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Abstract: Estimation of combustion phasing and power production is essential to ensuring proper
combustion and load control. However, archetypal control-oriented physics-based combustion
models can become computationally expensive if highly accurate predictive capabilities are achieved.
Artificial neural network (ANN) models, on the other hand, may provide superior predictive and
computational capabilities. However, using classical ANNs for model-based prediction and control
can be challenging, since their heuristic and deterministic black-box nature may make them intractable
or create instabilities. In this paper, a hybridized modeling framework that leverages the advantages
of both physics-based and stochastic neural network modeling approaches is utilized to capture
CA50 (the timing when 50% of the fuel energy has been released) along with indicated mean effective
pressure (IMEP). The performance of the hybridized framework is compared to a classical ANN and
a physics-based-only framework in a stochastic environment. To ensure high robustness and low
computational burden in the hybrid framework, the CA50 input parameters along with IMEP are
captured with a Bayesian regularized ANN (BRANN) and then integrated into an overall physics-
based 0D Wiebe model. The outputs of the hybridized CA50 and IMEP models are then successively
fine-tuned with BRANN transfer learning models (TLMs). The study shows that in the presence of a
Gaussian-distributed model uncertainty, the proposed hybridized model framework can achieve an
RMSE of 1.3 × 10−5 CAD and 4.37 kPa with a 45.4 and 3.6 s total model runtime for CA50 and IMEP,
respectively, for over 200 steady-state engine operating conditions. As such, this model framework
may be a useful tool for real-time combustion control where in-cylinder feedback is limited.

Keywords: artificial neural network; transfer learning; adaptive control; combustion modeling; diesel
engine; Bayesian regularization

1. Introduction

Stricter emissions regulations and renewed interest in reducing the carbon footprint
of internal combustion engines have prompted the evolution of the fuel and air pathways
of modern diesel engines, in order to maximize efficiency while minimizing exhaust
emissions [1,2]. Some of the complex subsystems introduced in modern diesel engines
include the turbocharger and high- and low-pressure exhaust gas recirculation loops [1].
High-fidelity models or combustion phasing feedback are essential to ensuring proper
combustion management on these devices [3,4]. While some proposed modeling and
control improvements require additional sensors [5,6], these changes would complicate
the engine econometrics, and may not be economically viable [7]. Instead, powerful
algorithms for online nonlinear model parameter estimation have made least-squares-
based minimization methods feasible for real-time engine modeling and control [8–11].
These computationally efficient recursive algorithms may augment a model’s fidelity
and improve the robustness of models so as to better handle system constraints and
uncertainties. Recursive prediction approaches have also been shown to improve the
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predictive performance of ANN-based models [12]. Improvements in model accuracy
could alleviate the need for expensive high-precision sensors in closed-loop control.

Over the years, a variety of control-oriented methods for modeling combustion phas-
ing have been proposed, and there has been growing interest in utilizing data-driven
techniques for modeling and control. Several researchers have demonstrated the use of
online parameter optimization to capture or control combustion phasing in diesel en-
gines [13,14]. In [13], the closed-loop control approach utilized online adjustment of the
start-of-injection (SOI) timing and fuel rail pressure (RP) to achieve a desired CA50, and the
authors showed that ANN-based control resulted in improved fuel consumption, nitrogen
oxides (NOx), and soot emissions compared to a well calibrated look-up table. Tan et al.
used extremum seeking and online optimization of engine model parameters to maximize
IMEP [14]; an average error of 0.17 bar was achieved with this online-based strategy. The in-
tegration of other unique data-driven, empirical, and semi-empirical methods has also
been explored in [15,16], where physics-based models were utilized to extend the range of
machine learning predictions via the space transform. The method was effectively demon-
strated for predictions of aerodynamic forces and hydraulic turbine efficiencies, as well as
diesel engine calibration and combustion engine emissions. In [17], multiple ANN models
were built with several input variables to capture an index of a complex transportation
network. This approach was shown to improve the assessment of instabilities associated
with the direct complex parameter capture encountered when using a single ANN model.

The use of ANNs has also been explored for the control of more complex engine
architectures. In a recent study, Irdmousa led efforts to develop a data-driven model of
combustion phasing for a reactivity-controlled compression ignition (RCCI) engine [18].
A linear parameter-varying support-vector machine (LPV-SVM) with multivariate inputs
was used, and a maximum CA50 average tracking error of 0.7 CAD was achieved with
an LPV-model-based controller. In [19], machine learning and combustion physics were
integrated to predict CA50 and other combustion metrics for an RCCI engine. The random
forests technique was implemented to develop correlative mapping between physics-
based model coefficients and the engine’s operating condition, and an ANN was utilized
for model coefficient determination. A standard deviation of 0.67 CAD, 1.19 CAD, and
0.223 bar was achieved for the predictions of the start of combustion (SOC), CA50, and
IMEP, respectively. Similarly, Wang et al. [20] combined polynomial fitting functions and
ANNs to predict diesel engine emissions and performance. A quadratic function was
utilized to parameterize CA50, and the resulting model was used to optimize engine
emissions and thermal efficiency. It was shown that with reasonable modifications to the
models for wider engine operating conditions, the emissions prediction model could be
used to achieve optimal performance in a combustion loop control. In addition, a semi-
physical ANN-model-based prediction of the flame kernel development for a spark ignition
(SI) engine was developed in [5], where critical physical parameters such as in-cylinder
pressure, unburned gas density at spark timing, engine speed, fuel injected, and residual
gas fraction were used as inputs to the ANN model. Model validation at 300 experimental
steady-state operating points showed that a coefficient of determination (R2) of 0.99 could
be achieved. Recently, direct prediction of CA50 using an ANN has been utilized for
combustion control in a heavy-duty natural gas engine [7], demonstrating that the need for
an in-cylinder pressure sensor could be avoided. Excess air ratio, exhaust gas recirculation
(EGR) ratio, intake manifold pressure, and spark timing were utilized as inputs to a 10-
hidden-layer standard ANN model, which was trained with a Levenberg–Marquardt (LM)
algorithm for a fixed speed test case of 1100 rpm with 0–30% EGR rate sweeps. An R2 of
0.998 was achieved in predicting CA50, and was deemed adequate for use in a sensorless
combustion control.

While data-driven techniques can be utilized on their own, they can also be integrated
with physics-based approaches to create various types of “grey box” models. For example,
a direct classical ANN technique cascaded with a smooth variable structure filter (SVSF) for
CA50 prediction was explored in conjunction with some physics-informed model inputs
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in [21]. The temperature, pressure, and oxygen fraction at intake valve closing (TIVC,
PIVC, FIVC), SOI timing, and fuel mass were utilized as model inputs to the ANN model,
and the CA50 estimation error was able to be reduced from 5 CAD to 1 CAD. In a previous
work, the authors utilized an integrated physics-based and data-driven approach to capture
the gas exchange processes of a modern diesel engine, and observed similar improvements
in performance [1].

Further improvements in predictions have been observed with the incorporation of
transfer learning approaches for combustion phasing modeling. In [22], a maximum mean
discrepancy criterion was incorporated into an ANN to fine-tune the RCCI combustion
phasing predictions from an LPV state–space combustion phasing model. A best fit rate
(BFR) improvement in the CA50 was seen from 3.63%, without fine-tuning, to 85.52% BFR
after fine-tuning. An improvement in IMEP BFR from 0% to 97.19% could be achieved
with the transfer learning strategy when a new dataset with a different distribution was
tested. Furthermore, in [23], an 11-input, 8-output Bayesian regularized (BR) 10-neuron
hidden-layer ANN was coupled with a particle swarm optimization (PSO) algorithm to
characterize the engine performance of an ethanol SI engine operating with a negative
valve overlap. The performance indices, which were predicted with the joint BRANN–PSO
network, were IMEP, NOx emissions, hydrocarbon emissions, carbon monoxide (CO)
emissions, air flow, indicated efficiency, coefficient of variation of IMEP (COVIMEP), and
indicated specific fuel consumption (ISFC). An R2 above 0.93 was achieved for all of the
output predictions. A final example can be seen in [24], where a multizone thermokinetic
engine model was coupled with an ANN and a genetic algorithm to predict CA50, IMEP,
CO, and total unburned hydrocarbons (THC); average errors of 1.2 CAD, 0.4 bar, 10 PPM,
0.8%, and 394 PPM were obtained for the predictions, respectively.

