Relationship between Milk Yield and Udder Morphology Traits in White Fulani Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Management
2.2. Udder and Teat Morphometry
2.3. Milk Yield Measurement
2.4. Experimental Design and Statistical Analysis
- = Vector of the studied dependent variable (TDMY).
- = Design matrix, which relates to .
- = Vector of fixed effects of parity ( = 2, 3, 4).
- = Design matrix, which relates to .
- = Vector of random effects of subjects (cows) with mean 0 and variance-covariance matrix G.
- = Vector of random errors with mean 0 and variance-covariance matrix R.
- = Studied dependent variables (UL, UW, UD, FTL, RTL, FTD, and RTD).
- = Population mean.
- = Effect of parity ( = 2, 3, 4).
- = Experimental error with mean 0 and variance .
- = ith observation of TDMY.
- = ith observation of the studied independent variables (UL, UW, UD, FTL, RTL, FTD, and RTD.
- = ith factor scores of the principal components.
- = regression parameters.
- = random error.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Milk and Dairy Products. Available online: http://www.fao.org/ag/againfo/themes/en/dairy/home.html (accessed on 27 December 2018).
- Fox, P.F. Milk: An Overview. In Milk Proteins: From Expression to Food; Boland, M., Singh, H., Thompson, A., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 1–54. ISBN 9780123740397. [Google Scholar]
- Rege, J.E.O. The State of African Cattle Genetic Resources I. Classification Framework and Identification of Threatened and Extinct Breeds. Anim. Genet. Resour. 1999, 25, 1–25. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture; Pilling, D., Rischkowsky, B., Eds.; FAO: Rome, Italy, 2007; ISBN 978-92-5-105763-6. [Google Scholar]
- Buvanendran, V.; Adamu, A.M.; Abubakar, B.Y. Heat Tolerance of Zebu and Friesian-Zebu Crosses in the Guinea Savanna Zone of Nigeria. Trop. Agric. 1992, 69, 394–396. [Google Scholar]
- White-Fulani|Animal Genetics Training Resources. Available online: http://agtr.ilri.cgiar.org/white-fulani (accessed on 28 June 2023).
- Alphonsus, C. Comparative Evaluation of Linear Udder and Body Conformation Traits of Bunaji and Friesian X Bunaji Cows. World J. Life Sci. Med. Res. 2012, 2, 134. [Google Scholar]
- Osman, A.; Omohei, J.; Osafo, E.; Karikari, P.K.; Yunus, A.A. Milk Yield and Composition of White Fulani Cows Reared under Extensive System of Management in the Sekyere Kumawu and Sekyere Afram Plains Districts of the Ashanti Region of Ghana. Ghana. J. Anim. Sci. 2019, 10, 141–153. [Google Scholar]
- Shitu, A.; Abubakar, M.; Sanusi, M. Milk Yield and Composition of Dairy Cattle during Dry Season in Selected Dairy Farms in Kano State, Nigeria. J. Agripreneurship Sustain. Dev. 2023, 6, 196–206. [Google Scholar] [CrossRef]
- Abbaya, H.Y.; Adedibu, I.I.; Kabir, M.; Iyiola-Tunji, A.O. Milk Yield, Composition and Their Correlated Relationships in Some Selected Indigenous Breeds of Cattle in Late Wet Season of Adamawa State, Nigeria. Niger. J. Anim. Prod. 2020, 47, 1–11. [Google Scholar] [CrossRef]
