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Abstract: Integration, testing, and release of complex Advanced Driver Assistance Systems (ADAS)
and Automated Driving Systems (ADS) is one of the main challenges in the field of automated driving.
In order for the systems to be accepted by customers and to compete in the market, they have to
feature functional, comfortable, safe, efficient, and natural driving behavior. The calibration process
acquires increasing importance in the achievement of this objective. Complex ADAS/ADS require
the optimization of interacting calibration parameters in a large number of different scenarios—a task
that can hardly be performed with feasible effort and cost using conventional calibration methods.
Virtual calibration in simulation enables reproducible and automated testing of different data sets of
calibration parameters in various scenarios. These capabilities facilitate different use cases to extend
the conventional calibration process of ADAS/ADS through virtual testing. This paper discusses
the different use cases of virtual calibration and methods to achieve the desired objectives. A special
focus is on a multi-scenario-level method that can be used to iteratively calibrate ADAS/ADS for
optimal behavior in a variety of scenarios, resulting in a more comfortable, safe, and natural behavior
of the system and still a feasible number of test cases. The presented methods are implemented for
the virtual calibration of an Adaptive Cruise Control model for evaluation.

Keywords: ADAS; ADS; calibration; simulation

1. Introduction and Related Work

The automotive industry is in a state of change. Electromobility, connectivity, and
automated driving will significantly change the way we travel by car. While SAE Level
2 Advanced Driver Assistance Systems (ADAS) still require constant supervision by the
driver, SAE Level 3 Automated Driving Systems (ADS) are able to transport passengers
without supervision under certain conditions. SAE Level 4 ADS do not even need a driver
as a fallback level anymore but can drive the vehicle without a human on board under
certain conditions [1].

A particular challenge in developing such systems is the integration and testing
process, which includes calibration, verification, and validation of different hardware
and software versions prior to release [2]. How do we prove the correct functionality of
ADAS/ADS in all scenarios within the operation conditions—the so-called Operational
Design Domain (ODD) [3]? In this context, the term scenario describes the temporal
sequence of events in road traffic [4]. As the capabilities of the systems increase, the
number of scenarios to be identified and processed correctly grows to a quantity that can
hardly be described in a specification as for conventional systems. This characteristic of
ADAS/ADS is described in the state-of-the-art as functional inadequacy. It is the reason
why conventional testing methods are difficult to apply, especially for systems with SAE
Level 3 and upwards [5,6].

The functional inadequacy of complex ADAS and ADS also presents a challenge
in the calibration process. Calibration is the modification of parameters in a data set to
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adapt the ADAS/ADS to feature a desired behavior without changing software code [7].
This allows both purchased and in-house developed systems to feature brand-specific
behavior and be deployed across different vehicle platforms. While current research and
development focus strongly on validating and releasing the systems, the calibration process
will become increasingly important in the future. A satisfying calibration that results in a
functional, comfortable, safe, efficient, and natural driving behavior of ADAS/ADS has
two main positive effects. First, it supports the acceptance of the systems by customers. For
some customers, handing over all or part of the driving task to a technical system is still
fraught with a certain amount of mistrust. Through calibration, the systems can be tuned
to feature a natural driving behavior, which can increase the acceptance of ADAS/ADS by
customers. Another effect that is especially apparent for ADAS today is the competitive
advantage over other vehicle manufacturers through well-calibrated systems [8]. This effect
is noticeable when manufacturers offer systems with similar functionality and ODD size,
such as Adaptive Cruise Control (ACC) or a Lane Keeping System (LKS). For ADS, which
are offered by very few vehicle manufacturers today, the size of the ODD is primarily the
decisive purchasing argument. However, ADS will also have a similar effect when more
manufacturers bring systems with similar functionality and ODD sizes onto the market.

Along with all these advantages, the calibration process of ADAS/ADS poses some
challenges compared to conventional systems. While some parameters of the data set can
be derived from vehicle configuration and system specification, other parameters must
be tuned for the system to feature optimal behavior across the entire ODD. During real
test drives in road traffic or on proofing grounds, only small subsets of scenarios from the
ODD can be tested, usually with limited reproducibility [7]. However, it is especially the
reproducible testing of the same scenarios several times with different data sets that is
necessary in order to optimize calibration parameters. In addition, some parameter changes
only affect certain scenarios. If these do not occur during test drives or are not intentionally
induced by test drivers, they are not taken into account during calibration. This shows that
the addressed issue of functional inadequacy complicates not only the validation process
but also the calibration process of the systems due to the high number of relevant and
partly unknown scenarios.