The literature demonstrates that leveraging physics to inform ANN models could
enhance predictions of engine metrics and, as such, improve real-time combustion phas-
ing control methods without the strict need for in-cylinder sensors. While prior work
using either direct ANNs or integrated ANN and physics-based approaches to predict
critical engine metrics has shown promise [1,5–7,13,15,16,18–24], some challenges with
uncertainty and complexity still need to be addressed. Some existing methods assume
linear relationships and, as such, are simpler to use for control, but have a more limited
ability to extrapolate, and encounter greater inaccuracy due to the nonlinearity of engine
processes [7,13,18,22]. Others have complex submodels of effects such as heat transfer loss
and oxygen fraction that increase the computational burden [14,21]. In addition, meth-
ods that leverage ANNs can encounter instabilities and time-consuming heuristic model
development [12,17].

In this study, these issues are addressed by segmenting the combustion phasing model
into a lower model dimension via physical knowledge and then capturing the most influ-
ential and more deterministic combustion phasing input parameters with BRANNs [25].
The reduced model dimension allows for a hybridized physics-based CA50 prediction with
a simple nonlinear model adaptation. The hybridized model outputs are also then succes-
sively fine-tuned with a BRANN ad hoc transfer learning model (TLM). This approach
should allow model uncertainty to be better quantified in a deterministic and parametric
way, since the ANN is integrated within a physical domain. In addition, the intelligent
adaptation approach used in this work provides a simpler and more deterministic way to
handle system constraints, since the input–output relationship of the combustion phasing
can be explicitly identified in a physical domain. In this study, an intelligent adapta-
tion is incorporated in a simple 0D Wiebe combustion model to capture CA50 using an
operating-point-dependent optimization algorithm that circumvents excessive modeling
and computational complexities.

This study presents several novel contributions to the area of combustion modeling.
The first contribution is an intelligent adaptation of a simple 0D Wiebe combustion model to
capture CA50, while the second is the introduction of a method of characterizing the more
deterministic combustion phasing input parameters with ANNs within a physics-based
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structure. These additions provide modeling simplicity that has not been achieved in the
literature, and these methods may enable reduced modeling effort and lower computa-
tional power to be required for combustion control. Moreover, as previously mentioned,
Wang utilized an ANN to capture SOC for CA50 prediction in an SI engine [5], but the
CA50 model needed independent modelling of the in-cylinder pressure as a model in-
put, which can be challenging to capture accurately in the presence of uncertainties [1].
The combustion phasing model developed in this study avoids the need for an in-cylinder
pressure model. This approach may provide a cost-effective way to implement combustion
control, since fewer measurement devices would be required. A third contribution of this
work is the exploration of the use of the BRANN model for combustion phasing modeling.
Unlike in [22], the BRANN model is utilized in this work to develop the transfer learning
model, which avoids unnecessary model validation. This reduces modeling effort and
computation time, and provides high accuracy. In addition, the model fine-tuning can be
done both offline and online. The handling of uncertainties by “Bayesifying” the ANNs
and successively transferring the predictions from the hybridized framework to an ad
hoc BRANN model also ensures robustness for real-time application. In summary, the
hybridized model framework developed in this work provides robustness, along with the
advantage of efficiently analyzing and accurately capturing the underlying physical and
chemical interactions in the combustion phasing event, while utilizing fewer measurements
from stock engine sensors.

The remainder of this paper is presented as follows: Section 2 details the experimental
setup and testing conditions. Section 3 presents the individual model methodologies and
validation. Section 4 compares the results of the various models, and Section 5 concludes
the study and offers recommendations for future work.

2. Experimental Setup

Experimental studies for this work were conducted on a 2013 Volkswagen 2.0 L
compression ignition engine equipped with a variable geometry turbocharger (VGT),
cooled low-pressure exhaust gas recirculation (EGR), and high-pressure EGR. The engine
system is shown in Figure 1. Flow through the air path on this system is dictated by the
VGT vane nozzle position, low-pressure and high-pressure EGR valve positions, throttle
valve position, and an exhaust flap that controls the system backpressure. Fresh air flow
into the engine is measured by a Sierra Instruments Air-Trak system. The engine is also
equipped with a common rail fuel injection system. Fuel flow is measured by a Sierra
Instruments Fuel Trak system, and is also conditioned to keep a constant temperature
and pressure.

Figure 1. Engine schematic.
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The engine speed and torque are simultaneously measured by an eddy current dy-
namometer, and the data are monitored via the Sierra CADET software, which is installed
on a computer as shown in Figure 2. Load and speed control are achieved by an intermedi-
ary engine modular box that interlinks the ECU and the Sierra CADET data monitoring
software. In addition to the engine speed measurement, both a stock engine speed sensor—
which is routed to the ECU—and a high-precision AVL crank-angle encoder are used to
measure the engine speed. The engine speed data are monitored using the ECU software
and AVL IndiCom. All data of other essential engine parameter sensors are obtained
through the Sierra Data Acquisition System (DAQ) and monitored using the Sierra CADET
software, as illustrated in Figure 2.

Figure 2. Engine hardware and systems measurement schematic.

Data for the model creation and validation were collected at over 200 operating points
that included variations in engine speed and torque, VGT and low-pressure EGR actuator
settings, exhaust flap position, and charge air cooler (CAC) settings. During all tests, the
throttle valve was kept fully open, and the high-pressure EGR valve was kept closed.
Only low-pressure EGR use was explored in this work. The high-pressure EGR is used
in a limited operating range and, as such, was not leveraged. At all operating points, a
single fuel pulse was used, and the start of injection was altered to maintain a CA50 of
8 degrees after top dead center (aTDC). The actual CA50 and the IMEP were monitored in
AVL IndiCom by using the conditioned pressure from a high-resolution Kistler pressure
transducer mounted in cylinder three, along with the crank-angle signal obtained from
an AVL crank-angle encoder. Figure 2 shows the interactions of the various measurement
systems used to obtain data for this study.

The range of engine operating conditions explored in this work was scattered across
the engine operation map, and included 212 operating conditions. The normal distribution
plots of the data collected for engine speed, torque, VGT actuator settings, low-pressure
EGR actuator settings, exhaust backflow flap valve settings, and the charge air cooler (CAC)
settings are depicted in Figure 3. The normal distribution plots of the data collected for
engine speed, torque, VGT actuator settings, low-pressure EGR actuator settings, and
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exhaust backflow flap valve settings show a quasi-normal distribution of the operating
points. On the other hand, the charge air cooler (CAC) settings show a right-skewed
distribution, as is consistent with the test protocol.

Figure 3. This figure shows the normal probability distribution plots of six (6) engine parameters
across the 212 experimental data collected for this study: (a) engine speed normal probability
distribution; (b) torque normal probability distribution; (c) VGT actuator settings normal probability
distribution; (d) low-pressure EGR actuator settings normal probability distribution; (e) exhaust flap
valve position normal probability distribution; (f) CAC settings normal probability distribution.
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The engine is rated at a maximum speed of 4500 rpm and a maximum power output
of 103 kW at 4000 rpm. The maximum torque is also rated at 320 Nm at 1750 rpm up to
2500 rpm. Table 1 shows the range of conditions covered in the experiments.

Table 1. Range of engine testing conditions.

