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Abstract: This study aimed to evaluate the fatty acid (FA) profile in milk from commercial farms
with varying pasture levels in the diet during spring and fall, and to investigate the physical and
chemical properties of butter to assess the impact of FAs on technological and nutritional properties.
Milk sampling was conducted biweekly from six farms, categorized into high (HP) and low (LP)
pasture treatments based on pasture intake: >60% and <35%, respectively. Butter was made from
a pasture-based system (GRZ) and a confined system (C). No differences were observed in milk
fat percentage between HP and LP in either season. High pasture had 85–66% more conjugated
linoleic acid (CLA, p = 0.01), 74–48% more trans-vaccenic acid (TVA, p = 0.01), and 21–15% more
branched-chain FAs (BCFAs, p = 0.006) than LP in spring and fall, respectively. In fall, butter from
C had lower saturated FAs (SFAs, p = 0.005), higher unsaturated FAs (UFA, p = 0.008), and a lower
spreadability index (SI, p = 0.005) than GRZ, resulting in softer butter. In conclusion, HP in both
seasons had higher contents of FAs considered healthy for consumers compared to LP. Contrary to
expectations, in fall, C showed higher UFAs and lower SFAs in butter, leading to better technological
characteristics than GRZ.

Keywords: feeding systems; season; milk; dairy products; conjugated linoleic acid

1. Introduction

Milk and dairy products hold significant nutritional value in the human diet, supply-
ing essential energy, protein, vitamins, and minerals [1–4]. Various factors influence milk
composition, including diet, breed, parity, environmental conditions, feeding and man-
agement practices, season, and lactation state [5,6]. Among these factors, lipids constitute
the most variable fraction of milk and are highly responsive to dietary modifications in
terms of composition and concentration [1,3]. The chain length and degree of unsaturation
of fatty acids (FAs) are critical determinants of milk fat quality concerning human health.
These factors are closely linked to lipid digestion in bovine species. Lipids in the diet
undergo lipolysis and biohydrogenation processes mediated by rumen bacteria, leading
to the saturation of most consumed unsaturated FAs (UFAs). The progression of this
process is influenced by the characteristics (type and quantity) of lipids and the type of
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diet [1,4,7]. Moreover, it should be noted that some natural fatty materials, such as fat from
meat and ruminant milk, contain trans FAs, including vaccenic acid (TVA) and conjugated
linoleic acid (CLA). Conjugated linoleic acid comprises a family of positional and geometric
isomers, all of which are conjugated dienes of linoleic acid (18:2). These FAs have been
reported to offer beneficial health effects, including hypocholesterolemic, anticarcinogenic,
antiatherogenic properties, modulation of the immune response, and improvement of bone
mineralization [8–10]. It has been reported that the consumed amount of CLA needed to
produce observable health benefits ranges from 0.8 to 3.0 g/d [11]. TVA, an intermediate
in CLA formation, also possesses beneficial health properties, including the reduction of
cardiovascular disease risk and potential inhibition of tumor growth [12]. Additionally,
oleic acid and TVA found in milk have also been shown to have beneficial effects on human
health, similar to CLA. Oleic acid reduces total cholesterol and low-density lipoprotein
(LDL) [13], while TVA is desaturated to CLA in the human body at a rate of 19% [14].
Furthermore, odd- and branched-chain FAs (OBCFAs) are unique components of ruminant
fat, representing the primary contribution of BFAs to human nutrition. The quantification
of milk BFAs has garnered significant interest in recent years. Due to their origin and
the correlations observed between diet and ruminal microbial population, OBCFAs are
considered potential biological indicators of ruminal function [15]. The potential inhibitory
effects on tumor cells [16] and the reduced risk of cardiovascular disease, associated with
the consumption of these FAs further underscore their beneficial effects on human health,
including a lower risk of developing type 2 diabetes [17]. Specifically, 15:0 and 17:0 iso and
anteiso have been found to enhance the fluidity of cell membranes [18]. The concentration
and composition of milk fat can be readily modified through dietary adjustments [19].
For example, increasing the proportion of forage in the diet compared to concentrate
results in higher concentrations of OBCFAs in the milk. Similarly, a diet rich in grass
silage could elevate the total content of OBCFAs in milk. The profile of OBCFAs in cow’s
milk is primarily influenced by the FAs in the diet and FA metabolism in the rumen [20].
Therefore, understanding the origin of OBCFAs in milk and manipulating the diet of dairy
cows to produce milk enriched with odd- and branched-chain FAs can be important both
scientifically and industrially.

Prior studies have investigated milk FAs and their correlation with human health using
certain indices. The atherogenic index (AI) is indicative of the risk impact on cardiovascular
diseases. A higher AI suggests a greater risk of such diseases [21]. Additionally, the ratio
between hypocholesterolemic (18:1, 18:2, and 18:3) and hypercholesterolemic FAs (12:0;
14:0, and 16:0), denoted as H/H, is associated with AI [22]. Another index associated
with human health is the n-6/n-3 ratio [23]. Excessive levels of n-6, commonly found in
Western diets, can hinder human enzymatic systems, contributing to the development
of certain diseases. Conversely, higher levels of n-3 can have the opposite effects [23,24].
Furthermore, the technological potential of milk for butter production was assessed using
the spreadability index (SI) [25].

Moreover, pasture-based systems are regarded as more environmentally friendly,
animal welfare-conscious, and sustainable, compared to confinement systems [26]. Addi-
tionally, milk and dairy products from these systems offer potential nutritional benefits
and market opportunities due to their improved composition, compared to those derived
from total mixed ration (TMR) systems [27,28]. Pasture-based systems are commonly
employed in regions with mild climates like South America and Oceania, owing to their
low production costs, which are favored by climate conditions and forage accessibility [29].
However, even in these systems, the use of reserves and concentrates is necessary to ensure
the fulfillment of energy requirements and nutrient quality [29,30]. In Uruguay, pasture
utilization is crucial for reducing production costs and maintaining satisfactory production
levels [29]. Furthermore, it has been widely reported that including pasture improves the
FA profile (FAP) in milk and dairy products [31,32]. For instance, milk and dairy products
from systems with a high proportion of pasture exhibit higher levels of UFAs and CLA,
and lower proportions of saturated fatty acids (SFAs), compared to systems with low levels
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or no access to pasture [25,33–38]. Therefore, the ability to modify the composition of
milk fat through pasture utilization and strategic supplementation can serve as a tool to
differentiate dairy products, resulting in milk and dairy products with a healthier FAP for
human consumption. It is important to consider that this management approach has its
limitations. For instance, the addition of UFAs to the diet increases CLA production, but
excessive amounts can result in a lower percentage of milk fat by reducing the production of
new FAs in the udder [7,39]. Moreover, seasonality, particularly in pasture-based systems,
affects the FAP in milk and dairy products. Climate factors influencing the thermal comfort
of cows, primarily heat stress in summer, impact the lipid catabolism of the animals [40].
Additionally, seasonality impacts the quality of pastures [41], thus significantly influencing
the quality of milk fat. In this regard, higher levels of monounsaturated FAs (MUFAs),
polyunsaturated FAs (PUFAs), and CLA, along with a lower n-6/n-3 ratio and palmitic acid
content, have been reported in milk and cheeses in spring compared to fall [42–44]. This
may result from lower pasture availability and increased utilization of preserved forages in
temperate countries during fall, leading to decreased FA quality in the cows’ diet [29,43].

In the past, the consumption of dairy fat (such as milk cream, butter, or cheese) raised
concerns among consumers due to its high levels of SFAs, which had been linked to elevated
cholesterol levels, arteriosclerosis, and cardiovascular diseases [21,45]. However, recent
reviews and meta-analyses have concluded that milk consumption has at least a neutral
effect on various health outcomes, and cow’s milk consumption may even be beneficial for
osteoporosis, cardiovascular disease, stroke, type II diabetes, and certain cancers [46–48].
Regarding organoleptic characteristics, it has been reported that modifications in the FAP
result in changes in the texture, sensory, and nutritional quality of butter [49]. In this regard,
butter from pasture-based systems has shown better nutritional and rheological quality,
compared to butter from confinement systems using TMR [50]. Additionally, higher levels
of PUFAs, including CLA, and a higher yellow index have been reported in milk from
pasture-based systems compared to TMR systems [51].

This study aimed to evaluate the FAP (mainly OBCFAs) in milk obtained from farms
located in the northwest region of Uruguay, using feeding strategies with varying pas-
ture content (classified as high and low pasture in the diet) during two seasons (spring
and fall). The physical and chemical properties of butter were investigated to assess the
impact of varying FAs profiles on the technological and nutritional properties of high-fat
dairy products.

