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Abstract: The increasing worldwide demand on urban road transportation systems requires more
restrictive measures and policies to reduce congestion, time delay and pollution. Autonomous
vehicle mobility services, both shared and private, are possibly a good step towards a better road
transportation future. This article aims to study the expected impact of private autonomous vehicles
on road traffic parameters from a macroscopic level. The proposed methodology focuses on finding
the different effects of different combinations of autonomous vehicle penetration and Passenger Car
Units (PCU) on the chosen road traffic model. Four parameters are studied: traveled daily kilometers,
daily hours, total daily delay and average network speed. The analysis improves the four parameters
differently by implementing autonomous vehicles. The parameter total delay has the most significant
reduction. Finally, several mathematical models are developed for the percentage of improvement
for each chosen parameter.
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1. Introduction

Automated Vehicles (AV) will be a huge part of road transportation systems in the
future. AVs will use and share infrastructure and interact with human users (human-driven
vehicles and pedestrians) and other AVs at the same time. The introduction of the first
electronic driver assist systems such as Electronic Stability Control (ESC) and Anti-Block
System (ABS) focused on improving road transportation safety. Recently, the focus is to
automate the whole driving experience starting from small automation (lane control and
cruise control) to fully automated driven vehicles.

The shift from conventional vehicles to automated vehicles follows the six automation
levels presented in the traffic stream (0, No Automation; 1, Hands on; 2, Hands off; 3,
Eyes off; 4, Mind off; 5, Steering wheel optional) [1,2]. It also depends on the penetration
rate of AVs of the total traffic. AVs will partially reduce or even eliminate human factors
from traffic flow, reducing gap for lane changing, headway, reaction time using 360-degree
sensors and cameras expected to increase road capacity, leading to lower congestion [3].
Communications and the exchange of information between AVs and the infrastructure, the
Cooperative Intelligent Transportation System (C-ITS), is valuable to identify the traffic
states on urban roads [4,5]. Moreover, it provides more information for intersection control,
applying the best actions to improve traffic operations [6].

In this paper, macroscopic traffic flow simulation models are developed to assess the
effect of autonomous vehicles on several traffic parameters for a better understanding of
the expected AV implementation impact on a larger scale. In the second part, mathematical
models are developed to predict the impact of AVs on the different macroscopic traffic-
related parameters. Referring to the massive amount of data provided in the used model
(different road types, vehicle categories, road speeds, origin–destinations matrices, etc.), a
Passenger Car Unit/AV penetration methodology is proposed and simulated using the
Visum software [7].
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2. Literature Review

Many studies on the future impact of AVs have been conducted, focusing on micro-
scopic and macroscopic network analysis and simulations. Artmann et al. [8] made an
impact assessment of the AV capacity of freeways using microscopic traffic flow simulation
for several penetration rates. Their results show that AVs allow shorter headways between
the vehicles, increasing the freeway network’s capacity by 30% and reducing traffic de-
lays significantly for higher penetrations rates of AVs. In contrast, low penetrations did
not yield noticeable capacity benefits. Hartmann et al. found that traffic consisting of
20% conventional vehicles, 60% Cooperative Adaptive Cruise Control (CACC) and 20%
Adaptive Cruise Control (ACC) increased lane capacity from 2100 vehicles/hour for 100%
conventional vehicles to 2900 vehicles/h [9]. Chen et al. studied highway traffic capacity
for mixed traffic of conventional vehicles and AVs considering different AV penetration
rates, microscopic characteristics of conventional vehicles and AVs and other lane policies
(conventional vehicles exclusive and/or AV lanes or mixed lanes) [10]. The California
PATH study showed that AVs in platoons could maintain a time gap as small as 0.6 s
compared to 1.5 s for conventional vehicles, indicating a considerable increase in road
capacity and congestion reduction [11,12].

Jerath and Brennan [13] found that the introduction of ACC vehicles into the traffic
flow may create higher traffic flows and lower congestion rates. Several studies investigated
microscopic driving behavior changes in AVs, using simulations such as acceleration and
deceleration, flow stability and reaction times [14–17].

Cooperative Intelligent Transportation System (C-ITS) communication among vehicles
(V2V), infrastructure (V2I and I2V) and central traffic system (C2I) is also a significant factor
to consider in improving the operation of highly automated vehicles [18,19]. V2X commu-
nications proved that it could provide local traffic flow stability, significantly smoothen
the shock waves of traffic flow and reduce emissions [20,21]. Elhenawy et al. studied AVs
equipped with Cooperative Adaptive Cruise Control (CACC) systems at uncontrolled
intersections. They showed a drop in vehicle travel time in the range of 49% and 89% for
delay, relative to an all-way stop sign control [22]. Other studies on CACC showed that
the implementation of full penetration CACC on the regional road network reduced total
delay by 12% [23,24]. Other C-ITS systems, such as Green Light Optimal Speed Advisory
(GLOSA) systems that help drivers pass traffic light controlled intersection in the remaining
green time, showed improved traffic flow and reduced CO2 emissions [25,26]. Baz et al.’s
study on intersection control and delay optimization for autonomous vehicles flow found
the AV-to-AV communication model reduced the delay by 65% compared to a round-
about and 84% compared to a four-legged signalized intersection, and AV-to-conventional
vehicles model improved them by 30% and 89%, respectively [27].