Parameter Minimum Maximum

Engine Speed 2000 rpm 4000 rpm
Engine Torque 50 Nm 150 Nm

Intake Manifold Pressure 13.6 psi 27.9 psi
Intake Manifold Temperature 306 K 395 K

Start of Injection 0◦ bTDC 10.2◦ bTDC

3. Model Development

The data collected were used to train and validate three different modeling approaches
to capture CA50 along with IMEP. These models are as follows:

1. A multilayer perceptron (MLP) ANN for capturing CA50 with various engine input
parameters, including the experimental start of combustion (SOCExperm) and burn
duration (BDExperm). In this model framework, IMEP is also characterized by a
classical MLP ANN using similar but fewer input parameters than the CA50 ANN;

2. A physics-based model that utilizes parameterized physical SOC and BD submodels
as the main model inputs to an adaptive simple Wiebe function for CA50 prediction.
The Wiebe function is given by Equation (1), in which the SOC and BD are the main
input parameters [4]:

x(θ) = 1− e−a( θ−SOC
BD )

n
(1)

where the term x(θ) is the burn fraction over crankshaft positions θ, and the Wiebe
shape factors a and n are parameterized via MATLAB’s f mincon function to provide
high-accuracy predictions across the engine’s operating range. A physics-based IMEP
model was also developed. The physics-based IMEP model utilizes engine geometrical
characteristics, fuel properties, in-cylinder temperature models, and measured fuel
mass flow as the main model inputs;

3. A hybrid model that utilizes ANN SOC and BD submodels with the same adaptive
simple Wiebe function used in the physics-based approach. In this model framework,
the SOC and BD are captured with a Bayesian regularized multilayer perceptron
(BRMLP) artificial neural network and then fed into the adaptive Wiebe model, which
is then transferred to an ad hoc BRANN transfer model to further fine-tune its predic-
tions. In this hybrid framework, the IMEP is also characterized with a BRANN along
with the SOC and BD models, but it is identified in parallel to the CA50 prediction,
and also successively fine-tuned with its ad hoc BRANN TLM. Therefore, the hybrid
framework features a decoupled multiple-input, single-output (MISO) strategy. While
most inputs to the SOC BRANN and BD BRANN models are actuator signals, some
input parameters to these submodels also need to be modeled or measured directly.

The subsections below describe the development of the ANN CA50 and IMEP mod-
els, the physics-based CA50 and IMEP models, and the hybridized CA50 and IMEP
models. To ensure consistency in the flow of the models’ description, the direct ANN
CA50 model’s development is discussed first, followed by that of the direct ANN IMEP
model. The physics-based subsections describe the individual SOC and BD submodels
for the physics-based CA50 prediction, followed by those for the physics-based IMEP.
The subsection describing the hybridized CA50 and IMEP model framework discusses the
SOC BRANN and BD BRANN models for the hybridized CA50 prediction as well as its
BRANN transfer learning model. The IMEP-hybridized BRANN model is also discussed,
followed by its transfer learning model.
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3.1. ANN Models

As discussed previously, one promising way in which combustion phasing could be
captured is with an ANN.

3.1.1. ANN CA50 Model

In this first approach, capturing the CA50 involved the use of direct measurements of the
input parameters to train an MLP ANN. In this model framework, a standard approach was
utilized for the ANN weight parameterization, using a Levenberg–Marquardt (LM) training
algorithm. The mathematical implementation of the MLP and LM algorithm is described in the
authors’ previous work [1]. The LM algorithm was utilized due to its known high computational
power, low CPU memory usage, and high performance [26]. Figure 4 illustrates the CA50 and
IMEP classical ANN model structure used in this work.

Figure 4. CA50 and IMEP classical ANN model framework.

The direct CA50 ANN model was created using MATLAB’s deep learning toolbox.
In the model setup, a large set of available engine variables were initially all used as inputs.
These input parameters were then pruned to an optimal size using a sensitivity analysis.
This was achieved by setting the mean square error (MSE) between the experimental values
(CA50) and the predicted values ( ˆCA50) as the optimization target. The model was then
run 50 times to record the outcome. Next, while maintaining a fixed input, the model was
again run 50 times but with the hyperparameters such as the hidden-layer size being varied
with a one-step increment for every 50 runs until there was no significant reduction in
the MSE. The optimal set of input variables and hidden-layer size were selected as those
that gave the least MSE and lowest early-stopping epoch. The resulting hidden-layer size
had 30 neurons. The variable set included nine variables, allowing CA50 to be expressed
as follows:

CA50ANN = f
(
δΨair, δΓfuel, δΩintake, N, Torq, SOCExperm, BDExperm, TEM, PEM

)
(2)

where δΨair represents a particular combination of the air-handling actuator signals of
the turbocharger’s vane nozzle position (VNP), the low-pressure EGR valve position
(EVP), and the exhaust flap valve position (EFP); the term δΓfuel represents the combi-
nation of the corresponding fuel-path actuator signals of the SOI, injector electrical delay
(τelec), and the fuel mass flow (Mfuel); δΩintake is the composite combination of the intake
gas dynamics due to pressure, temperature, and mass changes; N is the engine speed;
Torq is the engine torque; SOCExperm is the experimental start of combustion; BDExperm is
the experimental burn duration; and TEM and PEM are the exhaust manifold temperature
and pressure, respectively.
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A total of 212 data points were utilized for the overall CA50 ANN model’s develop-
ment, of which 80% of the data were used to train the model, 10% were used for validation,
and the remaining 10% were used for model testing. Figure 5 shows the engine speed and
torque combinations of the training, validation, and testing datasets used for the CA50
ANN model’s development.

Figure 5. This figure shows the engine speed and torque classification of the data used for the CA50
ANN model’s development: (a) engine speed training data; (b) torque training data; (c) engine speed
validation data; (d) torque validation data; (e) engine speed testing data; (f) torque testing data.
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Figure 5 shows the distribution of the data used for the training, validation, and testing
subroutines of the CA50 ANN model. The data sectioning was randomized so as to enhance
the model’s regularization. The desired model accuracy was reached with early stopping at
17 epoch iterations in ~0.28 s. The CA50 ANN model returned a Pearson product–moment
correlation coefficient (PPMCC) of 81.8% and an RMSE of 0.27 CAD. Figure 6 shows the
regression analysis of the CA50 ANN model’s results.

Figure 6. Classical ANN CA50 model regression.

The first quadrant of the ANN CA50 model regression plots in Figure 6 shows the
training performance, which has a reasonably high correlative measure (R = 0.95368).
The second quadrant shows the validation of the trained model with data that it was
not trained on, and shows reasonable generalization ability (R = 0.73327). The third
quadrant of the plot shows the testing validation of the trained ANN CA50 model, with
a different withheld dataset other than the training and validation datasets. The testing
performance showed a lower but a statistically significant correlation measure (R = 0.15942).
The last quadrant in Figure 6 provides the overall correlative measure (R = 0.81755) of the
ANN CA50 model. The correlative metrics, along with the RMSE of 0.27 CAD, indicate a
reasonably well-performing ANN CA50 model.

3.1.2. ANN IMEP Model

The IMEP ANN model followed a similar development routine as with the CA50
ANN model. The model was quite simple, utilizing only 6 main input parameters and
15 hidden-layer nodes. The mathematical function given in Equation (3) describes the
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general ANN IMEP structure. As with the CA50 ANN model, 80% of the data were used
for training, 10% were used for model validation, and the remaining 10% were used for
model testing.

IMEPANN = f(δΨair, δΓfuel, δΩintake, N, TEM, PEM) (3)

Figure 7 shows the classical IMEP ANN model validation and illustrates the excellent
accuracy achieved by the ANN in these cases. The IMEP classical ANN model returned a
testing set PPMCC of 99.37% and an RMSE of 6.33 kPa with a 0.20 s computational runtime
in 13 epoch iterations. The model was seen to be stable when random initializations
were performed.

Figure 7. Comparison of the ANN IMEP model and actual IMEP.

3.2. Physics-Based Models

A common way of predicting CA50 is with a physics-based approach. As such,
physics-based models were developed to serve as a baseline for comparison. The CA50
was calculated using a Wiebe function that requires underlying SOC and BD models.
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3.2.1. Physics-Based SOC Model

The physics-based SOC model used in this work was modified from that of [27],
and is shown in (4). The SOC was taken to be the algebraic sum of the start of injection
command (SOI), delay due to the physical injector electrodynamics (τelec), and the ignition
delay (τID).