2. Materials and Methods
2.1. Experimental Design, Localization, and Sample Analysis

Six dairy farms located in the northwest region of Uruguay (Salto, Paysandú and
Río Negro provinces) were selected according to the pasture intake, milk production, and
somatic cell count from the previous year. Two treatments were created according to
pasture intake: High Pasture (HP) (>65% pasture of total dry matter intake: DMI) and Low
Pasture (LP) (<35% pasture of total DMI).

The study was conducted during two seasons: spring 2021 and fall 2022. Milk samples
were collected from bulk tanks (if there were multiple tanks, a proportional mixture
was prepared based on the volumes of each tank), considering that the milk originated
from two or four milkings. Sampling was conducted fortnightly, completing a total of
five periods for each season. The samples were extracted in 15 mL Falcon tubes, frozen for
transfer, and subsequently analyzed in the laboratory of Food Technology at the School of
Chemistry, Universidad de la República. Concurrently, feed samples (provided to dairy
cows), including pasture and supplements (concentrate and reserves), were collected. In
each dairy farm, the following records were kept: herd management, milk production,
feeding routine (type of supplement, quantity, and composition), type of pasture (allocation,
availability, and species), milk production, and number of milking cows.

During the spring, the HP treatment had an average of 74% pasture and 26% supple-
ment, with a forage/concentrate ratio of 79:21, while the LP treatment had 10% pasture
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and 90% supplement, with a forage/concentrate ratio of 68:32. In the fall, the HP had an
average of 45% pasture and 55% supplement, with a forage/concentrate ratio of 76:24,
while the LP had 3% pasture and 97% supplement, with a forage/concentrate ratio of 61:39.

Pastures consisted of a variety of grass species (Festuca arundinacea, Avena sativa) and
legumes (Medicago sativa, Lotus corniculatus, Trifolium pretense, Trifolium repens), as well as
natural grassland. The ingredients used in commercial dairies varied over time, depending
on available conserved forage and the market availability of grains and by-products for
concentrate. The most commonly used conserved forages were whole-plant maize or
sorghum silage, as well as grass hay, silage, or haylage (such as oat, lucerne, and moha).
Concentrate mixes could include ground corn grain, rice bran, soybean expeller, soybean
meal, barley rootlets, urea, yeast, and minerals.

Daily pasture DMI (kg DM/cow) was estimated using the energy balance method
according to National Research Council (NRC) [52] guidelines, as the amount of pasture
required to provide the remaining energy needed to meet the cow’s net energy (NE) require-
ment, not supplied by supplements (reserves and concentrates). Cow NE requirements
were estimated as the sum of maintenance and milk production requirements [53]. The
average data for neutral detergent fiber (NDF), acid detergent fiber (ADF), and ether extract
(EE) of each group (pasture and supplement) are presented in Table 1.

Table 1. Average values of neutral detergent fiber (NDF), acid detergent fiber (ADF), and ether extract
(EE) for each group (pasture and supplement) in Spring and Fall.

Spring Fall

HP LP HP LP

Past Suppl Total Diet ** Past * Suppl Total Diet ** Past Suppl Total Diet ** Past * Suppl Total Diet **

1 NDF 47.3 ± 4.8 30.3 ± 7.3 43.1 ± 3.5 46.3 ± 1.7 36.2 ± 1.8 37.2 ± 2.6 36.7 ± 6.9 43.9 ± 7.6 40.1 ± 5.7 36.9 ± 2.4 44.7 ± 5.8 44.5 ± 5.9
1 ADF 26.2 ± 2.3 14.3 ± 6.1 23.4 ± 1.5 26.3 ± 1.5 19.8 ± 2.5 20.6 ± 2.2 20.1 ± 5.0 24.1 ± 6.5 22.0 ± 3.6 20.9 ± 1.7 26.5 ± 7.2 26.5 ± 7.2

2 Lipids 3.7 ± 0.9 4.8 ± 1.6 4.1 ± 1.1 2.6 ± 0.06 3.9 ± 0.3 4.2 ± 0.5 6.6 ± 4.1 3.9 ± 1.2 5.4 ± 2.5 6.9 ± 0.1 5.8 ± 1.5 5.8 ± 1.5

Past: Pasture; Suppl: Supplement. HP: High Pasture; LP: Low Pasture. NDF: Neutral Detergent Fiber. ADF: Acid
Detergent Fiber. * The “LP pasture” data in both seasons corresponds to the only producer of that treatment
offering fresh pasture in the diet. ** The total diet chemical composition value was calculated by weighting the
inclusion level of pasture and supplement. 1 Expressed as % of dry matter (DM); 2 expressed as g/100 g of pasture
and supplement.

Table 2 shows the FAP of pasture and supplement in each treatment (HP and LP)
(averaged over the experimental period).

Table 2. Fatty acid profiles of pasture and supplement in both treatments: HP and LP in Spring
and Fall.

Spring Fall

Fatty Acids
(g/100 g Fat)

HP LP HP LP

Past Suppl Past Suppl Past Suppl Past Suppl

10:0 0.36 ± 0.20 0.11 ± 0.03 0.82 ± 0.44 0.41 ± 0.22 0.06 ± 0.05 0.03 ± 0.05 0.20 ± 0 0.29 ± 0.18
12:0 0.74 ± 0.21 0.14 ± 0.05 1.3 ± 0.55 0.61 ± 0.27 0.36 ± 0.08 0.34 ± 0.27 0.30 ± 0 0.45 ± 0.42
14:0 2.09 ± 0.79 0.50 ± 0.15 4.62 ± 1.53 1.69 ± 0.70 0.95 ± 0.31 0.56 ± 0.23 0.63 ± 0.05 1.29 ± 1.08
16:0 18.25 ± 2.91 15.23 ± 2.19 24.82 ± 2.36 16.49 ± 1.73 12.6 ± 1.5 15.3 ± 1.4 12.4 ± 0.1 14 ± 3.1

16:1 n7 cis 0.37 ± 0.19 0.17 ± 0.06 0.60 ± 0.27 0.33 ± 0.08 0.03 ± 0.08 0.29 ± 0.21 0.18 ± 0.05 0.29 ± 0.37
17:0 0.36 ± 0.27 0.11 ± 0.03 0.44 ± 0.05 0.13 ± 0.12 0 ± 0 0 ± 0 0.05 ± 0.10 0.03 ± 0.05
18:0 3.1 ± 0.97 2.06 ± 0.46 5.24 ± 0.33 3.49 ± 0.42 2.21 ± 0.32 2.49 ± 0.48 2.08 ± 0.05 4.35 ± 1.60

18:1 n9 cis 7.21 ± 4.19 28.81 ± 6.01 11.44 ± 1.15 22.8 ± 2.76 5.00 ± 1.57 27.68 ± 5.71 3.90 ± 0.60 22.66 ± 2.50
18:2 n6 cis 13.41 ± 5.05 46.43 ± 4.86 10.18 ± 0.38 41.37 ± 4.35 13.77 ±3.04 41.81 ± 5.82 14.18 ± 1.35 37.90 ± 10.02

20:0 0.79 ± 0.39 0.43 ± 0.05 0.58 ± 0.11 0.49 ± 0.14 0.38 ± 0.08 0.62 ± 0.14 0.40 ± 0 0.53 ± 0.21
20:1 0.04 ± 0.08 0.39 ± 0.14 0 ± 0 0.11 ± 0.09 0.10 ± 0.10 0.49 ± 0.09 0 ± 0 0.19 ± 0.18

18:3 n3 cis 42.42 ± 12.93 3.41 ± 1.66 31.72 ± 11.61 8.36 ± 4.11 58.66 ± 7.61 6.84 ± 5.47 57.60 ± 2.40 13.36 ± 9.32
22:0 0.51 ± 0.12 0.24 ± 0.06 0.54 ± 0.05 0.33 ± 0.14 0.66 ± 0.24 0.53 ± 0.13 0.55 ± 0.10 0.48 ± 0.16
24:0 0.47 ± 0.12 0.3 ± 0.08 0.32 ± 0.16 0.27 ± 0.12 0.40 ± 0.07 0.55 ± 0.25 0.53 ± 0.05 0.38 ± 0.11
SFA 27.21 ± 5.52 19.17 ± 2.64 40.22 ± 7.28 24.73 ± 3.65 18.77 ± 3.60 18.36 ± 1.57 19.25 ± 2.10 18.76 ± 2.01

MUFAs cis 7.63 ± 4.31 29.37 ± 5.89 12.4 ± 1.37 23.25 ± 2.76 19.56 ± 8.65 22.14 ± 15.97 6.68 ± 7.15 8.47 ± 6.18
PUFAs cis 55.83 ± 9.16 49.84 ± 5.56 41.9 ± 11.23 49.73 ± 3.95 56.80 ± 8.91 56.47 ± 16.42 66.80 ± 6.80 67.38 ± 6.93
Total fat

(g/100 g DM) 3.73 ± 1.00 4.86 ± 1.63 2.62 ± 0.06 3.95 ± 0.30 5.96 ± 1.17 9.03 ± 5.52 5.78 ± 2.00 4.41 ± 0.68

Past: Pasture; Suppl: Supplement. HP: High Pasture; LP: Low Pasture. SFA: Saturated Fatty Acids; MUFAs:
Monounsaturated Fatty Acids; PUFAs: Polyunsaturated Fatty Acids. DM: dry matter.
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Butter Production

Butter was produced from two contrasting dairy farms based on diet and management:
grazing + supplement (GRZ) and confinement cows with total mixed ration (TMR) (C:
confined). At the time of milk extraction for butter production, a sample of feed (pasture
and supplement) was obtained from each producer in each season. For the C dairy farm in
spring and fall, the total mixed ration consisted of ground corn grain and soybean expeller
for concentrate, haylage (Medicago sativa) as conserved forage, urea, and minerals. For the
GRZ dairy farm in spring and fall, the supplement comprised corn grain and barley rootlet.
Pastures consisted of Avena sativa and Medicago sativa in the fall, and Trifolium pretense and
Lolium multiflorum. The FAP in the diet of cows from each farm (GRZ and C) is shown in
Table 3.