Private vehicle ownership has shown a rapid increase even with further limiting
regulation, especially in large cities [28,29]. Despite that, the introduction of AVs also has
the potential of reducing daily trips. A stated preference survey found that, when choosing
between different private transport modes, 44% chose conventional private cars, 32% chose
private AVs and 24% chose shared AVs [30,31]. Becker and Axhausen’s study showed that
households with one or more cars would reduce the number of owned vehicles when AV
services are available regardless of the cost for the novel service [32]. Another resolution
to mitigate traffic congestion and reduce car ownership is the possibility of using AVs as
a ridesharing service. Xu et al. introduced a mathematical framework for ride-sharing
impacts on traffic congestion and how congestion affects ridesharing activities [33]. Ma et al.
found that ridesharing under the origin–destination-based pricing strategy reduced the
travel cost for travelers and the deliberate alternative routes, which can be applied to future
AVs [34]. More studies have established the same point, i.e., that AVs reduce daily trips by
reducing private car ownership and increasing shared AV trips, for both car-sharing and
ridesharing [35–38].
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3. Methodology and Model Building

The methodology adopted to estimate AVs’ impact on traffic parameters focuses
on changing two AV characteristics. This paper discusses private transport. Two traffic
parameters are investigated: the daily vehicle traveled kilometers and the everyday vehicle
traveled hours. The two parameters are evaluated for different private transport modes.
Transportation modes involve three passenger cars classes (cars, automated vehicles and
taxis) and four heavy vehicle classes (light, medium, buses and coaches and heavy).

Two AV characteristic representations are input into the model to evaluate the impacts
of traffic parameters. Firstly, AV penetration is the percentage of passenger cars class
AV daily trips compared to the model’s total daily trips. Penetration values vary from
a minimum of zero trips made by AVs. All cars are traditional passenger vehicles (0%
penetration) to a maximum of all daily trips are performed by AVs (100% penetration),
where the interval of the investigated domain is divided by 10%.

The second investigated AV characteristic is the value reduction of road saturation,
represented by Passenger Car Unit (PCU) capacity modification factor in the Visum EFM
model. PCU of different vehicles is required to convert a mixed traffic stream into a homo-
geneous equivalent, thereby expressing the mixed traffic flow in terms of an equivalent
number of passenger cars [39]. PCU reflects how much impact a specific transport mode
has on traffic variables compared to one regular passenger car. Modifying PCU values
for the AV class is structured on the expected positive effect of connected AVs on roads
capacity and saturation characteristics [40]. The saturation reduction is mainly achieved by
lower following distance and headway between vehicles and other factors such as:

• Level of automation
• V2V and V2I communications
• A lower level of following distance and headway
• Shorter required gap for lane changing
• Shorter braking reaction time
• Sensors and 360-degree cameras
• Shorter walking time
• Shorter parking time

PCU values for the AV class are considered to be 0.50–0.90 with 0.05 increments
and PCU 0.98. The selected values are chosen to cover the expected range of AV effect,
which improves road capacity and has a large dataset to develop statistical models for
traffic parameters. Equilibrium assignment is selected to study how different penetration
and PCU combinations affect the network, which distributes the demand according to
Wardrop’s first principle [41]. The equilibrium assignment calculates the primary vehicle
volumes on each link by dividing the demand consistently over a set number of iterations.
The system then searches for alternative routes with lower impedance, where vehicles will
be shifted to newfound links to improve network operability. The procedure terminates if
a balanced state has been reached, which means no more vehicles are to be shifted between
routes [42].

The calculation process for the selected traffic parameters of the model is evaluated
by running multiple static equilibrium assignment problems for different scenarios. Each
assignment aims to choose the best route for each trip with the lowest travel cost. The
scenarios vary by keeping the AV penetration values external and changing PCU values of
the AV class with each simulation run. After that, the penetration is changed to the next
value and run for each PCU value. These steps are repeated until all penetration and PCU
values are covered with 100 scenarios, ensuring analysis for a more extensive range.