SOCphys = SOI + τelec + τID (4)

The electrical delay (τelec) takes into account the thermodynamic loss angle shift in
the determination of the TDC by the AVL 365C encoder, as reported by the AVL IndiCom
software, and was determined to be 1 CAD. The chemical ignition delay model (τID) was
modified from the form proposed in [28]. This model considers the ignition delay to be
impacted by effects at three characteristic time periods representing the low (τ1r), medium
(τ2r), and high (τ3r)-temperature regions of ignition via Arrhenius-type equations. Due
to the heterogeneous nature of diesel combustion [29], an additional term capturing the
effects of turbulence (τψ) was introduced to enhance the model’s accuracy [30]. This was
achieved by capturing the influence of the intake dynamics and the piston movement via
the mean piston speed (SP) and the intake manifold pressure (PIM). Equation (5) shows
the general form for ignition delay, while Equation (6) shows the final model in which the
underlying expressions are given:

τID =
1

τ1r + τ2r
+

1
τ3r

+ τψ (5)

τID =
1

c1φ
c3Pc2

IMexp
(

c10
TIM

)
+ c4Tc5

IMPc6
IMexp

(
c11
TIM

) +
1

c7φ
c8Pc9

IMexp
(

c12
TIM

) + (c13PIM + c14SP + c15) (6)

In (6), TIM is the intake manifold temperature, and φ is the equivalence ratio. The ci
terms are model constants that were found using the generalized reduced gradient (GRG)
algorithm. The overall physics-based SOC model is found by combining (5) and (6),
as follows:

SOCPhys = SOI +
1

c1φ
c3 Pc2

IMexp
(

c10
TIM

)
+ c4Tc5

IMPc6
IMexp

(
c11
TIM

) +
1

c7φ
c8 Pc9

IMexp
(

c12
TIM

) + (c13PIM + c14SP + c15) + τelec. (7)

The ignition delay model is the main non-actuator component of the generalized
parametric physics-based SOC model given by (6); as such, its analysis reflects the accuracy
of the entire SOC model. The ignition delay model was observed to produce accurate pre-
dictions for all 212 engine operating points, with only a few exceptions. In fact, the model’s
fidelity had a PPMCC of 97.4% and an RMSE of 1.02 CAD. A graphical representation of
this model’s accuracy is shown in Figure 8.

This model is fairly accurate, but also complex. As such, the model’s 97.2% PPMCC
was offset by the larger computational runtime of the parameter optimization. It can
be seen in Equation (6) that the entire SOC model utilizes 15 decision variables, whose
values are given in Table 2. The SOC model development showed that the GRG algorithm
utilized over 200 iterations for an approximately 230 s computational runtime in the global
optimization subroutine.
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Figure 8. Comparison of predicted and actual ignition delay.

Table 2. Tuning constants for the physics-based SOC model.

Model Constants Value

c1 4.47× 10−9

c2 6.58
c3 1.67
c4 0.907
c5 −0.0499
c6 −0.972
c7 3.53
c8 −0.126
c9 −9.21
c10 −124
c11 8.53
c12 0.997
c13 0.672
c14 −1.24
c15 −1.14

Figure 9 shows a comparison of the resulting overall physics-based SOC model to the
actual SOC. The prediction points with higher errors appear to have operating conditions
with characteristics that were not well accounted for in the overall SOC parametric physics-
based model.

Predictions that had errors outside the 90% confidence bounds were operating condi-
tions at the extremes of the air-handling actuation signals for a certain engine speed and
torque. For example, the case with 100% VNP, 100% EVP, 0% EFP at 3000 RPM, and 67 Nm
torque had an absolute error of ~2.53 CAD. Furthermore, conditions that had inadequate
air breathing characteristics and, thus, a tendency to misfire also had higher errors, such as
0% VNP, 60% EVP, 60% EFP at 2000 RPM, and 11.35 Nm, which had the maximum absolute
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error of ~4.01 CAD. It is also possible that, coupled with process noise, the GRG algorithm
could not converge to a true global solution.

Figure 9. Comparison of the physics-based SOC model and actual SOC.

3.2.2. Physics-Based BD Model

The physics-based BD model was developed by parameterizing the physical contri-
bution of the laminar flame speed and the rate of diffusion and late combustion in the
burn profile [31–33]. A modified form of the van Tiggelen and Tabaczynski model cap-
turing the laminar flame speed’s contribution was utilized, and is shown in Equation (8).
The laminar flame speed model utilized the temperature at TDC (TTDC), fuel mass (Mfuel),
engine charge flow (Wengine) [1], and exhaust manifold temperature (TEM) as model inputs.
The contribution of diffusion and late combustion, also depicted by Equation (9), was mod-
eled empirically as a functional interaction of the SOC, SOI, equivalence ratio (φ), excess
air ratio (λ), intake manifold temperature (TIM), and the air-handling actuator positions
(VNP, EVF, and EVP) expressed in percentages. To improve the robustness of the model,
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the measured excess air ratio was used, and the equivalence ratio was calculated from the
air and fuel flow measurements.

∆θflame = d1 +

[
d2TTDC

√
1

TEM
[Mfuel]

d3
[
Wengine

]d4exp
(
−d5

d6TEM

) ]d7

(8)

∆θdiff+lc = (d8θSOCφ)
2 + (d9θSOI) + (d10θSOCθSOI)

2 +
(

d11 + d12φ+ d13φ
d14
)

+
(

d15TIMλd16
)
+ (d17VNP·EVF·EVP)

(9)

The final burn duration model, given by Equation (10), was evaluated as the algebraic
sum of the laminar flame speed’s contribution and the contribution of diffusion and
late combustion. The di terms are model constants that were also found using the GRG
algorithm. Table 3 shows the values of the di terms in the optimized physics-based BD
model.

BDPhys = d1 +

[
d2TTDC

√
1

TEM
[Mfuel]

d3
[
Wengine

]d4exp
(
−d5

d6TEM

) ]d7

+ (d8θSOCφ)
2 + (d9θSOI)+

(d10θSOCθSOI)
2 +

(
d11 + d12φ+ d13φ

d14
)
+
(

d15TIMλd16
)
+ (d17 VNP·EVF·EVP)

(10)

Table 3. Tuning constants for the physics-based BD model.

Model Constants Value

d1 3
d2 5.03× 1095

d3 −12.1
d4 48.31
d5 1.91× 105

d6 3.48
d7 0.0223
d8 −0.000221
d9 −0.254
d10 3.73× 10−5

d11 −234
d12 −5.50
d13 2355
d14 0.02795
d15 0.0008125
d16 2.555
d17 4.47× 10−7

The burn duration model has higher errors than the SOC model, as illustrated
in Figure 10. The parametric physics-based BD model returns a PPMCC of 97.0% and
an RMSE of 1.77 CAD. The GRG algorithm utilized over 906 iterations for a 42.1 s computa-
tional runtime in the parametric optimization subroutine.
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Figure 10. Comparison of the physics-based BD model and actual BD.

3.2.3. Physics-Based CA50 Model

After the physics-based SOC and BD models were developed, they were then used
as inputs to the CA50 model, which is derived from Equation (1) and can be expressed
as follows:

CA50Phys(k) = SOCPhys(k) +
[

ln 2
awiebk

] 1
nwiebk BDPhys(k). (11)

Figure 11 shows the model structure of the physics-based CA50 and IMEP models.
The Wiebe function is a simple and widely accepted 0D combustion model, which is

highly amenable for control; however, it generally lacks high predictive capability [31], and
cannot adapt to changes that may occur as an engine ages [8]. Consequently, the Wiebe
function becomes less effective if it is globally parameterized for the ECU [14,31]. In order
to improve its predictive robustness for wider engine operating conditions, the Wiebe
function was made adaptable by the use of a recursive least-squares model parameter opti-
mization. In Equation (11), k represents a particular engine operating condition. For each
k operating point, awieb and nwieb (which are the Wiebe shape factors) are updated by
minimizing the cost function given by (12), in which CA50target (k) is the desired optimal
trajectory. The minimization objective is realized through MATLAB’s f mincon nonlinear
model parameter optimization function.

ΘPhys(k) =‖ CA50target(k)−CA50Phys(k) ‖2 (12)

The validation of the resulting model predictions of the physics-based CA50 model is
shown in Figure 12.
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Figure 11. CA50 and IMEP physics-based model framework.

Figure 12. Comparison of the physics-based CA50 model and the actual CA50 trajectory.