- Abubakar, M.; Kabir, M.; Nwagu, B.; Iyiola-Tunji, A.O. Breed Variation in Milk Yield and Compositions in Selected Indigenous Breeds of Cattle in Kano State. Niger. J. Genet. 2022, 36, 132–139. [Google Scholar]
- Oyenuga, V.A. Agriculture in Nigeria: An Introduction; Food and Agriculture Organization of the United Nations: Rome, Italy, 1967. [Google Scholar]
- Paradise, J.L.; Epstein, H. The Origin of the Domesticated Animals of Africa. J. Mammal. 1973, 54, 305–306. [Google Scholar] [CrossRef]
- Petit, J.P. Détermination de La Nature Des Hémoglobines Chez 982 Bovins Africains et Malgaches (Taurins et Zébus) Par Électrophorèse Sur Acétate de Cellulose. Rev. Élev. Méd. Vét. Pays Trop. 1968, 21, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Queval, R.; Petit, J.P.; Hascoet, M.C. Analyse des Hémoglobines du Zébu Arabe (Bos indicus). Rev. Élev. Méd. Vét. Pays Trop. 1971, 24, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.M.; Islam, M.R.; Ali, M.L.; Hossain, M.K.; Kadir, M.A.; Lucky, N.S.; Das, B.R. Importance of Mammary System Conformation Traits in Selecting Dairy Cows on Milk Yield in Bangladesh. J. Biol. Sci. 2004, 4, 100–102. [Google Scholar] [CrossRef] [Green Version]
- Tilki, M.; Inal, S.; Colak, M.; Garip, M. Relationships Between Milk Yield and Udder Measurements in Brown Swiss Cows. Turk. J. Vet. Anim. Sci. 2005, 29, 13. [Google Scholar]
- Byskov, K.; Buch, L.H.; Aamand, G.P. Possibilities of Implementing Measures from Automatic Milking Systems in Routine Evaluations of Udder Conformation and Milking Speed. Interbull Bull. 2012, 46, 28–31. [Google Scholar]
- Ducro, B.; Poppe, M.; Mulder, H.; de Jong, G. Genetic Analysis of Udder Conformation Traits Derived from AMS Recording in Dairy Cows. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February 2018; p. 479. [Google Scholar]
- Khan, M.; Khan, M. Genetic Parameters of Udder Traits and Their Relationship with Milk Yield in Sahiwal Cows of Pakistan. J. Anim. Plant Sci. 2016, 26, 880–886. [Google Scholar]
- Meseret, S.; Negussie, E. Genetic Parameters for Test-Day Milk Yield in Tropical Holstein Friesian Cattle Fitting a Multiple-Lactation Random Regression Animal Model. S. Afr. J. Anim. Sci. 2017, 47, 352–361. [Google Scholar] [CrossRef]
- Roman, R.M.; Wilcox, C.J.; Martin, F.G. Estimates of Repeatability and Heritability of Productive and Reproductive Traits in a Herd of Jersey Cattle. Genet. Mol. Biol. 2000, 23, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.; Hammoud, M. Estimates of Heritability, Repeatability, and Breeding Value of Some Performance Traits of Holstein Cows in Egypt Using Repeatability Animal Model. Egypt. J. Anim. Prod. 2016, 53, 147–152. [Google Scholar] [CrossRef]
- Kaiser, H.F. An Index of Factorial Simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Bartlett, M.S. A Note on the Multiplying Factors for Various χ2 Approximations. J. R. Stat. Society. Ser. B Methodol. 1954, 16, 296–298. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows; IBM Corp.: Armonk, NY, USA, 2016. [Google Scholar]