Table 3. Fatty acid profiles of the total diet (pasture and supplement) from two selected dairy farms
for butter production (C and GRZ).

Fatty Acids
(g/100 g Fat)

Spring Fall

GRZ C GRZ C

16:0 18.5 ± 2.5 17.0 ± 2.1 15.4 ± 1.4 12.6 ± 1.6
18:0 3.7 ± 0.7 3.5 ± 0.3 2.6 ± 0.4 4.0 ± 0.6

18:1 n9 cis 11.3 ± 5.1 18.2 ± 1.9 14.0 ± 3.3 26.2 ± 1.5
18:2 n6 cis 21.7 ± 4.9 34.6 ± 2.3 25.5 ± 4.4 47 ± 5.2
18:3 n3 cis 29.2 ± 7.2 15.1 ± 2.8 32.2 ± 6.5 4.2 ± 5.8

GRZ: pasture-based system (grazing + supplement); C: confined (total mixed ration, TMR).

For both producers (contrasting conditions: GRZ and C), in each season (spring and
fall), two butter productions were carried out on consecutive days in triplicate. For each
butter production, 60 L of bulk milk (MilkB) was obtained and immediately transported
under refrigerated conditions (4 ◦C) to the dairy pilot plant of the Universidad Tecnológica
del Uruguay (UTEC) (La Paz, Colonia, Uruguay) for processing. Two batches of fresh
cream (5 L each; 40–42% fat) were separated at 45 ◦C from pre-pasteurized milk. The cream
was then stored overnight at 10 ◦C for maturation. Subsequently, both cream samples were
churned in a rotary churn (Edibon España) at 26 rpm and 13 ◦C. After grain formation, the
butter was washed with 1.7 L of water at 4 ◦C, and finally, it was kneaded until it formed
into butter. Portions of butter were clarified for further analysis using the British Standards
Method 769 (BSI 1961 54) [54].

2.2. Sample Analysis
2.2.1. Fatty Acid Profile in Milk and Butter

Milk and butter samples (3 g each) were extracted using the Rose-Gottlieb tech-
nique [55]. Analyses were conducted in triplicate, and FAs methyl esters were pre-
pared following the IUPAC 2.301 protocol, [56] and analyzed by gas chromatography,
according to the AOCS Ce 1c-89 and AOCS Ce 1f-96 protocols [57]. The gas chromato-
graph was a Shimadzu (Kyoto, Japan) model 2014 equipped with a Supelco (Bellefonte,
PA, USA) SP 2560 (100 m × 0.25 mm × 0.2 mm) capillary column and a flame ioniza-
tion detector (FID). The injection volume of the samples was 1 µL. The temperature
program used was as follows: an initial temperature of 90 ◦C for 2 min, then an in-
crease to 175 ◦C at a rate of 20 ◦C/min, maintained for 35 min, followed by an in-
crease to 240 ◦C at a rate of 15 ◦C/min, maintained for 25 min. Peak identification
was achieved through the analysis of authentic standards. Standards and reagents used
for the analysis were supplied by Sigma-Aldrich (Burlington, MA, USA). The milk fat
compositions were expressed in grams of each individual FA per 100 g of total fat. The
atherogenicity index (AI) was calculated as (12:0 + 4 × 14:0 + 16:0)/(MUFAs + PUFAs) [21],
and the hypocholesterolemic/hypercholesterolemic FA (H/H) ratio was calculated as
(18:1 cis + 18:2 cis + 18:3 cis)/(12:0 + 14:0 + 16:0) [22]. The spreadability index (SI) was
calculated as the ratio of 16:0 to 18:1, as proposed by O’Callaghan et al. [25].
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2.2.2. Fatty Acid Profile in Pasture and Supplement

Fat was extracted from the different samples (1 g each) using the Hara and Radin [58]
technique, with a mixture of hexane and isopropanol (3:2). Initially, approximately 1 g of
milled samples was weighed into a tube, and 20 mL of the solvent mixture was added.
Extraction was conducted at room temperature (20 ◦C) with magnetic stirring for 90 min.
Subsequently, centrifugation was performed (Hermle, model Z 200 A, Gosheim, Germany)
at 3000 rpm for 15 min. Following centrifugation, 5 mL of the solvent mixture was added for
complete lipid extraction. Finally, the total solvent mixture was removed using a nitrogen
flow at 40 ◦C until the weight of the lipids remained constant. Analyses were conducted in
triplicate, and the FAP was determined as previously described for milk and butter.

2.2.3. Butter Firmness

The firmness of butter was measured at 10 ◦C using a Texture Analyzer (Brookfield
CT3 50k, MA, USA) following the procedure previously described [59], with modifications.
The procedure consisted of testing the cutting force at a depth of 16 mm applied to a given
sample, which was stored at 10 ◦C for 12 h, at a speed of 2 mm/s using a TA53 cutting
wire probe. The force of cutting between 8 and 16 mm was reported as the firmness of the
sample. Each sample was measured six times.

2.2.4. Differential Scanning Calorimeter (DSC)

A Shimadzu differential scanning calorimeter (DSC-60A plus, Shimadzu Co., Kyoto,
Japan) was used to examine the melting and crystallization properties of milk fat from
butter. Oxygen (99.999% purity) was used as the purge gas. The DSC was calibrated
using high-purity indium (m.p. 156.6 ◦C, ∆Hf = 28.45 J g−1), according to standard DSC
procedures. Clarified butter samples of about 10 mg were placed in open aluminum pans
and inserted into the heating chamber of the DSC cell, with an empty aluminum pan as the
reference. Prior to analysis, the samples were heated at 50 ◦C for 5 min to melt all crystals
and nuclei. Subsequently, they were tempered in a freezer at −20 ◦C for 48 h. The final
crystallization was carried out in the DSC by cooling from 2 ◦C to −50 ◦C and left at −50 ◦C
for 30 min. After that time, the melting was studied by heating the sample at 5 ◦C/min
from −50 ◦C to 60 ◦C. At least duplicate determinations were carried out. Characteristic
data were obtained using the Shimadzu DSC-TA 60A plus Version 2.21 software. The
thermograms were integrated using the TA60 Version 2.21 software. From this integration,
the fraction of liquid formed for each temperature was determined, and the curve of solids
percentage vs. temperature was constructed.

2.2.5. Color

Clarified butter was measured at 50 ◦C using a Minolta Chroma-Meter CR-400 colorime-
ter. The parameters L*, a*, and b* were recorded in triplicate (Chiyodaku, Tokyo, Japan).

2.3. Statistical Analysis

For each season, data on fat content, FAP, and nutritional quality indices (AI, H/H,
n-6/n-3) in milk were analyzed using repeated measures ANOVA with PROC GLIMMIX of
SAS 9.04 (SAS Institute Inc., Cary, NC, USA). The statistical models included treatment (HP
and LP), period (1 to 5), and the interaction between treatment and period. Farms within
each treatment were considered as random effects. The Kenward–Roger approximation
was utilized to calculate the denominator degrees of freedom for the fixed-effects tests of
the model. Least squares (LS) means were generated using the LSMEANS/DIFF option,
and post hoc comparisons were conducted with the Tukey test.
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For butter variables (FAP, SI, firmness, and color), analyses were performed using
one-way ANOVA, followed by post hoc Tukey tests, to compare the two contrasting farms
(GRZ and C) in each season. Results were considered significant at p ≤ 0.05. Data are
presented as mean ± SEM (standard error of the mean). The temperature and fusion
enthalpy variables obtained from the DSC were analyzed using descriptive statistics. The
mean ± SD data for both variables are shown. All variables were performed using SAS
software 9.04. (SAS Institute Inc., Cary, NC, USA).

