79.6 | [102] |
Urda dry | Greece | S, G | Fresh Urda is ripened on wooden shelves in ventilated room at 19 °C and 70–75% RH for 25 days | 5.04–5.46 | 43.5–45.7 | 18.4–21.9 | 3.4–3.6 | 27.5–30.8 | [11] |
Urda fresh | Greece | S, G | Artisanal Urda cheese is naturally fermented by spontaneous fermentation and undergoes ripening | 6.39–6.41 | 28.8–29.7 | 12.6–14.6 | 0.5–0.6 | 54.1–57.0 | [11] |
Xynomyzithra Kritis PDO | Greece | S, G | Myzithra is first manufactured and, after draining, press is applied for 7 days; salt is added, and the cheese is ripened for 60 days at 5–10 °C | 4.8 | na | na | 1.86 | 38.6 | [111] |
Cheese | MAP Conditions Used | Best Practice/Effect | Reference |
---|---|---|---|
Anthotyros | 40% CO2/55% N2/5% O2, 60% CO2/40% N2 and 50% CO2/50% N2 | 60% CO2/40% N2 and 50% CO2/50% N2 mixtures proved to be most effective for inhibiting total mesophilic microorganisms and E. coli | [158] |
Anthotyros | 30% CO2/70% N2 and 70% CO2/30% N2 | The use of MAP conditions 70% CO2/30% N2 extended the shelf-life of fresh cheese for 20 days | [159] |
Anthotyros | 40% CO2/60% N2 and basil essential oil (0.4% v/w) | Extend the shelf life by approximately 10–12 days compared to aerobic packaging | [160] |
Lor | 40% CO2/60% N2, 60% CO2/40% N2 and 70% CO2/30% N2 | 60% and 70% CO2 were the most effective mixture for inhibition of growth of micro-organisms | [161] |
Lor | 80% CO2/20% N2 and 60% CO2/40% N2 | 80% CO2/20% N2 was the most effective for inhibiting growth of micro-organisms | [162] |
Myzithra Kalathaki | 20% CO2/80% N2, 40% CO2/60% N2 and 60% CO2/40% N2 | 40% CO2/60% N2 was the most effective treatment for the inhibition of psychrotrophs in Myzithra cheese until days 40; control samples were sensorily unacceptable after 10–12 days of storage | [97] |
Requeijao | 100% CO2, 100% N2 and 50% CO2/50% N2 | CO2 alone ensured more consistent cheese composition until 15 days of storage and provided protection against lipolysis | [163] |
Ricotta fresca | 30% CO2/70% N2 and 100% N2 | No evidence that MAP conditions used in Sardinian dairies allowed to extend the shelf life to 21 days | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bintsis, T.; Papademas, P. Sustainable Approaches in Whey Cheese Production: A Review. Dairy 2023, 4, 249-270. https://doi.org/10.3390/dairy4020018
Bintsis T, Papademas P. Sustainable Approaches in Whey Cheese Production: A Review. Dairy. 2023; 4(2):249-270. https://doi.org/10.3390/dairy4020018
Chicago/Turabian StyleBintsis, Thomas, and Photis Papademas. 2023. "Sustainable Approaches in Whey Cheese Production: A Review" Dairy 4, no. 2: 249-270. https://doi.org/10.3390/dairy4020018
APA StyleBintsis, T., & Papademas, P. (2023). Sustainable Approaches in Whey Cheese Production: A Review. Dairy, 4(2), 249-270. https://doi.org/10.3390/dairy4020018