The physics-based CA50 model returned a PPMCC of ∼ 95.0% and an RMSE of
0.17 CAD with a 49.4 s computational runtime using an iteration convergence tolerance of
1× 10−99 for the online parameter optimization subroutine in an unperturbed environment.
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3.2.4. Physics-Based IMEP Model

The IMEP quantifies the work output of an engine [29]. Due to the computational
complexities involved in in-cylinder pressure modeling for a larger engine operating
range [1,34], the physics-based IMEP model (IMEPPhys) was similarly parametrized as
in [34]. As shown in Equation (13), it was expressed as a function of displaced volume
(Vdis), fuel mass flow rate (Mfuel), intake valve closing temperature (TIVC), exhaust valve
closing temperature (TEVC), start-of-combustion temperature (TSOC), end-of-combustion
temperature (TEOC), and the fuel-specific heat at constant volume (cv).

IMEPPhys = f(Mfuel, cv, Vdis, TIVC, TSOC, TEOC, TEVC) (13)

TIVC was assumed to be the same as the measured intake manifold temperature (TIM), and
the other model arguments TSOC, TEOC, and TEVC were modeled as given in Equations (14)–(17);
they are only briefly discussed in this work. More details of their modeling development can be
found in [34]. TSOC is found by assuming isentropic compression via Equation (14).

TSOC = TIVC·
(

VIVC

VSOC

)ncomp−1
(14)

where VIVC and VSOC are the in-cylinder volume at intake valve closing and the start of
combustion, respectively; these were determined using the slider–crank theory volume
model [29]. The term ncomp is the polytropic compression index obtained from a simple
polytropic pressure fitting of the predicted and measured compression pressure phase.

TEOC is described as follows:

TEOC = TSOC +
(

a0 + a1·θSOC + a2·θ2
SOC

)
·∆T (15)

in which ∆T accounts for heat transfer and is given by:

∆T =
LHV·

(
Mfuel

Wengine

)
·φ

cv·
(

Mfuel
Wengine

·φ+ 1
) . (16)

where LHV is the fuel’s lower heating value. The TEOC parameter is then used to compute
TEVC via:

TEVC =

[
TEOC·

(
VEOC

VEVO

)nexp−1
]
·
(

VEVO

Vexh

)nexp−1
. (17)

The model parameters a0, a1, and a2 are tuning constants found by model calibra-
tion, and whose values are discussed later in this subsection, while nexp is the expansion
polytropic index found similarly as for ncomp. The VEOC, VEVO, and Vexh parameters are
the volume at the end of combustion, exhaust valve opening, and exhaust manifold, re-
spectively. The resulting model arguments are then fed into the model in Equation (18) to
obtain the physics-based IMEP model.

IMEPPhys = C1·Mfuel
cv

Vdis
(TIVC − TSOC + TEOC − TEVC) (18)

where C1 is a model tuning constant that is also found by model optimization.
In this study, two modeling optimization approaches were explored for the physics-

based IMEP model: First, an online parameterization approach that utilized a recursive
least-squares algorithm to update each model constant for each operating condition using
MATLAB’s fmincon was explored. Figure 13 shows the variations of the various modeling
constants obtained in the adaptive physics-based IMEP model.
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Figure 13. This figure shows the IMEP adaptive physics-based model’s tuning constants and their
trimmed mean: (a) a0 constant values; (b) a1 constant values; (c) a2 constant values; (d) C1 constant values.

The second method was a static parameterization approach that utilized the GRG
algorithm to find global tuning constants for the whole operating point set. For this
second approach, a regressor (based on similar argumentation to that given in [35]) given
by Equation (19) was developed to globally fit the constants obtained from the online
parameterization. The Gi terms are the resulting global model constants obtained for the
physics-based IMEP model.

M1 = G1 ·

G3N
G4 + G5φ

G6 + G7W
G8
engine + G9

(
Mfuel

Wengine

)G10

+ G11M
G12
fuel + G13

W
G15
engineφ

G16 N
G17

(
Mfuel

Wengine

)G18

·M
G19
fuel

G14


G2

(19)

The Gi terms and their resulting optimized values are shown in Table 4.
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Table 4. Global tuning constants for the physics-based IMEP model.

Global
Constants C1 Constants a0 Constants a1 Constants a2 Constants

G1 −1.12022 8.18030 1.98573 191433.3
G2 0.11789 −2.07501 −0.01369 541.240
G3 −0.27385 0.76698 −0.16477 0.10354
G4 −9.24762 −0.64384 −2.38677 −6.12314
G5 0.31595 659.915 0.46292 0.24445
G6 0.00388 4.02354 −2.10743 0.09418
G7 0.08581 2407.80 6.00093 −128.950
G8 −0.01172 0.65975 −0.06542 −217.089
G9 −0.41197 1.01783 3.8952× 10−5 0.74714
G10 0.00637 −0.00201 7.7920× 10−9 −0.00163
G11 4098.27 1 −0.78875 0.56064
G12 2.15874 1 20.12791 5.49783
G13 0.01003 1.26320 25.18099 −0.18746
G14 2.8246× 10−4 −0.00950 21.49473 −0.01356
G15 −0.36759 1× 10−99 −2.00973 17.99333
G16 −1.09780 1× 10−99 1.15165 −122.763
G17 −7.57761 1× 10−99 −3.66506 35.90610
G18 1.72289 1× 10−99 2.41961 −7.61119
G19 0.94137 1× 10−99 7.51263 17.95118

Figure 14 compares the performance of the adaptive and static physics-based IMEP
models with the experimental results, and demonstrates that similar results are achieved
with both approaches in most cases.
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In an unperturbed environment, the adaptive physics-based IMEP model returned
a PPMCC of 100% and an RMSE of 1.79× 10−6 kPa in a 50.9 s computational runtime,
while the more computationally expensive static approach returned a 95.16% PPMCC
and an RMSE of 17.7 kPa. Table 4 shows that a significant number of decision variables
(76 parameters) had to be tracked for the static approach. This approach could be very useful
for use by the ECU during engine operating conditions that may exhibit saturation [36], or
when excessive model adaptation may be detrimental for engine control.

3.3. Hybridized Models

The hybridized model framework for the CA50 and IMEP features an integration of
the ANN and physics-based models.

3.3.1. Hybridized CA50 Model

The hybridized CA50 model utilized ANN submodels of the input parameters (SOC
and BD) to the simple 0D Wiebe combustion model. The development of the ANN SOC and
BD models will first be discussed, followed by an examination of the hybrid Wiebe model.

ANN SOC Model

An ANN model was created to characterize the SOC. To ensure model robustness
while integrating the SOC ANN model into the hybridized framework, a stochastic neural
network was utilized. Stochastic neural networks involve the development of an ANN
with probabilistic transfer functions or weights [37]. This technique ensures a model’s high
robustness to epistemic uncertainties, especially when there are limited data. The SOC
ANN was developed using MATLAB’s deep learning toolbox, and followed a similar
heuristic development to the direct classical ANN models developed in Section 3.1. How-
ever, the SOC ANN model featured a Bayesian regularized multilayer perceptron (BRMLP)
artificial neural network with nine input nodes, five hidden-layer nodes, and one output
node. The BRMLP architecture was chosen because it provides excellent regularization
performance coupled with simplicity. As such, the MLP should be able to capture com-
plex dynamics, and the Bayesian regularization (BR) will adequately handle epistemic
uncertainties [1,10,38]. A brief mathematical description of the BRANN is given below.

The Bayesian regularized ANN is based on the premise that some prior distributions
can be imposed on the ANN model parameters in order to shrink large weights in the antic-
ipation of achieving a more generalized infinitesimal mapping error between the estimated
and target parameters [38]. Therefore, given the training dataset D =

{
SOC, (pi)i=1,...,n

}
of the inputs (pi) as a vector of i samples of the target variable (SOC), a sum of squared
estimation errors ED(D|w, M ) that maps n inputs to the target variable with some model
coefficients (w) for a particular ANN architecture (M) can be defined as follows:

ED(D|w, M ) = ∑n
i=1

(
SOCi − ˆSOCi

)2 (20)

where ˆSOCi is the estimated variable. Equation (20) is minimized with early stopping
regularization, and the BRANN technique adds a sum of squares of the architecture weights
term Ew(w|M), which penalizes large weights in expectation of an optimal input–output
functional mapping for unseen datasets. A gradient-based optimization technique is used
to minimize the resulting function given in Equation (21), which equates to penalizing a
log-likelihood [38].