- Bala, D.; Momoh, O.; Gwaza, D. Effects of Non-Genetic Factors Affecting the Productive Performance of White Fulani and Friesian x White Fulani Genotypes in Kaduna, Nigeria. J. Appl. Life Sci. Int. 2017, 15, 1–7. [Google Scholar] [CrossRef]
- McNamara, S.; Murphy, J.J.; O’Mara, F.P.; Rath, M.; Mee, J.F. Effect of Milking Frequency in Early Lactation on Energy Metabolism, Milk Production and Reproductive Performance of Dairy Cows. Livest. Sci. 2008, 117, 70–78. [Google Scholar] [CrossRef]
- Mallam, I.; Neyu Patrick, A. Udder and Teat Shapes and Their Effect on Morphometric Traits in Bunaji Cows in Kaduna State. Kad. J. Agric. Nat. Resour. 2022, 5, 1–10. [Google Scholar]
- Patel, Y.; Trivedi, M.; Rajpura, R.; Savaliya, F.; Parmar, M. Udder and Teat Measurements and Their Relation with Milk Production in Crossbred Cows. Indian J. Anim. Prod. Manag. 2016, 5, 3048–3054. [Google Scholar]
- Mingoas, K.J.P.; Awah-Ndukum, J.; Dakyang, H.; Zoli, P.A. Effects of Body Conformation and Udder Morphology on Milk Yield of Zebu Cows in North Region of Cameroon. Vet. World 2017, 10, 901–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, M.X.; Shi, S.K. Phenotypic Factor Analysis for Linear Type Traits in Beijing Holstein Cows. Asian-Australas. J. Anim. Sci. 2002, 15, 1527–1530. [Google Scholar] [CrossRef]
- Ceyhan, A.; Cinar, M.; Serbester, U. Milk Yield, Somatic Cell Count, and Udder Measurements in Holstein Cows at Different Lactation Number and Months. Media Peternak. 2015, 38, 118–122. [Google Scholar] [CrossRef]
- Nyamushamba, G.B.; Halimani, T.E.; Imbayarwo-Chikosi, V.E.; Tavirimirwa, B. Comparative Evaluation of Non-Genetic Factors Affecting Milk Yield and Composition of Red Dane and Jersey Cattle in Zimbabwe. Springerplus 2014, 3, 88. [Google Scholar] [CrossRef] [Green Version]
- Coffie, I.; Annor, S.Y.; Kagya-Agyemang, J.K.; Bonsu, F.R.K. Effect of Breed and Non-Genetic Factors on Milk Yield of Dual-Purpose Cattle in Ashanti Region, Ghana. Livest. Res. Rural. Dev. 2015, 27, 134. [Google Scholar]
- Deng, M.; Badri, T.; Atta, M.; Hamad, M. Relationship between Udder Dimensions and Milk Yield of Kenana × Friesian Crossbred Cows. Res. Opin. Anim. Vet. Sci. 2012, 2, 49–54. [Google Scholar]
- Erdem, H.; Atasever, S.; Kul, E. Relationships of Milkability Traits to Udder Characteristics, Milk Yield and Somatic Cell Count in Jersey Cows. J. Appl. Anim. Res. 2010, 37, 43–47. [Google Scholar] [CrossRef]
- Singhai, S.K.; Ravikala, K.; Murthy, K.S.; Gajbhiye, P.U.; Vataliya, P.H.; Savsani, H.H. Udder Teat Morphology and Body Measurements and Their Relationship with Milk Yield and Milking Traits in Gir Cows. Indian J. Anim. Prod. Manag. 2013, 29, 5–11. [Google Scholar]
- Yakubu, A. Path Analysis of Conformation Traits and Milk Yield of Bunaji Cows in Smallholder’s Herds in Nigeria. Agric. Trop. Subtrop. 2011, 44, 152–157. [Google Scholar]