3. Results
3.1. Milk Fat and Fatty Acid Profile in Commercial Dairy Farms

In spring, the HP treatment had a milk fat content of 3.71 ± 0.06%, and the LP had
3.78 ± 0.06%. In fall, the HP had fat values of 3.84 ± 0.08%, and LP had fat values of
3.89 ± 0.08%. In spring, there were no treatment or period effects, and no interaction
between the treatments and period was observed. In fall, there was no treatment effect and
no interaction between treatments and period, but there was a period effect. In period 1,
the milk fat content was 4.08 ± 0.10%, whereas in period 2, it was 3.65 ± 0.10% (p = 0.037).

There were no differences between treatments (HP and LP) in total SFAs or the total
sum (Table 4) in both seasons. Additionally, the presence of branched-chain FAs (BCFAs)
was noted, with the most prevalent being the 15:0 anteiso and 17:0 anteiso (odd-chain
FAs; Table 5). On the other hand, SFAs had the highest percentage (Table 4) compared to
MUFAs and PUFAs (Tables 6 and 7). Regarding SFAs, it was observed that about 10% were
short-chain (especially butyric acid 4:0 and caproic acid 6:0), and the three most abundant
FAs in this lipid fraction of milk were palmitic acid 16:0, myristic acid 14:0, and stearic
acid 18:0.

There was a treatment effect on most of the iso and anteiso BCFAs (p < 0.05; Table 5)
in both seasons (spring and fall). In fall, the BCFAs were higher in HP compared to LP
(p = 0.007). Among the BCFAs, the OBCFAs 15:0 anteiso, 17:0 iso, and 17:0 anteiso were
in higher proportions (Table 5). The HP treatment showed a higher proportion of iso FAs
compared to the LP (p < 0.05), particularly in spring, while in fall this was observed only
for 15:0 iso (p = 0.003; Table 5).

There were no significant differences in MUFA content between treatments in either
season (Table 6). Oleic acid (18:1 cis) was the most abundant of the MUFAs, with a content
ranging from 19.68% to 21.74% in both HP and LP, across both seasons. For TVA, there
was a difference between treatments in spring (p = 0.012). The HP treatment had a higher
proportion of TVA (4.11% vs. 2.36%) compared to LP (Table 6). Regarding total PUFAs, in
spring, there were no differences in linoleic acid (18:2 cis) content between treatments (HP
and LP); however, in fall, LP had higher total PUFAs than HP and 18:2 cis tended to be
higher than HP (Table 7). The content of α-linolenic acid (18:3 n-3 cis) was higher in HP
compared to LP in spring (p = 0.01). Regarding CLA content, milk from HP was higher
than LP in both spring (p = 0.014) and fall (p = 0.033, Table 7).

Regarding the indicators of nutritional quality, the atherogenic index (AI) showed no
significant differences between the different treatments (HP vs. LP) in either spring or fall.
The values obtained for HP were 3.1 ± 0.2 and 3.3 ± 0.3 in spring and fall, respectively,
while LP presented values of 2.9 ± 0.2 and 2.7 ± 0.3 in spring and fall, respectively. For
the H/H index, we also found no differences between treatments in either season. The
values obtained for HP were 0.5 ± 0.03 in both spring and fall, while LP presented values
of 0.5 ± 0.03 and 0.6 ± 0.07 in spring and fall, respectively. Regarding the n-6/n-3 ratio,
in fall, the HP was lower than the LP treatment (2.8 ± 0.4 vs. 5.8 ± 0.4; p = 0.05), while in
spring, there were no differences between treatments.
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Table 4. Saturated Fatty Acid Profile of Milk in Spring and Fall.

Fatty Acid
(g/100 g Fat)

Spring Fall

T P SEM p-Value T P SEM p-Value

1 2 3 4 5 T P T×P 1 2 3 4 5 T P T×P

4:0
HP 3.03 2.92 3.54 3.43 2.51 2.76

0.09 ns 0.022 ns HP 3.16 3.20 3.31 2.94 3.49 2.87
0.13 ns ns nsLP 2.86 2.58 3.18 2.61 2.55 3.37 LP 3.30 3.81 3.13 3.26 3.28 3.04

6:0
HP 1.82 1.93 a 2.12 a 1.91 a 1.49 a 1.63 b

0.05 ns 0.050 0.045
HP 2.00 1.86 2.15 1.92 2.25 1.82

0.10 ns ns ns
LP 1.86 1.73 a 2.04 a 1.64 a 1.70 a 2.21 a LP 2.13 2.48 2.04 2.13 2.09 1.90

8:0
HP 1.06 1.18 1.23 1.01 0.87 1.00

0.05 ns ns ns HP 1.23 1.07 1.35 1.24 1.40 1.09
0.08 ns ns nsLP 1.13 1.10 1.19 1.00 1.04 1.34 LP 1.30 1.47 1.30 1.28 1.31 1.12

10:0
HP 2.37 2.77 2.78 2.15 2.04 2.12

0.16 ns ns ns HP 2.78 2.75 2.93 2.73 3.10 2.39
0.29 ns 0.015 nsLP 2.64 2.64 2.71 2.41 2.52 2.89 LP 2.62 2.65 2.54 2.69 2.83 2.39

11:0
HP 0.30 0.35 0.34 0.26 0.26 0.28

0.02 ns ns ns HP 0.36 0.31 0.42 0.36 0.41 0.29
0.03 ns ns nsLP 0.32 0.30 0.33 0.29 0.32 0.39 LP 0.31 0.27 0.35 0.33 0.32 0.27

12:0
HP 2.78 3.26 3.20 2.47 2.50 2.49

0.10 ns ns ns HP 3.22 2.93 3.49 3.23 3.63 2.81
0.42 ns ns nsLP 3.08 3.07 3.19 2.91 2.89 3.32 LP 2.95 2.91 2.82 3.03 3.23 2.75

14:0
HP 10.61 11.56 11.50 10.08 10.20 9.72

0.42 ns ns ns HP 10.98 11.01 11.16 11.03 11.50 10.21
0.85 ns ns nsLP 10.86 10.84 10.88 10.75 10.66 11.17 LP 10.15 10.61 9.89 10.21 10.54 9.51

15:0
HP 1.37 1.42 1.36 1.35 1.34 1.38

0.14 ns ns ns HP 1.20 1.17 1.26 1.21 1.23 1.11
0.06 ns ns nsLP 1.21 1.23 1.19 1.19 1.13 1.29 LP 1.04 1.03 1.04 1.08 1.01 1.02

16:0
HP 29.46 29.75 29.69 29.14 30.00 28.71

1.00 ns ns ns HP 30.75 31.40 30.59 30.43 31.07 30.26
1.16 ns ns nsLP 29.94 29.30 29.65 30.29 29.73 30.71 LP 28.79 30.00 28.41 28.06 29.19 28.28

17:0
HP 0.82 0.79 0.81 0.82 0.83 0.87

0.06 ns ns ns HP 0.71 0.64 0.68 0.76 0.73 0.76
0.04 ns ns nsLP 0.69 0.71 0.69 0.69 0.65 0.71 LP 0.67 0.62 0.70 0.68 0.64 0.72

18:0
HP 10.08 9.27 9.73 10.72 10.24 10.42

0.45 ns ns ns HP 9.15 9.12 8.52 9.59 8.56 9.95
0.85 ns ns nsLP 10.10 11.03 10.49 9.92 10.12 8.92 LP 10.93 11.19 11.44 10.57 10.37 11.09

Total SFA
HP 63.88 65.36 66.46 63.55 62.45 61.59

1.08 ns ns ns HP 65.55 64.94 66.02 65.59 67.51 63.71
2.13 ns ns nsLP 64.91 64.71 66.01 63.87 63.49 66.46 LP 64.34 67.19 63.84 63.46 64.95 62.24

HP = High pasture; LP = Low pasture. T: treatments; P: periods, T×P: interaction between treatments and periods. SFA: saturated fatty acid. SEM: standard error of the mean. Different
letters indicate significant difference (p < 0.05). ns: no significance.
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Table 5. Branched-chain Fatty Acid Profile of Milk in Spring and Fall.