F = βED(D|w, M ) + αEw(w|M) (21)

In Equation (21), β and α are hyperparameters, which are estimated adaptively.
The weight decay coefficient (α) in the weight decay term αEw(w|M) has been shown to fa-
vor small values of w , which then maximizes the generalization ability of the model [38,39].
The posterior densities of the weights are near zero for large Bayes estimates of α, so the
weights effectively disappear and the model slashes connections in the network. Therefore,
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α and β are adaptively predicted to balance model complexity and goodness of fit [38].
The strength connections (w) of the network are randomly initialized for training. After the
data are taken, the density function for the weights can be updated according to Bayes’ rule.
The Bayes’ posterior distribution of w given α,β, D, and M is depicted by Equation (22).

P(w|D,α,β, M ) =
P(D|w,β, M )P(w|α, M)

P(D|α,β, M)
(22)

P(D|w,β, M ) is the likelihood function of w, and P(w|α, M ) is the prior distribution of
weights under M, which is the expectation of achieving the dataset D given w. P(D|α,β, M )
expressed by Equation (23) is the normalization factor or evidence for hyperparameters α
and β, and is independent of w [38].

P(D|α,β, M ) =
∫

P(D|w,β, M)P(w|α, M )dw (23)

In order to maximize the marginal likelihood of achieving the dataset D with respect to
the hyperparameters α and β, the normalization factor needs to be maximized. In this study,
the weights (w) were assumed to be identically distributed, with each being admissible
in a Gaussian distribution (α, M) ∼ N

(
0,α−1). The integral given in Equation (23) is

intractable; therefore, a Laplacian approximation to the marginal density can be computed
and utilized as follows:

log [P(D|α,β, M )] ≈ K +
n
2

log (β) +
m
2

log (α)− |F(α,β)|w=wMAP
(α,β)
− 1

2
log ‖H‖ w=wMAP

(α,β)
(24)

where K is a constant and H = ∂2

∂w∂w′F(α,β) is the Hessian matrix. An iterative update
of the hyperparameters is evaluated at the previous-step values of the tuning parameters
given in Equations (25) and (26) with (wMAP)—the maximum a posteriori estimate of
the early-stopping objective function, F. Utilizing a Gauss–Newton approximation to the

Hessian matrix, an effective number of parameters, γ = n− 2αMAPtr
(

HMAP
)−1

, can be
computed and passed on to compute the new estimates of α and β.

αnew =
γ

2Ew(wnew)
(25)

βnew =
n− γ

2ED(wnew)
(26)

More details on the BRANN mathematical derivation can be found in [38]. BRANN
therefore uses the LM algorithm for computing the posterior modes in BR. As mentioned
earlier, the LM algorithm provides high robustness, and has the ability to converge at a
local minimum even when there is a high absolute initial deviation from the optimal value
trajectory [40,41].

The BRANN model’s development was carried out in a similar manner as that of
the direct CA50 ANN model. While there is no single best approach to any ANN’s
development [25], the heuristic method used required relatively lower computational
complexity due to the localized analysis of a less complex output parameter resulting from
the reduction in the overall combustion phasing model’s dimension. The BRANN SOC
model was run 20 times to achieve input parameter pruning, and it was observed to be
stable when trained with random initializations. The desired model accuracy was reached
with early stopping at only nine epoch iterations. In summary, a mathematical description
of the ANN SOC model is given by (27) as follows:

SOCANN = f
(
δΨair, δΓfuel, Wengine, N, TEM, PEM

)
(27)
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A total of 212 data points were utilized for the overall SOC ANN model’s development,
of which 80% of the data were used to train the model, and 20% were used for model
testing. The BRANN SOC model returned a PPMCC of 99.3% and an RMSE of 0.45 CAD.
The BRANN SOC model had a ∼0.77 s computational runtime. Figure 15 shows the model
validation of the BRANN SOC model.

Figure 15. Comparison of the BRANN SOC model and the actual SOC.

ANN BD Model

Similar to the ANN SOC model, the ANN BD model was developed using the BRMLP
ANN in MATLAB’s deep learning toolbox. The ANN BD model featured 10 input nodes, 30
hidden-layer nodes, and 1 output node. The model’s development followed a similar process
to that of the ANN SOC model, but the ANN SOC model’s output was also utilized as an input
to the ANN BD model. Again, 212 data points were utilized for the model’s development, of
which 80% were used for training and 20% for testing. The resulting condensed mathematical
representation of the BD ANN model is given below in Equation (28):

BDANN = f
(
δΨair, δΓfuel, SOCANN, Wengine, N, TEM, PEM

)
(28)

The BRANN BD model had a ∼0.32 s runtime and accuracy of ∼99.0% PPMCC, as illus-
trated in Figure 16.
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Figure 16. Comparison of the BRANN BD model and the actual BD.

After the BRANN SOC and BD models were developed, they were then passed on to
the adaptive physics-based Wiebe model to predict the CA50 given by Equation (29):

CA50Hyb−Wiebe (k) = SOCANN(k) +
[

ln 2
awiebk

] 1
nwiebk BDANN (k) (29)

The interconnection between these submodels is shown in Figure 17 for the hybrid
model, and the performance of the CA50 hybrid Wiebe model in an unperturbed environ-
ment is shown in Figure 18. The hybridized CA50 Wiebe model returned a PPMCC of
100% and an RMSE of 1.13× 10−7 CAD at a 48.4 s computational runtime for all 212 steady
states’ operating conditions.
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Figure 17. CA50 hybrid model framework.

Figure 18. Comparison of the hybridized CA50 Wiebe model to the actual CA50.

3.3.2. Hybridized IMEP Model

A hybridized IMEP model was also developed and compared to the ANN and physics-
based IMEP models described in Section 3.1. The hybridized IMEP model followed a similar
development routine to that of the ANN IMEP in Section 3.1, but the hybrid model featured
the use of a BRANN. The charge flow rate (Wengine) obtained via the charge flow model
was also used as a model input instead of the direct input of the intake gas dynamics
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measurements. The resulting functional representation of the hybrid IMEP model is given
in Equation (30), and the model structure is shown in Figure 19.

IMEPHyb−BRANN = f
(
δΨair, δΓfuel, Wengine, N, TEM, PEM

)
(30)

Figure 19. IMEP hybrid model framework.

As demonstrated in Figure 20, the hybridized IMEP model is very accurate, with a
testing set PPMCC of 99.5% and an RMSE 4.94 kPa. The model had a 0.71 s computational
runtime in 17 epoch iterations in an unperturbed environment.

Figure 20. Comparison of the hybridized IMEP BRANN model to the actual IMEP.
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4. Impact of Variations and Uncertainty

While each of these model options works, their performance can also be affected by
variations and uncertainty in a real-world environment. As such, the performance of the
three CA50 and IMEP model frameworks was also evaluated in a stochastic environment.
The models were perturbed with a Gaussian distributed disturbance (as shown in the block
diagrams in Figures 4, 11, 17 and 19) to assess their robustness.

4.1. CA50 Perturbation

The ANN CA50 model, the physics-based CA50 model, and the hybrid CA50 model
were perturbed with additive Gaussian noise. The perturbation signal was applied as
an external additive noise to the SOC and BD models in the physics-based and hybrid
CA50 models, and also as an internal additive noise to the model arguments of the SOC
and BD models, in order to assess the robustness of the physics-based and hybrid CA50
models. The effects of the perturbations were assessed based on the output of the CA50
models. Figure 21 shows the resulting CA50 model performances with the application of
the perturbation signal, both externally and internally.
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When perturbing the model states with Gaussian noise, it was observed that the direct
classical ANN CA50 model did not deviate significantly from the target values. On the
other hand, excessive model deterioration took place when either internal or external
perturbation was included in the parametric physics-based SOC or BD models. This
could result in egregious CA50 physics prediction errors as they propagate into the online
parameterization, as shown in Figure 21. The internal perturbation of the physics-based
SOC and BD models resulted in a CA50 model PPMCC of 6.94% and an RMSE of 15.18 CAD.
The external perturbation of the physics-based SOC and BD models resulted in a CA50
model PPMCC of 70.65% and an RMSE of 0.48 CAD. As such, the perturbation exercise
clearly showed the degradation of the physics-based CA50 model framework due to the
global parameterization characteristics of the SOC and BD physics-based submodels.