Furthermore, the high number of different driving scenarios and driving tasks consid-
ered during the design of ADAS/ADS increases the number of calibration parameters that
can be used to influence the behavior of the systems within these scenarios [7]. Some calibra-
tion parameters can even influence each other in their scope, especially if the ADAS/ADS
is divided into sub-systems on different ECUs (Electronic Control Units). Interacting
effects of parameter changes are difficult to predict in a large number of scenarios, es-
pecially if systems are bought from suppliers without knowledge about implementation
(black-box systems).

While conventional systems and simple ADAS could still be calibrated on proving
grounds or in road traffic using the trial-and-error approach, this is hardly possible for
complex ADAS and ADS with feasible effort and cost. Alternative approaches are needed
to extend conventional processes [9]. Examples are shadow testing, testing based on
recorded data for open-loop systems, and virtual testing in simulation [9]. In this paper,
the focus is on virtual calibration in simulation, which enables the possibility of efficiently
performing reproducible test cases in different scenario variations with different calibration
data sets. These properties facilitate different use cases of virtual calibration of ADAS/ADS,
which were not feasible with conventional calibration approaches due to the limitations
mentioned above.

State-of-the-art of virtual ADAS/ADS calibration primarily discusses the simple use
case of identifying a single optimal data set in simulation, which serves as a starting point
for fine-tuning prototype vehicles. However, some publications also address advanced use
cases and methods that utilize the full potential of virtual calibration.

Liesner [10] researches a method for the virtual calibration of an Adaptive Cruise
Control. The use case is to identify two optimal data sets of calibration parameters for two
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different system modes—normal and sport—within different driving maneuvers occurring
in road traffic. The presented method involves a multi-step calibration approach. During a
virtual base-calibration in a model-in-the-loop (MiL) simulation, calibration parameters are
varied using a particle swarm optimizer and a deterministic local optimization procedure to
match the behavior of a benchmark system. These maneuvers are simulated with varying
velocities, distances, and accelerations to account for different convoy driving maneuvers
on highways. In the following fine-calibration, which also uses the MiL simulation, the
calibration parameters are further optimized in two representative driving maneuvers.
In order to determine two optimal data sets for the two different modes, two objective
grading models by Pawellek [11] are used to quantify the performance of the ACC in
the simulated maneuvers. In the following final calibration, the data sets are tested in
a vehicle-in-the-loop approach with real road traffic. It is shown that the ACC can be
pre-calibrated automatically in simulation, which makes the process more efficient and
improves the achievement of the desired system behavior.

Beglerovic et al. [12] present a model-based virtual calibration approach for an ACC.
The focus is put on finding a global optimum of calibration parameters in virtual calibration,
in contrast to manual calibration in prototype vehicles, where the system is often tuned to a
local optimum. For this purpose, the calibration parameters of the ACC are varied in a MiL
simulation by a statistical design of experiments. The results of the virtual tests are key
performance indicators (KPIs) representing the system’s performance with respect to safety,
fuel consumption, and comfort. These KPIs are used to create a behavior model of the ACC
in which a global optimum is determined. The tests are simulated with a fixed convoy
scenario, including braking and acceleration phases. In order to prove the suitability of the
determined data set in different scenarios, Beglerovic et al. [12] combine virtual calibration
with a subsequent virtual validation in which scenario parameters are varied.

Langner et al. [7] present a process reference model for the virtual calibration of a pre-
dictive longitudinal control feature. A special aspect of this publication is the deployment
of the reactive-replay approach presented by Bach et al. [13], allowing real measurement
data to serve as scenarios for calibration. The discussed use case is the virtual calibra-
tion of the predictive longitudinal control feature for a data pool of different scenarios.
Langner et al. [7] present two additional feedback loops complementing the core optimiza-
tion framework. Only a reduced set of scenarios is used to optimize calibration parameters
based on evaluation metrics, as they have to be simulated in each iteration. After optimiza-
tion, the optimal parameter set is validated in the complete data pool of scenarios. This
enables checking the global behavior of the determined data set as well as adding scenarios
to the reduced test set for optimization. In the second feedback loop, the determined
optimal data set is tested in a prototype vehicle in real road tests to receive feedback on
the implemented evaluation metrics used for optimization. The evaluation metrics can be
adapted based on the real driving tests to indicate another optimal behavior in the next
virtual calibration run.