Fatty Acid
(g/100 g Fat)

Spring Fall

T P SEM p-Value T P SEM p-Value

1 2 3 4 5 T P T×P 1 2 3 4 5 T P T×P

14:0 iso
HP 0.17 0.16 0.15 0.18 0.17 0.19

0.01 ns ns ns HP 0.13 0.13 0.12 0.14 0.12 0.12
0.01 ns ns nsLP 0.13 0.14 0.12 0.13 0.11 0.13 LP 0.11 0.10 0.12 0.11 0.11 0.10

15:0 iso
HP 0.36 a 0.36 0.35 0.36 0.33 0.37

0.02 0.029 ns ns HP 0.30 a 0.27 0.31 0.32 0.29 0.30
0.01 0.003 ns ns

LP 0.28 b 0.30 0.32 0.25 0.24 0.27 LP 0.24 b 0.25 0.24 0.23 0.22 0.24

15:0 anteiso
HP 0.69 a 0.74 0.71 0.70 0.64 0.68

0.03 0.008 ns ns HP 0.56 a 0.52 0.57 0.58 0.56 0.56
0.01 0.0004 ns ns

LP 0.48 b 0.49 0.48 0.48 0.46 0.51 LP 0.43 b 0.45 0.43 0.44 0.43 0.42

16:0 iso
HP 0.34 a 0.35 0.34 0.34 0.33 0.35

0.01 0.003 ns ns HP 0.29 0.26 0.27 0.31 0.30 0.30
0.02 ns ns ns

LP 0.30 b 0.33 0.29 0.30 0.29 0.31 LP 0.28 0.25 0.30 0.30 0.28 0.28

17:0 iso
HP 0.43 a 0.37 0.46 0.45 0.44 0.44

0.02 0.005 ns ns HP 0.38 0.34 0.38 0.40 0.37 0.44
0.02 ns 0.003 ns

LP 0.34 b 0.36 0.35 0.34 0.33 0.33 LP 0.33 0.29 0.35 0.34 0.30 0.37

17:0 anteiso
HP 0.53 0.55 0.53 0.52 0.50 0.55

0.03 ns ns ns HP 0.48 0.43 0.48 0.50 0.50 0.48
0.02 ns ns nsLP 0.44 0.46 0.43 0.44 0.43 0.47 LP 0.43 0.38 0.46 0.45 0.41 0.46

18:0 iso
HP 0.054 a 0.057 0.053 0.052 0.052 0.057

0.001 0.025 0.040 ns HP 0.063 0.059 0.053 0.060 0.067 0.077
0.01 ns ns ns

LP 0.048 b 0.051 0.048 0.046 0.046 0.050 LP 0.045 0.045 0.048 0.043 0.039 0.050

Total BCFAs
HP 2.57 a 2.58 2.59 2.59 2.46 2.64

0.09 0.006 ns ns HP 2.19 a 2.01 2.18 2.30 2.21 2.27
0.06 0.007 0.030 ns

LP 2.02 b 2.13 2.03 1.98 1.91 2.06 LP 1.86 b 1.77 1.95 1.92 1.78 1.91

HP = High pasture; LP = Low pasture. T: treatments; P: periods, T×P: interaction between treatments and periods. BCFA: branched-chain fatty acid. SEM: standard error of the mean.
Different letters indicate significant difference (p < 0.05). ns: no significance.

Table 6. Monounsaturated Fatty Acid Profile of Milk in Spring and Fall.

Fatty Acid
(g/100 g Fat)

Spring Fall

T P SEM p-Value T P SEM p-Value

1 2 3 4 5 T P T×P 1 2 3 4 5 T P T×P

14:1 cis
HP 0.85 0.99 0.92 0.79 0.81 0.76

0.05 ns ns ns HP 1.01 1.00 1.17 0.99 1.04 0.88
0.11 ns ns nsLP 0.92 0.89 0.88 0.92 0.84 1.05 LP 0.84 0.76 0.91 0.86 0.87 0.79

16:1 cis
HP 1.29 1.34 1.27 1.28 1.35 1.23

0.12 ns ns ns HP 1.59 a 1.58 1.71 1.53 1.59 1.54
0.05 0.022 ns ns

LP 1.36 1.39 1.31 1.41 1.23 1.44 LP 1.31 b 1.17 1.42 1.33 1.26 1.39

18:1 elaidic
HP 0.23 0.26 0.17 0.22 0.26 0.26

0.04 ns ns ns HP 0.22 b 0.31 0.22 0.24 0.20 0.11
0.04 0.015 ns ns

LP 0.34 0.32 0.34 0.39 0.41 0.25 LP 0.38 a 0.33 0.34 0.41 0.36 0.46
18:1

trans-vaccenic
HP 4.11 a 4.14 3.84 4.22 4.24 4.10

0.28 0.012 ns ns HP 3.55 3.80 3.45 3.44 3.39 3.70
0.41 ns ns ns

LP 2.36 b 2.28 2.35 2.58 2.38 2.20 LP 2.40 1.91 2.41 2.58 2.34 2.73

18:1 cis
HP 19.68 18.00 18.04 19.97 21.69 20.68

0.73 ns ns ns HP 19.68 20.68 18.65 19.43 18.01 21.62
1.83 ns ns nsLP 21.04 21.32 20.54 21.81 22.23 19.29 LP 21.75 20.77 22.78 21.27 21.01 22.94

Total MUFAs cis
HP 21.82 20.34 20.23 22.04 23.84 22.67

0.68 ns ns ns HP 22.28 23.26 21.52 21.94 20.65 24.04
0.73 ns ns nsLP 23.32 23.61 22.73 24.14 24.30 21.79 LP 23.90 22.70 25.11 23.45 23.13 25.12

HP = High pasture, LP = Low pasture. T: treatments, P: periods, T×P: interaction between treatments and periods. MUFAs: monounsaturated fatty acids. SEM: standard error of the
mean. Different letters indicate significant difference (p < 0.05). ns: no significance.
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Table 7. Polyunsaturated Fatty Acid Profile of Milk in Spring and Fall.

Fatty Acid
(g/100 g Fat)

Spring Fall

T P SEM p-Value T P SEM p-Value

1 2 3 4 5 T P T×P 1 2 3 4 5 T P T×P

18:2 trans
HP 1.12 a 1.07 1.05 1.09 1.19 1.19

0.04 0.003 ns ns HP 1.27 a 1.22 1.21 1.22 1.24 1.45
0.04 0.031 ns ns

LP 0.89 b 0.79 0.79 1.17 0.86 0.82 LP 1.12 b 1.00 1.13 1.09 1.04 1.33

18:2 n6 cis
HP 1.72 1.44 1.54 1.91 1.80 1.91

0.32 ns ns ns HP 1.48 1.33 1.51 1.55 1.33 1.69
0.08 <0.0001 ns nsLP 2.54 2.42 2.53 2.55 2.64 2.58 LP 2.86 2.45 2.62 2.99 3.07 3.19

18:2 CLA
HP 1.65 a 1.86 1.51 1.58 1.70 1.62

0.11 0.014 ns ns HP 1.43 a 1.53 1.53 1.47 1.37 1.29
0.15 0.033 ns ns

LP 0.89 b 0.79 0.83 0.96 0.93 0.94 LP 0.86 b 0.66 0.97 0.90 0.85 0.90

18:3 n3 cis
HP 0.89 a 0.82 0.89 0.97 0.87 0.90

0.08 0.033 ns ns HP 0.53 0.47 0.52 0.56 0.55 0.57
0.03 ns 0.03 ns

LP 0.54 b 0.36 0.50 0.63 0.60 0.63 LP 0.50 0.37 0.54 0.54 0.54 0.53

Total PUFAs cis
HP 2.61 2.27 2.43 2.88 2.67 2.82

0.24 ns ns ns HP 2.02 b 1.80 2.03 2.11 1.87 2.26
0.08 <0.0001 ns ns

LP 3.09 2.78 3.03 3.17 3.24 3.21 LP 3.37 a 2.82 3.16 3.53 3.61 3.72

HP = High pasture, LP = Low pasture. T: treatments, P: periods, T×P: interaction between treatments and periods. PUFAs: polyunsaturated fatty acids. SEM: standard error of the mean.
Different letters indicate significant difference (p < 0.05). ns: no significance.
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3.2. Butter Production from Two Farms (GRZ and C)
3.2.1. Fatty Acid Profile in Butter

In spring, the butter made from GRZ had higher content of CLA, 18:2 cis, and TVA,
and lower total MUFA content, primarily represented by 14:1, 16:1 compared to C (Table 8).
Regarding SFA, although there were no differences in total content, GRZ butter had a
higher proportion of 11:0, 12:0 and BCFAs 14:0 iso, 15:0 anteiso compared to C (Table 8).
In fall, GRZ butter showed a higher proportion of total SFA and BCFA compared to C,
showing differences in almost all individual SFAs (Table 8). Regarding UFAs, GRZ butter
had lower MUFAs and PUFAs compared to C, primarily represented by TVA, 18:1 cis, and
18:2 cis (Table 8). The FAs that showed differences between treatments (GRZ vs. C) in
butter, both in spring and fall, were consistent with those observed in MilkB. Table 8 shows
a transfer in CLA, 18:1 trans-vaccenic, total PUFAs cis and total BCFAs content from MilkB
to butter, demonstrating that the butter processing procedure did not negatively affect the
content of these beneficial FAs.