In the internal perturbation of the BRANN SOC and BD models with Gaussian noise
for the hybridized CA50 model’s framework, a CA50 model PPMCC of 100% and an RMSE
of 8.8× 10−8 CAD were observed. This exceptional model performance (as depicted in
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Figure 21) in the presence of input uncertainties could be explained by the high extrapolative
capabilities of the highly regularized BRANN SOC and BD models in the hybridized CA50
model framework. It could be seen that the additive Gaussian noise causing drifts in the
input parameters for the BRANN SOC and BD models did not result in any change in
the 100% PPMCC that was found for the unperturbed case. However, a decrement in
RMSE from the unperturbed case was observed for the internally perturbed case. This
is due to the ability of the BRANN models to better predict numerically precise values
for the online parameter optimization algorithm with drifting help from the Gaussian
noise. This is consistent with the prior Gaussian distribution assumption made on the
hyperparameters in the development of the BRANN. On the other hand, the PPMCC for
the hybridized CA50 model framework during external perturbation of the BRANN SOC
and BD models was observed to have dropped to ~92.1% with an increase in the RMSE to
0.25 CAD. Although a 7.88% decrease in accuracy was observed in the external perturbed
case for the hybridized CA50 model, the resulting correlation coefficient was still within
a 90% confidence interval, which may still make the hybridized CA50 model framework
an acceptable modeling strategy for real-time control, regardless of how the system is
perturbed. To ensure consistency in the robustness, an ad hoc model was created to correct
the model performance, and is discussed below.

CA50 BRANN Transfer Learning Model (TLM)

Due to possible model deterioration from uncertainties in the hybridized framework,
an ad hoc transfer learning model (TLM) was developed with a BRANN to ensure the
hybridized model’s robustness in a stochastic environment. The hybridized model frame-
work’s outputs from the adaptive Wiebe model were treated as transitional dummy output
steps and then passed on to the TLM as a subroutine for a final model fine-tuning step.
This could be achieved by minimizing the error between the Wiebe model predictions and
the target optimal trajectory, as shown in Equation (31). This realization was based on the
neural network transfer learning model’s premise that, given stochastic variations in the
distributions in the oracle of an ANN, the stored knowledge from previous distributions
can be utilized to enhance the predictions in the presence of stochastic perturbations [22].
To implement this, an ad hoc BRANN model was developed by utilizing the transitional
CA50Hyb−Wiebe perturbed output as a model argument and the optimal CA50 trajectory
as the model target. As such, given changes in the stochastic environment, a model re-
substitution is carried out via less extensive ad hoc retraining. The transfer learning method
utilized in this work is simple, since the already robust output of the hybridized model
framework—the CA50Hyb−Wiebe—is used as a model input, and is highly likely to be very
close to the optimal trajectory CA50target. Therefore, the mapping between these two
variables would be close to affine, which then becomes computationally highly tractable
to optimize. In the event that high nonlinearity in the mapping occurs from excessive
nonlinear model perturbations, the utilization of the BRANN is still useful and, as such, a
high prediction accuracy is invariably guaranteed.

Θfinal(k) =‖ CA50target(k)−
{

CA50Hyb− TLM
(k) + ϑGaussian

}
‖2 (31)

In Equation (31), ϑGaussian represents the attributed external stochastic changes in
the environment, and Θfinal becomes the new overall objective function that accounts for
stochastic variations in the modeling environment. Computational tractability for real-time
implementation was ensured in this step by utilizing the BRANN, which circumvents
unnecessary model validation steps. In addition, only 50% of the CA50 Hyb−Wiebe outputs
were used for the ad hoc training, and the remaining 50% for model testing. The final
overall CA50 model was then condensed to a simple relation, given as follows:

CA50Hyb− TLM (k) = f
(

CA50Hyb−Wiebe
(k)
)

. (32)
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Figure 22 shows the model regression of the CA50 BRANN TLM. The regression
analysis indicates that R = 1 for the training and testing subroutines. This shows that the
TLM had achieved its model fidelity augmentation objective. The high R = 1 correlative
measure seen in the plots is consistent with the linearly separable or near-affine premise
invoked for the output of the hybridized Wiebe model and the target CA50.

Figure 22. BRANN TLM CA50 model regression.

4.2. IMEP Perturbation

A similar perturbation exercise was carried out for the IMEP models. Due to the
nature of the IMEP model frameworks, only internal model perturbation was feasible.
Figure 23 shows the model performances in a stochastic environment due to perturbations
with Gaussian noise. The adaptive physics-based IMEP model had the least error when
the respective IMEP models were perturbed with Gaussian noise—with a PPMCC of 100%
and an RMSE of 1.79× 10−6 kPa utilizing a 75.7 s computational runtime—followed by
the hybrid BRANN IMEP, which had a PPMCC of 99.69% and an RMSE of 4.47 kPa with
a 2.75 s computational runtime. The ANN IMEP model had a PPMCC of −7.33% and an
RMSE of 82.63 kPa with a 0.22 s computational runtime. This model deterioration affirms
the possible degrading performance and instabilities associated with ANN models that
are not physics-based. It may be the case that due to the lack of physical deterministic
input structures for the ANN IMEP, some input parameters that could compensate for
perturbations were excluded in the pruning process. The static physics-based IMEP model
showed the highest model deviation in the stochastic environment, returning a PPMCC
of 88.2% and an RMSE of 87.89 kPa with a 50.25 s computational runtime. Similarly, to
ensure high model robustness, the hybrid IMEP model was fine-tuned with a TLM, and is
discussed below.
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IMEP BRANN Transfer Learning Model (TLM)

The IMEP hybrid TLM development followed a similar routine to that of the CA50
hybrid TLM. The perturbed IMEPHyb−BRANN was used as an input to train a BRANN TLM,
as depicted in Equation (33). In this case, 80% of the data were used for the transfer learning
and the remaining 20% to test the model’s predictive performance. The model utilized
15 hidden-layer neurons and 1000 epoch iterations.

IMEPHyb− TLM (k) = f
(

IMEPHyb−BRANN
(k)
)

(33)

The BRANN IMEP TLM returned a PPMCC of 99.8% for the testing and an RMSE of
4.37 kPa in a 3.63 s computational runtime. There was a 2.2% RMSE improvement in the
performance of the hybrid IMEP model in the stochastic environment.

5. Discussion

After calibration of each of the models and various submodels, the results were
compared. In this section, the results of the parametrized physics-based SOC model and
the ANN SOC model are first compared, followed by a comparison of the respective BD
models. The results of the CA50 models along with IMEP are then explored.

5.1. SOC Model Results

In contrast to the physics-based SOC prediction, the BRANN SOC model had a PPMCC
of 99.3% and an RMSE of 0.45 CAD. A high PPMCC of 99% was observed for the SOC
BRANN testing set, showing the model’s high predictive capability. Figure 24 compares
the performance of the parametric physics-based SOC model and the BRANN SOC model
with the experimental SOC. The BRANN SOC model had better model performance than
the physics-based model. The operating conditions that may have exhibited complex
dynamics could be more accurately captured with the BRANN model without incurring a
high computational cost.
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Figure 24. Comparison of the actual SOC, physics-based model prediction, and BRANN prediction.

The maximum absolute error for the BRANN SOC model occurred at an operating
condition that also had a significant model error in the parametric physics-based model.
This was the operating point with 20% VNP, 20% EVP, 20% EFP air-handling actuator
combinations at 2500 RPM, and 150.4 Nm, which had an absolute error of 3.35 CAD for the
parametric physics-based model and an absolute error of 2.95 CAD for the ANN model.

5.2. BD Model Results

The parametric physics-based BD model returned a PPMCC of 97.0% and an RMSE of
1.77 CAD, while the BD BRANN model had a PPMCC of 99.0% and an RMSE of 1.12 CAD.
A comparison between the performances of the physics-based BD model, the BD BRANN
model, and the experimental values is shown in Figure 25. The high model accuracy
of ∼97.0% for the parametric physics-based BD model could again be explained by the
model’s complexity, as depicted in Equation (18). Seventeen decision variables were utilized
to capture the burn duration. The GRG algorithm utilized over 900 iterations for a ∼42.1 s
computational runtime in the parametric optimization subroutine. The BRANN BD model,
on the other hand, utilized 17 epoch iterations, and had a ∼0.32 s runtime and accuracy of
∼99.0% PPMCC.
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Figure 25. Comparison of the actual BD, physics-based model prediction, and ANN prediction.