- Eyduran, E.; Yilmaz, I.; Kaygisiz, A.; Aktas, Z.M. An Investigation on Relationship between Lactation Milk Yield, Somatic Cell Count and Udder Traits in First Lactation Turkish Saanen Goat Using Different Statistical Techniques. J. Anim. Plant Sci. 2013, 23, 956–963. [Google Scholar]
Parity | Udder Traits | n | Min | Max | Mean ± S. E. | S. D. | C. V. (%) |
---|---|---|---|---|---|---|---|
2 | TDMY | 540 | 2.59 | 4.81 | 3.837 ± 0.016 | 0.37 | 9.54 |
UL | 18 | 31.40 | 48.20 | 40.40 ± 1.18 | 4.95 | 12.26 | |
UW | 18 | 37.30 | 59.10 | 48.97 ± 1.46 | 6.21 | 12.67 | |
UD | 18 | 17.10 | 22.30 | 19.41 ± 0.39 | 1.64 | 8.44 | |
FTL | 18 | 4.30 | 6.45 | 5.63 ± 0.17 | 0.72 | 12.74 | |
RTL | 18 | 3.70 | 5.50 | 4.64 ± 0.14 | 0.59 | 12.81 | |
FTD | 18 | 1.67 | 2.57 | 2.11 ± 0.06 | 0.24 | 11.49 | |
RTD | 18 | 1.61 | 2.40 | 2.01 ± 0.05 | 0.23 | 11.46 | |
3 | TDMY | 450 | 2.89 | 4.81 | 3.845 ± 0.018 | 0.39 | 10.10 |
UL | 15 | 32.70 | 47.40 | 41.28 ± 1.27 | 4.91 | 11.89 | |
UW | 15 | 37.60 | 58.10 | 49.57 ± 1.59 | 6.16 | 12.43 | |
UD | 15 | 17.10 | 24.00 | 20.44 ± 0.58 | 2.25 | 11.03 | |
FTL | 15 | 4.30 | 6.40 | 5.71 ± 0.19 | 0.74 | 13.04 | |
RTL | 15 | 3.65 | 5.85 | 4.82 ± 0.17 | 0.64 | 13.36 | |
FTD | 15 | 1.77 | 2.50 | 2.11 ± 0.06 | 0.22 | 10.60 | |
RTD | 15 | 1.64 | 2.29 | 1.91 ± 0.05 | 0.20 | 10.53 | |
4 | TDMY | 750 | 2.56 | 4.87 | 3.870 ± 0.014 | 0.39 | 9.96 |
UL | 25 | 33.60 | 50.40 | 41.84 ± 0.97 | 4.86 | 11.62 | |
UW | 25 | 38.40 | 61.60 | 50.76 ± 1.24 | 6.18 | 12.18 | |
UD | 25 | 16.30 | 23.20 | 20.17 ± 0.36 | 1.79 | 8.89 | |
FTL | 25 | 4.10 | 6.55 | 5.62 ± 0.13 | 0.64 | 11.30 | |
RTL | 25 | 3.35 | 5.90 | 4.80 ± 0.12 | 0.60 | 12.49 | |
FTD | 25 | 1.72 | 2.60 | 2.09 ± 0.05 | 0.25 | 11.93 | |
RTD | 25 | 1.64 | 2.42 | 1.90 ± 0.04 | 0.22 | 11.70 |
Parameters | Parity 2 | Parity 3 | Parity 4 | p Value |
---|---|---|---|---|
TDMY | 3.837 ± 0.016 | 3.845 ± 0.018 | 3.870 ± 0.014 | 0.873 ns |
UL | 40.40 ± 1.18 | 41.28 ± 1.27 | 41.84 ± 0.97 | 0.640 ns |
UW | 48.97 ± 1.46 | 49.57 ± 1.59 | 50.76 ± 1.24 | 0.629 ns |
UD | 19.41 ± 0.39 | 20.44 ± 0.58 | 20.17 ± 0.36 | 0.251 ns |
FTL | 5.63 ± 0.17 | 5.71 ± 0.19 | 5.62 ± 0.13 | 0.911 ns |
RTL | 4.64 ± 0.14 | 4.82 ± 0.17 | 4.80 ± 0.12 | 0.606 ns |
FTD | 2.11 ± 0.06 | 2.11 ± 0.06 | 2.09 ± 0.05 | 0.942 ns |
RTD | 2.01 ± 0.05 | 1.91 ± 0.05 | 41.84 ± 0.97 | 0.199 ns |
Parity | TDMY | UL | UW | UD | FTL | RTL | FTD | RTD | |
---|---|---|---|---|---|---|---|---|---|
2 | TDMY | 1 | |||||||
UL | 0.701 ** | 1 | |||||||
UW | 0.698 ** | 0.940 ** | 1 | ||||||
UD | 0.639 ** | 0.807 ** | 0.799 ** | 1 | |||||
FTL | 0.425 ns | 0.721 ** | 0.696 ** | 0.560 * | 1 | ||||
RTL | 0.437 ns | 0.722 ** | 0.665 ** | 0.564 * | 0.891 ** | 1 | |||
FTD | 0.358 ns | 0.329 ns | 0.164 ns | 0.151 ns | 0.201 ns | 0.132 ns | 1 | ||
RTD | 0.352 ns | 0.329 ns | 0.249 ns | 0.226 ns | 0.329 ns | 0.186 ns | 0.737 ** | 1 | |
3 | TDMY | 1 | |||||||
UL | 0.892 ** | 1 | |||||||
UW | 0.829 ** | 0.926 ** | 1 | ||||||
UD | 0.693 ** | 0.761 ** | 0.555 * | 1 | |||||
FTL | 0.117 ns | 0.043 ns | 0.024 ns | −0.149 ns | 1 | ||||
RTL | 0.229 ns | 0.067 ns | 0.040 ns | 0.004 ns | 0.932 ** | 1 | |||