Table 8. Fatty Acid Profile of Butter and Bulk Milk Elaborated in Spring and Fall.

Fatty Acid
(g/100 g Fat)

Spring Fall

Butter MilkB Butter MilkB

GRZ C SEM p-Value GRZ C SEM p-Value GRZ C SEM p-Value GRZ C SEM p-Value

4:0 3.84 2.61 0.58 ns 2.36 2.97 0.44 ns 2.75 a 2.62 b 0.02 0.043 2.74 2.78 0.22 ns
6:0 2.33 1.70 0.25 ns 1.59 1.82 0.27 ns 1.86 a 1.59 b 0.01 0.002 2.00 1.56 0.13 ns
8:0 1.28 1.87 0.57 ns 1.04 1.03 0.13 ns 1.12 a 0.92 b 0.01 0.003 1.30 0.91 0.12 ns
10:0 2.8 2.78 0.25 ns 2.52 2.33 0.11 ns 2.71 a 1.99 b 0.04 0.005 3.13 1.86 0.32 ns
11:0 0.34 a 0.32 b 0.002 0.040 0.33 0.34 0.01 ns 0.29 a 0.23 b 0.01 0.040 0.38 0.22 0.05 ns
12:0 3.20 a 3.00 b 0.01 0.006 3.13 2.65 0.25 ns 3.27 a 2.33 b 0.02 0.001 3.73 2.16 0.41 ns

14:0 iso 0.18 a 0.16 b 0.002 0.046 0.14 0.15 0.02 ns 0.11 a 0.09 b 0.002 0.020 0.12 0.10 0.01 ns
14:0 11.37 11.06 0.17 ns 11.56 10.14 0.43 ns 11.36 a 8.86 b 0.05 0.001 11.83 7.92 0.73 ns

15:0 iso 0.36 0.40 0.01 ns 0.32 0.31 0.03 ns 0.25 a 0.19 b 0.004 0.009 0.28 0.23 0.01 ns
15:0 anteiso 0.76 a 0.67 b 0.01 0.012 0.66 0.59 0.04 ns 0.48 a 0.39 b 0.01 0.010 0.57 a 0.43 b 0.01 0.004

14:1 0.93 b 1.03 a 0.01 0.027 0.96 0.95 0.14 ns 0.83 0.72 0.03 ns 0.95 0.66 0.06 ns
15:0 1.55 b 1.62 a 0.01 0.025 1.50 1.60 0.09 ns 1.16 a 0.99 b 0.004 0.001 1.34 1.07 0.05 ns

16:0 iso 0.38 0.40 0.01 ns 0.32 0.32 0.03 ns 0.27 0.27 0.003 ns 0.30 0.27 0.01 ns
16:0 29.79 31.14 0.45 ns 33.25 30.99 1.94 ns 34.23 a 28.29 b 0.43 0.010 32.61 a 25.81 b 0.58 0.014

17:0 iso 0.48 0.5 0.02 ns 0.43 0.36 0.03 ns 0.45 a 0.33 b 0.01 0.008 0.38 0.42 0.04 ns
17:0 anteiso 0.63 0.69 0.01 ns 0.53 0.56 0.05 ns 0.42 a 0.19 b 0.01 0.006 0.48 0.51 0.03 ns

16:1 1.34 b 1.71 a 0.03 0.016 1.49 1.57 0.17 ns 1.47 1.35 0.02 ns 1.50 1.36 0.10 ns
17:0 0.94 b 1.00 a 0.01 0.030 0.88 0.86 0.04 ns 0.75 a 0.69 b 0.01 0.022 0.80 0.82 0.05 ns

18:0 iso 0.1 0.08 0.03 ns 0.06 0.05 0.003 ns 0.06 0.06 0.01 ns 0.06 0.06 0.01 ns
18:0 9.06 8.97 0.26 ns 8.30 9.06 1.27 ns 9.36 b 11.16 a 0.10 0.006 8.65 b 11.81 a 0.51 0.048

18:1 elaidic 0.22 0.19 0.03 ns 0.20 0.29 0.04 ns 0.22 b 0.41 a 0.03 0.035 0.17 b 0.50 a 0.04 0.035
18:1 trans-
vaccenic 3.22 a 1.89 b 0.15 0.024 3.65 2.33 0.11 0.015 2.89 b 2.97 a 0.01 0.009 3.14 2.57 0.26 ns

18:1 cis 17.65 b 19.95 a 0.35 0.043 17.33 20.80 1.85 ns 18.10 b 25.73 a 0.22 0.002 17.72 27.28 1.83 ns
18:2 trans 0.81 0.90 0.08 ns 1.10 0.88 0.16 ns 1.01 b 1.86 a 0.05 0.008 1.19 1.34 0.08 ns

18:2 cis 2.00 a 1.77 b 0.02 0.010 1.90 1.53 0.15 ns 1.70 b 2.84 a 0.06 0.005 1.74 b 3.23 a 0.24 0.048
18:2 CLA 1.44 a 0.98 b 0.07 0.042 1.57 1.21 0.12 ns 0.92 0.91 0.005 ns 1.06 0.97 0.08 ns
18:3 n3 cis 1.09 1.02 0.07 ns 1.07 a 0.96 b 0.02 0.050 0.56 0.55 0.02 ns 0.60 0.58 0.02 ns

20:0 0.18 0.18 0.003 ns 0.18 0.17 0.03 ns 0.15 a 0.14 b 0.001 0.011 0.15 0.17 0.01 ns
Total SFAs 66.67 66.25 1.40 ns 66.65 63.95 2.01 ns 69.02 a 59.79 b 0.45 0.005 68.66 a 57.09 b 1.68 0.040

Total
MUFAs cis 19.92 b 22.68 a 0.39 0.037 19.78 23.31 1.54 ns 20.76 b 28.17 a 0.22 0.002 20.17 29.30 1.86 ns

Total PUFAs
cis 3.1 2.78 0.08 ns 2.97 2.50 0.15 ns 2.27 b 3.38 a 0.07 0.008 2.34 3.81 0.26 ns

Total BCFAs 2.87 2.90 0.03 ns 2.46 2.34 0.18 ns 2.04 a 1.51 b 0.02 0.002 2.19 2.01 0.08 ns
Total Trans 4.26 a 2.98 b 0.20 0.046 4.95 3.51 0.29 ns 4.12 b 5.24 a 0.08 0.009 4.26 5.20 0.21 ns

Spreadability
index

(C16:0/C18:1)
1.69 1.56 0.05 ns 1.93 1.52 0.25 ns 1.89 b 1.10 a 0.04 0.005 1.85 0.95 0.13 0.037

GRZ: pasture-based system (grazing + supplement); C: confined (total mixed ration, TMR). Milk B: milk to butter.
SFAs: saturated fatty acids. BCFAs: branched-chain fatty acids. MUFAs cis: monounsaturated fatty acids. PUFAs
cis: polyunsaturated fatty acids. SEM: standard error of the mean. Different letters indicate significant difference
(p < 0.05). ns: no significance. MilkB: bulk milk.

3.2.2. Techno-Functional Characteristics of Butter from Two Farms (GRZ and C)

• Butter Firmness

There were no differences in firmness between GRZ and C in spring. However, in fall,
butter from C showed lower firmness compared to GRZ butter (p = 0.008; Figure 1).
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Figure 1. Butter firmness elaborated from GRZ: pasture-based system (grazing + supplement);
C: confined (total mixed ration, TMR). Difference between farms (GRZ and C) in spring and fall are
shown with small letter and capital letter, respectively (p < 0.05). N: Newton.

• Differential Scanning Calorimetry (DSC)

The thermograms obtained from the Differential Scanning Calorimeter (DSC) are
shown in Figure 2, for anhydrous milk fat from GRZ and C. The thermal behaviors are
very similar, exhibiting two peaks that can be associated with groups of triglycerides with
different melting ranges [60]. These are represented by the two peaks observed in the
respective thermograms.

Dairy 2024, 5, x FOR PEER REVIEW  11 of 21 
 

 

3.2.2. Techno-Functional Characteristics of Butter from Two Farms (GRZ and C) 
• Butter Firmness 

There were no differences in firmness between GRZ and C in spring. However, in 
fall, butter from C showed lower firmness compared to GRZ butter (p = 0.008; Figure 1). 

 

 
Figure 1. Butter firmness elaborated from GRZ: pasture-based system (grazing + supplement); C: 
confined (total mixed ration, TMR). Difference between farms (GRZ and C) in spring and fall are 
shown with small letter and capital letter, respectively (p < 0.05). N: Newton. 