5.3. CA50 Model Results

The BRANN CA50 TLM development’s training subroutine was executed with 281 epoch
iterations in 2.20 s, and returned a PPMCC of 100% for the testing set. When the BRANN
CA50 TLM was cascaded in an unperturbed adaptive hybrid Wiebe CA50 model framework,
a PPMCC of a 100% and an RMSE of 3.83× 10−8 CAD at a 43.2 s computational runtime were
recorded. This was a significant improvement on the results from the classical direct ANN
model, which had returned an overall PPMCC of 82% and a testing PPMCC of 16%. Similarly,
when the BRANN CA50 TLM was cascaded in the hybridized framework in a Gaussian
stochastic environment, an RMSE of 1.34× 10−5 CAD with a 45.4 s computational runtime
was observed. Compared to the direct ANN CA50 model, the physics-based CA50 model
framework had a better performance in an unperturbed environment, as it returned a PPMCC
of ∼95.0% and an RMSE of 0.17 CAD with a 49.4 s computational runtime. The CA50 model
comparison is therefore shown for the unperturbed physics-based CA50, direct ANN CA50
models, and the hybridized CA50 TLM in order to effectively show the improvements made
in the TLM modeling step in a normalized environment. Figure 26 shows the comparison of
the various CA50 models’ frameworks.
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Figure 26. Comparison of the actual CA50, physics-based model prediction, hybridized prediction,
and ANN prediction.

The hybrid BRANN CA50 TLM clearly has superior model performance, both in
stochastic and in unperturbed environments. Hence, the hybrid BRANN CA50 TLM
provides a solid framework for use in model predictive combustion control. The high
model fidelity would make it feasible for sensorless combustion control. Although the
engine may experience drifts in inputs due to aging and environmental factors, the results
indicate that a consistently robust extrapolative probability could be guaranteed.

5.4. IMEP Model Results

The IMEP results show less variation between the different options, as illustrated
in Figure 27. The adaptive physics-based IMEP model was very accurate (a PPMCC of
100% and an RMSE of 1.79× 10−6 kPa), while the more computationally expensive static
physics-based IMEP model had more significant errors (a PPMCC of 95.2% and an RMSE
of 17.7 kPa). The direct classical ANN IMEP model returned a PPMCC of 99.4% and an
RMSE of 6.33 kPa, while the hybrid BRANN IMEP model had a PPMCC of 99.6% and an
RMSE 4.94 kPa. A fair improvement of the IMEP model’s accuracy was therefore seen in
the hybrid BRANN IMEP model compared to that of the ANN IMEP model, but there was
an offset in computational time, with the ANN taking 0.2 s in contrast to the 0.71 s runtime
of the BRANN.
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bridized BRANN prediction.

The higher model accuracy of the adaptive physics-based IMEP model could be ex-
plained by the complexity of the parameterized physics-based model and the recursive
nature of the operating-point-dependent algorithm that was utilized for the model optimiza-
tion. A relatively high computational cost was incurred (~50.85 s) for the 212 steady-state
operating conditions in the process of achieving the high accuracy of the adaptive physics-
based IMEP model, while the hybrid BRANN IMEP model required a much smaller
computational runtime of 0.71 s. For the adaptive physics-based IMEP model, some prior
constraints on the upper and lower limits of the tuning constants were required in or-
der to ensure the high model performance for this approach. This was determined by a
trial-and-error procedure, thereby increasing the computational complexity.

As mentioned earlier in Section 4, only a 2.2% improvement in accuracy was recorded
for the implementation of the hybrid IMEP BRANN TLM. Hence, the IMEP TLM model step
could be bypassed by the hybrid BRANN IMEP model and still be able to achieve reasonable
model accuracy in a stochastic environment. However, the IMEP TLM may be useful for
control development when there are hard constraints, such as the availability of only a
low-bandwidth microcontroller, which may require a step down in computational runtime.
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6. Conclusions and Future Work

We have demonstrated the use of an integrated approach using combustion physics
and ANNs for combustion phasing modeling of a modern diesel engine for use in real-time
combustion and engine load control. Steady-state parametrized physics-based models for
the SOC and BD, along with IMEP, were developed along with simple Bayesian regularized
artificial neural network models for these parameters. In addition, an adaptive nonlinear
parameter optimization algorithm was used for the prediction of CA50 using the developed
SOC and BD models as inputs to a 0D simple Wiebe combustion model, whose outputs are
fine-tuned with an ad hoc BRANN model in the event of stochastic environmental changes.
The hybrid model frameworks for CA50 and IMEP showed superior performance, and
will be leveraged in future work for uncertainty and disturbance estimator (UDE)-based
combustion control. Other advanced methods will also be explored in future work, such
as the use of particle swarm optimization for in absentia training of the BRANN transfer
model, as well as the use of parsimonious neural networks (PNNs) to learn interpretable
physical laws whilst directly capturing CA50 and IMEP. The main highlights of this study
are as follows:

1. Due to the recursive nature of the proposed hybrid frameworks, in addition to the
augmentation provided by the CA50 and IMEP TLMs, the fidelity of the submodels
may not matter much. This could reduce modelling effort and avoid the need to track
all uncertainties pertaining to the submodels. As such, lower quality data may be able
to be utilized for the SOC and BD models. Drift in the various measurements due to
engine aging and other environmental factors for the IMEP model may also not be
much of a concern;

2. TLMs for the hybrid IMEP developed in the same fashion as in this study may not
be necessary. However, it may be useful for control in the long term, where physical
constraints of the control processors may be inevitable;

3. The robustness of the models of less complex parameters, such as IMEP, may be
feasible in a physics-only model framework, but there would be the need to de-
velop complex physics-based models and, thus, incur some computational costs and
increased computational complexity.

The hybridized models augmented with TLMs that were developed in this study
showed superior steady-state performance as compared to the physics-based-only and
ANN-only frameworks.
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Abbreviations

0D Zero-dimensional
ANN Artificial neural network
aTDC After top dead center
BD Burn duration
BFR Best fit rate
BR Bayesian regularization
BRANN Bayesian regularized artificial neural network
BRMLP Bayesian regularized multilayer perceptron
bTDC Before top dead center
CA50 Crank angle at which 50% of heat is released
CAC Charge air cooler
CAD Crank-angle degree
CO Carbon monoxide
COV Coefficient of variation
CPU Central processing unit
DAQ Data acquisition system
ECU Engine control unit
EFP Exhaust flap valve position
EGR Exhaust gas recirculation
EOC End of combustion
EVC Exhaust valve closing
EVO Exhaust valve opening
EVP Exhaust gas recirculation valve position
GRG Generalized reduced gradient
Hyb-TLM Hybridized transfer learning model
Hyb-Wiebe Hybridized Wiebe
Hyb-BRANN Hybridized Bayesian regularized artificial neural network
IMEP Indicated mean effective pressure
IVC Intake valve closing
IVO Intake valve opening
ISFC Indicated specific fuel consumption
kPa Kilopascal
LHV Lower heating value
LM Levenberg–Marquardt
LVP Linear parameter-varying
MAP Maximum a posteriori
MISO Multiple-input single-output
MLP Multilayer perceptron
MSE Mean square error
NOx Nitrogen oxides
PNN Parsimonious neural network
PPM Parts per million
PPMCC Pearson product–moment correlation coefficient
PSO Particle swarm optimization
RCCI Reactivity-controlled compression ignition
RMSE Root-mean-square error
RP Rail pressure
RPM Revolutions per minute
SI Spark ignition
SOC Start of combustion
SOI Start of injection
SVM Support-vector machine
SVSF Smooth variable structure filter
TDC Top dead center
THC Total unburned hydrocarbon
TLM Transfer learning model
UDE Uncertainty and disturbance estimator
VGT Variable-geometry turbocharger
VNP Vane nozzle position
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