FTD | 0.427 ns | 0.354 ns | 0.045 ns | 0.562 * | 0.233 ns | 0.294 ns | 1 | ||
RTD | 0.337 ns | 0.253 ns | −0.044 ns | 0.595 * | 0.117 ns | 0.194 ns | 0.922 ** | 1 | |
4 | TDMY | 1 | |||||||
UL | 0.773 ** | 1 | |||||||
UW | 0.695 ** | 0.890 ** | 1 | ||||||
UD | 0.659 ** | 0.607 ** | 0.431 * | 1 | |||||
FTL | 0.390 ns | 0.391 ns | 0.444 * | 0.251 ns | 1 | ||||
RTL | 0.363 ns | 0.460 * | 0.393 ns | 0.346 ns | 0.695 ** | 1 | |||
FTD | −0.206 ns | −0.111 ns | −0.110 ns | −0.303 ns | 0.047 ns | 0.349 ns | 1 | ||
RTD | −0.156 ns | −0.101 ns | −0.015 ns | −0.195 ns | 0.080 ns | 0.302 ns | 0.890 ** | 1 |
Parity | Variables | Factor Score Coefficients (Cik) | Rotated Factor Loadings (Lik) and Communalities | |||
---|---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 1 | Factor 2 | Communalities | ||
2 | UL | 0.230 | 0.029 | 0.920 | 0.236 | 0.903 |
UW | 0.247 | −0.053 | 0.921 | 0.102 | 0.858 | |
UD | 0.224 | −0.051 | 0.835 | 0.087 | 0.705 | |
FTL | 0.220 | −0.005 | 0.854 | 0.167 | 0.757 | |
RTL | 0.238 | −0.080 | 0.865 | 0.046 | 0.751 | |
FTD | −0.093 | 0.557 | 0.084 | 0.932 | 0.876 | |
RTD | −0.066 | 0.535 | 0.170 | 0.913 | 0.863 | |
Parity 2: KMO measure of sampling adequacy = 0.703 Bartlett’s test of sphericity: 0.000 ** | ||||||
Parity 3: KMO measure of sampling adequacy = 0.319 Bartlett’s test of sphericity = 0.000 ** | ||||||
Parity 4: KMO measure of sampling adequacy = 0.470 Bartlett’s test of sphericity = 0.000 ** |
Parity | Predictor | Regression Coefficients | S. E. | p Value |
---|---|---|---|---|
2 | FS1 | 0.124 | 0.038 | 0.005 ** |
FS2 | 0.061 | 0.038 | 0.129 ns | |
Intercept | 3.837 | 0.037 | 0.000 ** | |
S = 0.15561, R2 = 0.472, R2 (adj) =0.402, p value of model = 0.008 ** |
Parity | Regression Coefficients | R2 | Adjusted R2 | S | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Constant | UL | UW | UD | FTL | RTL | FTD | RTD | |||||
2 | 2.687 ** | 0.028 ** | - | - | - | - | - | - | 0.491 | 0.460 | 0.14789 | 0.001 ** |
3 | 2.212 ** | 0.040 ** | - | - | - | - | - | - | 0.796 | 0.780 | 0.10220 | 0.000 ** |
4 | 2.462 ** | 0.034 ** | - | - | - | - | - | - | 0.597 | 0.580 | 0.13722 | 0.000 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bello, O.R.; Salako, A.E.; Akinade, A.S.; Yakub, M. Relationship between Milk Yield and Udder Morphology Traits in White Fulani Cows. Dairy 2023, 4, 435-444. https://doi.org/10.3390/dairy4030029
Bello OR, Salako AE, Akinade AS, Yakub M. Relationship between Milk Yield and Udder Morphology Traits in White Fulani Cows. Dairy. 2023; 4(3):435-444. https://doi.org/10.3390/dairy4030029
Chicago/Turabian StyleBello, Oladipupo Ridwan, Adebowale Emmanuel Salako, Adebayo Samson Akinade, and Maaruf Yakub. 2023. "Relationship between Milk Yield and Udder Morphology Traits in White Fulani Cows" Dairy 4, no. 3: 435-444. https://doi.org/10.3390/dairy4030029
APA StyleBello, O. R., Salako, A. E., Akinade, A. S., & Yakub, M. (2023). Relationship between Milk Yield and Udder Morphology Traits in White Fulani Cows. Dairy, 4(3), 435-444. https://doi.org/10.3390/dairy4030029