• Differential Scanning Calorimetry (DSC) 
The thermograms obtained from the Differential Scanning Calorimeter (DSC) are 

shown in Figure 2, for anhydrous milk fat from GRZ and C. The thermal behaviors are 
very similar, exhibiting two peaks that can be associated with groups of triglycerides 
with different melting ranges [60]. These are represented by the two peaks observed in 
the respective thermograms. 

 

Figure 2. Thermograms of anhydrous milk fat from the prepared butter from GRZ: pasture-based
system (grazing + supplement); C: confined (total mixed ration, TMR), in spring and fall. Soft grey
bars indicate triglyceride groups with the lower melting point (peak 1) or the higher melting point
(peak 2) for the four anhydrous milk fat samples.

The temperature for the peak corresponding to the triglyceride group with the lower
melting point (peak 1) ranged from 14.9 to 16.7 ◦C, while for the triglycerides with the
higher melting point (peak 2), the temperature ranged from 32.7 to 34.1 ◦C (Table 9).
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Additionally, the enthalpies of fusion for the anhydrous milk fat ranged between 89.4 J/g
and 112.9 J/g, as shown in Table 9.

Table 9. Peak temperature (Tpeak), enthalpies of fusion (∆H) and final melting temperature (Tendset)
for anhydrous milk fats from butter elaborated in Spring and Fall.

Tpeak (◦C)
∆H (J/g) Tendset (◦C)

1 2

Spring-GRZ 15.7 ± 0.4 34.1 ± 0.9 96.9 ± 2.9 39.9 ± 0.3

Spring-C 18.2 ± 0.5 33.1 ± 0.8 97.9 ± 3.0 36.4 ± 0.4

Fall-GRZ 17.2 ± 0.8 33.7 ± 0.9 112.9 ± 3.3 37.1 ± 0.3

Fall-C 16.4 ± 0.7 35.9 ± 0.9 89.4 ± 2.6 42.4 ± 0.5
GRZ: pasture-based system (grazing + supplement) and C: confined (total mixed ration, TMR) in spring and fall.

The curves of percentage of solids for each of the anhydrous milk fats (Figure 3A)
show very little difference between them. However, significant differences were observed
at −5 ◦C and between 9 ◦C and 20 ◦C, where the percentage solids decreased rapidly
(Figure 3B). It is worth noting that firmness and the percentage solids values at 10 ◦C, (the
temperature at which firmness was determined), showed the same trend. Anhydrous milk
fat Fall-C, which exhibited the lowest firmness at 10 ◦C, also had the lowest percentage
of solids at that temperature. Conversely, Fall-GRZ anhydrous milk fat, which showed
the highest firmness, had the highest percentage of solids compared to the other samples
(Figure 3B), consistent with its higher firmness (Figure 1).
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Figure 3. (A) Percentage of solids in anhydrous milk fat from butter produced under GRZ: pasture-
based system (grazing + supplement) and C: confined (total mixed ration, TMR) in spring and fall.
(B): Percentage of solids in anhydrous milk fat: magnification in the range between 8 and 13 ◦C, with
an arrow indicating the temperature at which firmness was determined (10 ◦C).



Dairy 2024, 5 568

• Color

Regarding color parameters, no differences were observed between GRZ and C butter
in spring. In fall, there were no differences in L and a* parameters. Nevertheless, butter
from GRZ had higher b* values than those from C (p = 0.003; Table 10).

Table 10. Evaluation of color from butter elaborated in Spring and Fall.

Spring Fall

GRZ C SEM p-Value GRZ C SEM p-Value

L* 55.08 57.16 0.58 ns 59.24 58.95 0.14 ns
a* −5.05 −5.09 0.04 ns −4.57 −4.57 0.13 ns
b* 22.88 23.26 1.00 ns 28.39 a 15.71 b 0.46 0.003

GRZ: pasture-based system (grazing + supplement); C: confined (total mixed ration, TMR). SEM: standard error
of the mean. Different letters indicate significant difference (p < 0.05). ns: no significance.

4. Discussion
4.1. Fatty Acid Profile in Milk

When it comes to the proportion of the main groups of FAs composing milk fat, our
results align with findings reported by other authors, where 60–70% corresponds to SFAs,
20–25% to MUFAs, and 3–4% to PUFAs [36,61,62]. Among the SFAs, the most abundant
found in this study were palmitic acid (16:0), myristic acid (14:0), and stearic acid (18:0),
which also coincides with reports from other authors in similar dairy cow production
systems [63,64]. The fact that these are the most abundant SFAs in cow’s milk is related
to the biosynthesis mechanisms of fat in the dairy cow. Lauric acid (12:0), myristic acid
(14:0), and palmitic acid (16:0) are primarily synthesized in the mammary gland from
precursors originating in the rumen [65]. Particularly, palmitic acid (16:0) is one of the most
abundant, partly due to its mixed origin, as it can be synthesized in the gland or come from
body reserves [66]. On the other hand, long-chain saturated FAs such as stearic acid (18:0)
reach the milk primarily from the rumen, originating from FAs in the diet that undergo
biohydrogenation by ruminal microbiota or from body reserves [65].

While no differences were found in the total amount of SFAs between treatments, we
observed that milk from HP had a higher proportion of BCFAs compared to LP treatment.
Within BCFAs, OBCFAs such as 15:0 and 17:0 iso and anteiso were the most abundant,
consistent with findings reported by Ran Ressler et al. [67] for bovine milk. The fact that
HP had a higher proportion of these FAs compared to LP treatment (both in spring and fall)
could be explained by the higher forage-to-concentrate ratio (F/C ratio) in the diet of HP.
This higher F/C ratio could increase the concentration of cellulolytic bacteria in the rumen,
which are associated with higher proportions of OBCFAs in milk (mainly iso forms), as
reported by Vlaeminch et al. [20]. Xin et al. [68] also reported that cellulolytic bacteria had
a stronger correlation with OBCFAs compared to amylolytic microbiota. Specifically, these
authors found a positive correlation between the population of Ruminococcus flavefaciens
and the concentrations of 15:0 and 15:0 iso. Based on the reported benefits of OBCFAs for
human health and the limited knowledge available to date on their levels in commercial
dairy systems, this study provides relevant information on the positive association between
higher pasture inclusion levels in the diet and OBCFAs concentrations in milk, consistent
with the authors cited above. This reinforces the importance of including pasture in cows’
diets and the resulting benefits on the quality of milk fat.

Furthermore, the higher proportion of TVA, 18:3 n-3 cis, and CLA (main rumenic FA:
18:2 cis 9 trans 11) in milk from the HP treatment compared to LP, particularly in spring, is
consistent with findings reported by Elgersma et al. [69], Alothman et al. [36], and Moscovici
Joubran et al. [62], and could be associated with the higher proportion of pasture (percentage
of total diet) in HP compared to LP treatment during this season (Table 2). As widely
reported, fresh pastures contain a high proportion of 18:3 n-3 cis (the main precursor of
TVA and CLA in milk) [69] and exhibit maximum digestibility between August to October
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(spring) [70–72], which could explain these differences between systems, although no
differences were observed in the total MUFAs and PUFAs. Taking into account the fact that
these FAs constitute the main components of dairy fat considered beneficial for consumers
due to their anti-atherogenic, anti-carcinogenic, anti-inflammatory, immunostimulant, and
insulin resistance-modulating effects [73], and that current nutritional trends promote an
increase in PUFAs and CLA consumption [74], milk from HP could be considered healthier
than milk from LP. Moreover, regarding the content of TVA and CLA in spring, it is
observed that the trends in their variation are similar: increases in their content correspond
to increases in the other. This confirms the metabolic dependence for the formation of
both FAs, due to the stages of biohydrogenation in the rumen and dehydrogenation in
the mammary gland [75]. Regarding the indices related to the risk of foods causing
cardiovascular problems, the HP treatment showed lower n-6/n-3 ratios compared to LP,
both in fall and spring, suggesting that farms with higher pasture inclusion in the diet
produce healthier milk (values below 4/1) [23]. While this study did not find differences
in AI and H/H between treatment or seasons in milk, the values were similar to those
reported by other authors [64,76–78].

Overall, we could suggest that milk from farms with a higher proportion of pasture
may have health benefits compared to milk from farms with a lower proportion of pasture,
as indicated by the higher levels of TVA, CLA and 18:3 n-3 cis in milk fat, together with the
higher levels of OBCFAs mentioned above. Furthermore, the higher content of OBCFAs
(which have demonstrated beneficial effects on human health [17,18], contributes to this
suggestion. Therefore, quantifying these FAs in milk (especially the latter) from commercial
farms in contrasting seasons based on dietary structure is crucial for valorizing attributes
related to the nutritional quality of the milk produced.