4. Case Study

Budapest is the capital of Hungary, having most of the road terminal stations, where
all major highways and railways terminate. The road network is primarily made up of
rings roads and avenues spreading out from the city center. Budapest’s road network is
4500 km long, and the roads are divided into four road categories: highway, primary main
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road, secondary main road and local roads. Budapest’s public transport consists of four
metro lines, 260 bus routes and 30 tram lines serving around five million trips per day [43].

The Unified Traffic Model of Budapest (EFM) is chosen for the study, which was
created and is maintained by the Transport Corporation of Budapest and is developed
using PTV Visum software. The model uses real-life collected traffic data of Budapest.
The model’s transportation data includes private and public datasets, such as daily traffic
volume, origin–destination matrices, public transport modes and routes. The model also
consists of all road characteristics and allowable mode to use different roads. The model is
illustrated in Figure 1.
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Figure 1. Budapest city EFM model.

5. Results and Discussion

The simulation outputs and analysis focus on four traffic parameters: the daily vehicle
traveled kilometers, the daily vehicle traveled hours, total delay for the whole network
and mean velocity for passenger cars class for the entire network. The four parameters are
classified into two classes for the analysis: Passenger Vehicle Class (PC) and Heavy Vehicle
Class (HV).

The results are compared as a reduction percentage from the original simulation or
base scenario. The base scenario is the model without any assumed AVs implemented in
the model (AV penetration equals zero). Table 1 shows the traveled kilometers and traveled
hours (in thousands) for each vehicle type at the base scenario and shows total daily delay
and mean network speed. Table 1 also shows the PCU for each travel vehicle type used for
the simulation.

The proposed methodology of the employment of connected AVs in the network at
different PCU and penetration for the same number of daily trips reduces daily traveled
hours and daily traveled kilometers for the passenger car class. The outputs vary from
small reductions at lower PCU and penetration values (111 saved traveled hours and 926.5
saved traveled kilometers at 0.98 PCU and 10% AV penetration) to much larger reductions
at higher PCU and penetration values (537,000 saved traveled hours and 530,186 saved
traveled kilometers at 0.50 PCU and 100% AV penetration). The second class investigated
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is a heavy vehicle with four different categories. It is found that there is a marginally
small improvement in the network traffic parameters even though no modifications are
added for any heavy vehicle parameter in any simulations. This shows that AV spread
in the network improves the network operation for all traffic flow and all vehicle classes
(40 saved traveled hours and 2855 saved traveled kilometers at 0.98 PCU and 10% AV
penetration) Much larger reductions are witnessed at higher PCU and penetration values
(176,650 saved traveled hours and 778,420 saved traveled kilometers at 0.50 PCU and 100%
AV penetration). Figures 2–5 give a better illustration of the improvement of the network
operations by presenting the reduction percentage of traveled hours and kilometers for
both passenger car and heavy vehicle classes, respectively. Reduction in traveled hours
varies from 0.02% to 8.41% for passenger cars and from 0.01% to 6.11% for heavy vehicles.
Reduction in traveled kilometers varies from 0.03% to 1.61% and from 0.02% to 0.49% for
passenger car and heavy vehicle classes, respectively.

Table 1. Traffic parameters of base scenario.

Class PC. HV.

Vehicle Type Car Taxi Light Medium Buses and
Coaches Heavy Total

Traveled km
(hundred

thousands)
323.7 616 6069 581 6271 2865 48,771

Traveled hours
(thousands) 624.4 14.42 115.41 8.71 123.96 40.85 927.71

PCU 1.0 1.0 1.0 1.4 1.8 2.5 ——–
Total daily delay 166,053 h
Mean network

speed 43.43 km/h
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Figure 2. Reduction percent in traveled hours for passenger car class.

AV spread in the traffic flow also reduces total daily delay significantly of the whole
network model, reaching a reduction of 62,881 h for 100% AV penetration and 0.5 PCU equal
to 37.87% of base scenario delay. Implementation of AVs with different factors has also
increases mean network speed by 4.08%, reaching 45.20 km/h compared to 43.43 km/h in the
base scenario. The results for delay and speed are shown in Figures 6 and 7, respectively.
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Figure 7. Increase percentage in mean network’s speed for different AV penetration and PCU.

The second part of the analysis is to develop different models for the four chosen traffic
parameters in the study. Multilinear regression is used to develop the models. Penetration
and PCU values are the independent variables, and traffic parameter improvements are
the dependent variable. The six developed models are shown below, with the estimated R
squared for each model. Table 2 shows p-values associated with each parameter estimation.
All models indicate that PCU has a more significant impact on the impact percentage.
AV penetration has a direct relationship, while PCU has an inverse relationship with the
dependent variables.

PC h% = 0.0447AV − 0.0917PCU + 0.0683 R2 = 0.86 (1)

PC km% = 0.0094AV − 0.0188PCU + 0.0144 R2 = 0.88 (2)

HV h% = 0.0326AV − 0.0667PCU + 0.0498 R2 = 0.86 (3)

HV km% = 0.0240AV − 0.0049PCU + 0.0037 R2 = 0. (4)
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Delay% = 0.2082AV − 0.4127PCU + 0.3066 R2 = 0.87 (5)

Speed% = 0.0201AV − 0.0436PCU + 0.0323 R2 = 0. (6)

where

PC h% is the reduction percentage in daily traveled hour for passenger car class;
PC km% is the reduction percentage in daily traveled kilometers for passenger car class;
HV h% is the reduction percentage in daily traveled hour for heavy vehicle class;
HV km% is the reduction percentage in daily traveled kilometers for heavy vehicle class;
Delay% is the reduction percentage in total delay of the whole network;
Speed% is the increase percentage in whole network speed; AV is the automated vehicle
penetration percentage;
and PCU is the assumed passenger car unit of automated vehicles.

Table 2. p-values associated with each parameter of the six statistical models.

PCU AV

PC h 7.37 × 10−33 2.73 × 10−31

PC km 2.28 × 10−34 2.84 × 10−33

HV h 9.15 × 10−33 3.7 × 10−31

HV km 2.97 × 10−29 6.3 × 10−28

Delay 1.78 × 10−32 7.88 × 10−31

Speed 7.66 × 10−32 2.53 × 10−30

6. Conclusions

This paper investigates the estimated expected change in traffic operations caused by
the spread of AVs at different penetration levels in a network. The investigation focuses on
finding the difference in traveled hours and traveled kilometers by assuming different PCU
for AVs. The adopted changes in AVs parameter are explained by the automation level,
resulting in smoother driving, communication between vehicles and infrastructures, etc.

The findings show improvement in the network operations for both investigated
vehicle classes for the same daily trips. The gain increases with increasing AV penetration
and lower assumed PCU for AVs. The simulation scenarios show a higher percentage
of reduction for traveled daily hours than traveled kilometers, estimated as 8.41% and
1.61%, respectively, at higher PCU and AV penetration for the passenger car class. The
improvement is caused by smarter trip distribution in the network, resulting in lower trip
travel time, but more investigation needs to be performed in the future.

Another finding is that, even though the PCU is only changed for the conventional car
category and penetration is only taken as part of the passenger car class, there is a slight
improvement in heavy vehicle class operation. Heavy vehicle class emissions are estimated
to be reduced by 6.11% for traveled hours and 0.49% for traveled kilometers. This shows
that the spread of AVs will cause an improvement in the traffic network as a whole and not
only for the AVs.

AVs significantly impacted the whole network’s total delay by a 37.87% reduction and
increasing average speed by 4.08%. The final part of the article is to develop six models of
the six traffic parameters. The models give the percentage of reduction or increase of each
parameter for different PCU and AV penetration values.

Future research will focus on studying the impact of AVs on a traffic network in a
more detailed way and finding a different effect on different road types and complex traffic
operations. Future work will also focus on the impact of automated public transport and
shared automated transport systems.
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42. Piątkowski, B.; Maciejewski, M. Comparison of traffic assignment in visum and transport simulation in MATSim. Transp. Probl.

2013, 8, 113–120.
43. BKK Budapesti Közlekedési Központ Zrt. Budapest Transport Development Strategy; BKK Budapesti Közlekedési Központ Zrt:

Budapest, Hungary, 2014.

http://doi.org/10.3390/en13040906
http://doi.org/10.1016/j.trb.2016.03.008
http://doi.org/10.1109/TITS.2011.2169791
http://doi.org/10.1109/itsc.2015.65
http://doi.org/10.1016/j.cstp.2020.05.011
http://doi.org/10.3390/su13052740
http://doi.org/10.3311/PPch.14153
http://doi.org/10.1109/itsc.2018.8569394
http://doi.org/10.3390/vehicles2030029
http://doi.org/10.1016/j.iatssr.2017.10.001
http://doi.org/10.3846/transport.2020.12904
http://doi.org/10.1016/j.trc.2017.01.010
http://doi.org/10.3311/PPtr.15851
http://doi.org/10.1016/j.trb.2015.08.013
http://doi.org/10.1016/j.trb.2020.02.001
http://doi.org/10.3390/su12114631
http://doi.org/10.1080/15568318.2018.1443178
http://doi.org/10.1016/j.tranpol.2019.01.010
http://doi.org/10.1016/j.trd.2018.12.019
http://doi.org/10.1061/(ASCE)TE.1943-5436.0000615
http://doi.org/10.1007/978-3-662-48847-8_16
http://doi.org/10.1680/ipeds.1952.11362

	Introduction 
	Literature Review 
	Methodology and Model Building 
	Case Study 
	Results and Discussion 
	Conclusions 
	References