4.2. Fatty Acid Profile in Butter

Based on the FAs profiles obtained from the butter, the higher proportion of CLA
and TVA in the GRZ during spring indicates a healthier nutritional profile compared to C.
This could be attributed to the higher percentage of pasture (grazing) in the total diet of
GRZ cows compared to C. Although there was no difference in 18:3 n-3 cis in the butter, it
was observed that this FAs was higher in MilkB from GRZ compared to C, which aligns
with Elgersma [69], who reported that pasture contributes significantly to 18:2 and 18:3,
precursors of major n-3, CLA, and TVA in milk and dairy products.

In the case of fall butter, contrary to expectations, both MilkB and butter from GRZ
had a higher proportion of SFA (mainly represented by 14:0, which is considered one of
the main atherogenic FAs). However, the concentration of OBCFAs, such as 15:0 and 17:0
iso and anteiso, especially 17:0 anteiso, was more than twice as high in GRZ, compared to
C. This is interesting, because although GRZ butter had high SFAs content, a significant
portion consists of OBCFAs known for its bioactive properties [79]. These compounds
could potentially counteract the adverse effects associated with consuming atherogenic
FAs found in this dairy product.

4.3. Physical Properties of Butter

The lower firmness observed in butter made from C compared to GRZ in fall aligns
with the FAP in MilkB and the butter made. The C treatment had higher PUFAs than GRZ,
and showed a tendency to be higher in MilkB. This increase was mainly explained by high
values of 18:2, both in MilkB and butter. Additionally, the C treatment had lower SFA
than GRZ in MilkB and butter. While a higher concentration of PUFAs was expected in
the GRZ treatment compared to C (as per the design with and without fresh pasture in
the diet), analysis of the FAP of both treatment’ diets and ingredients revealed that the C
treatment, despite lacking grazing, had more than double the 18:2 n-6 and 18:1 n-9 in the
diet, compared to GRZ. These results could be explained by the high proportion of maize
grain and soybean expeller (as concentrate) in the C diet during the butter production
periods, as these ingredients provide a relatively high proportion of fat [80], specifically a
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high proportion of 18:2 n-6 in the diet. In this regard, Roy et al. [81] reported that maize
silage generally contains between 30% and 40% grain, which is rich in 18:2 n-6, 18:1 n-9,
and low in 18:3 n-3 cis. Regarding the addition of soybean in pasture-based systems, it
has been reported to decrease FAs from 6:0 to 14:0 and increase 18:0, 18:1, 18:2, and 18:3
in milk [82,83]. Therefore, the C producer’s diet, composed of maize grain and soybean
expeller, had a high contribution of 18:2 in the diet. On one hand, this may have increased
the passage rate and resulted in higher concentrations of 18:2 in milk [84]. On the other
hand, the high concentrations of these FAs in the rumen may have inhibited ruminal
biohydrogenation, resulting in lower levels of SFA and higher levels of MUFAs and PUFAs
in MilkB and butter from the C farm. Furthermore, the higher levels of MUFAs and PUFAs
could explain the lower firmness of C butter, compared to those from GRZ [25,85].

The high firmness of butter from GRZ in fall could be explained by the higher propor-
tion of SFAs compared to C, considering that short-chain FAs (with low melting points) did
not vary significantly between samples. This is observed not only in total SFAs, but also in
most individual SFAs. It has been reported that butter made from creams with a high pro-
portion of SFAs are firmer and less spreadable than those made from creams with a higher
proportion of UFAs [25,86], determined by the higher melting point of SFAs [87]. Among
SFAs, palmitic acid (16:0), which has a high melting point (62.9 ◦C), was higher in GRZ
butter than in C butter, leading to a higher spreadability index, consistent with findings
reported by Techeira et al. [85], Marangoni and Ghazani [86] and Chamberlain et al. [88],
and therefore to higher firmness. In spring, no differences in butter firmness were observed
between GRZ and C. These results could be explained because MilkB and butter from the
two farms (GRZ and C) had a similar FAP in this season, with no differences found in most
FAs (mainly SFAs and PUFAs).

Through DSC analysis, the melting behavior, melting temperatures, enthalpies of
fusion, and solid content at different temperatures was investigated. Table 9 shows the
temperatures corresponding to the peak for triglycerides with lower melting points (ranging
between 14.9 and 16.7 ◦C) and for those with higher melting points (ranging between
32.7 and 34.1 ◦C). In this study, differences in the feeding regimes between GRZ and C, in
fall, led to different enthalpy of fusion values for the anhydrous milk fats used in the butter
made from GRZ versus C. This differed from what had occurred in spring, where changes
in SFA, MUFA, and PUFA content were not as significant between treatments. The values
obtained ranged between 89.4 J/g (Fall-C) and 112.9 J/g (Fall-GRZ). Tomaszewska-Gras [89]
reported enthalpy of fusion values for anhydrous milk fat of 80.3 J/g. Although this value
is lower than that found in the present study, it is likely due to differences in its composition.
The differences in the enthalpy of fusion values found may be attributed to variations in
the triacylglycerol composition among different anhydrous milk fats. Additionally, the
enthalpy of fusion of fat materials not only depends on the triacylglycerol composition,
but also on the minor components present in them [90]. The final melting temperature
(Tendset) for anhydrous milk fat ranged from 36.4 ◦C to 42.4 ◦C. Additionally, DSC analysis
revealed that GRZ anhydrous milk fat in fall had the highest solid content (Figure 3B),
which correlates with it being the sample with the greatest firmness (Figure 1). The results
indicated that most of the variation in composition and thermal properties occurred in the
fall samples, likely due to the feeding regimes, specifically, GRZ versus C. For example, in
fall, GRZ had a higher SFA content compared to C (21.6% vs. 18.1%) and a lower MUFA
content (14.4% vs. 26.5%). Therefore, variations in feeding should be considered, as they
can affect the physicochemical properties of the butter produced. Consequently, the results
shown in Figure 3 were expected, because a higher solid content should be reflected in a
fatty material with greater firmness.

Regarding the color of the butter, there were differences between GRZ and C in
those made in fall. The higher intensity of the yellow color in the butter made from GRZ
compared to C could be attributed to pastures having a higher concentration of β-carotene
than ensiled feeds, as the ensiling process negatively impacts the concentration of this
compound in the feed provided [91]. Since β-carotene is one of the main components
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influencing butter color, a higher intake of β-carotene in the diet could have resulted in a
greater intensity of yellow color in the GRZ butter, consistent with findings reported by
O’Callaghan et al. [25].

The predominant use of pastures (fresh pasture: grazing or conserved forage) promotes
an increase in UFAs and BCFAs of nutritional and technological interest (CLA, TVA in
spring, 15:0 iso and anteiso: 17:0 iso) in milk. This not only enhances the added value of
milk produced in pasture-based systems, but also the products, such as butter, made from
it. In this study, samples from actual producers supplying the industry were analyzed,
representing commercial production systems and, collectively, including variations in herd
management, pasture availability, and the nature of supplementation. This wide variability
in sources makes analyzing the results a complex task, but it also provides a truthful view
of the production conditions present in the western coastal systems of Uruguay. Observing
the results for butter produced on a pilot scale highlights the importance of the availability
and management of different supplements, pasture levels and season. In the butter made in
fall, the reported 18:2 cis values in the feed from farm C doubled those of GRZ, likely due
to the nature of the lipids provided by corn grains and the presence of soybean expeller in
the supplement. Consequently, in fall, the butter produced from C had lower firmness than
those manufactured from GRZ, paradoxically with respect to the inclusion of pasture. In
this case, for C, the richness in lipids from the supplement with soybean expeller combined
with corn grain in the TMR promoted functional and technological properties associated
with high-pasture conditions, although it did not increase the yellow coloration or the
content of OBCFAs. The texture and crystallization profile of the fats present in the butter,
then, highlight the importance of selecting the overall feed based on the available sources
and the possibility of obtaining suitable technological properties, even in the absence
of pastures.

5. Conclusions

The results obtained in this study, conducted on commercial farms, underscore the
benefits of high-pasture inclusion (in both spring and fall) in the diet of dairy cows, for
producing healthier milk for consumers. This is supported by higher concentrations of
TVA, CLA, and 18:3 n-3 cis, and a lower n-6/n-3 ratio. Additionally, higher levels of some
SFAs, recently reported beneficial for human health, such as OBCFAs 15:0 and 17:0, were
observed. Moreover, butter derived from milk of the pasture-based system (GRZ) also
exhibited a healthier profile, characterized by higher proportions of CLA and TVA in spring
butter, and higher proportions of 15:0 and 17:0 iso and anteiso in fall butter. In addition,
the yellow color of GRZ butter was stronger. However, contrary to expectations, GRZ
butter in fall presented greater firmness, possibly related to the higher palmitic/oleic ratio,
influenced by the FA composition of the diet. This demonstrates the potential benefits of
adjusting the management of feed for confined cows with oils, and highlights the need for
further studies considering supply and cost constraints.
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