While other publications only address single use cases of virtual ADAS/ADS cal-
ibration, the objective of this paper is to give a holistic overview of different use cases.
Both known use cases mentioned above and use cases that have not yet been addressed
in the state-of-the-art are discussed. In addition, virtual calibration methods based on
the modular virtual ADAS/ADS testing framework by Markofsky and Schramm [14] are
presented to cover these use cases. A special focus is on ADAS/ADS calibration, with a
large set of calibration-relevant scenarios. The challenge is the sharp increase in the number
of test cases simulated in this use case. Beglerovic et al. [12] and Langner et al. [7] apply
virtual validation to test data sets of calibration parameters in a large set of scenarios after
calibration. This allows validation, but calibration parameters are constant and not adapted
to the larger scenario set. As a result, the weaknesses of the data set in these scenarios
cannot be addressed. This paper presents a novel multi-scenario-level virtual ADAS/ADS
calibration method to meet this challenge. This method enables efficient consideration
of a large set of calibration-relevant scenarios during the optimization of calibration pa-
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rameters, which results in a more comfortable, safe, and natural system behavior within
these scenarios.

For this purpose, the calibration-relevant aspects of the modular testing framework are
recapped in Section 2 of this paper, and additional extending components are introduced. In
Section 3, different use cases of virtual calibration are illustrated, and methods for covering
the use cases are presented. Section 4 shows the implementation and evaluation of the
methods using the example of virtual calibration of an ACC model. In contrast, Section 5
summarizes the results and gives an outlook on subsequent research topics.

2. Modular Virtual Testing Framework

This paper addresses different use cases of virtual ADAS/ADS calibration and presents
methods to cover these use cases. In preparation for Section 3, in which use cases and
methods are presented, this section introduces the base components for different virtual
calibration methods. The modular framework for virtual ADAS/ADS testing by Markofsky
and Schramm [14] is deployed. Due to its modular structure, it can be extended with the
necessary components for different virtual calibration methods.
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The virtual ADAS/ADS testing framework presented in Figure 1 offers the advantage
of being scalable to different use cases and systems under test (SUTs) through exchangeable
modules. The testing agent module is used to create test cases in the dynamic test database
and send them to the processing pipeline, which consists of the simulation and evaluation
modules. After processing, the testing agent receives the evaluated test cases and can
create new ones based on the results. The exchangeable testing agent strategy module
provides the possibility of implementing different test case sampling methods. This allows
the framework to be used for virtual verification, calibration, and validation of ADAS/ADS
at different stages of the development process.
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2.1. Scenario and Calibration Parameters

As shown in the state-of-the-art, different scenarios must be considered for ADAS/ADS
calibration. For this purpose, the framework links the concept of scenario-based testing
with virtual calibration. A scenario is defined as describing a temporal sequence of events
in road traffic [4]. While functional scenarios describe events linguistically, so-called logi-
cal scenarios use scenario parameters to represent different forms of a scenario [15]. For
example, a logical target cut-in scenario can occur at various distances and velocities at
which another vehicle cuts the lane in front of the ego vehicle. These values are denoted
as scenario parameters. Scenario parameters have different co-domains and units. If a
fixed value is selected for each scenario parameter of a logical scenario, a so-called concrete
scenario is derived from a logical scenario. An example of a concrete scenario is a target
cut-in scenario with a cut-in distance of 50 m and an initial velocity of 100 km/h. Therefore,
a logical scenario contains a group of concrete scenarios with their respective scenario
parameters and their corresponding co-domains.

The concept of logical and concrete scenarios provides a systematic approach to math-
ematically describing the ODD of ADAS/ADS. Scenario parameters can be clustered just
like simulation models into parameters controlling the driving environment, (ego)vehicle,
and driver behavior in the logical scenario.

Scenario parameters controlling the driving environment can influence all layers of
the data layer model for the scenario description of Bock et al. [16]. Parameters can be
implemented to control road networks, road furniture and rules, temporal modifications
and events, moving objects, environmental conditions, and digital information in the
logical scenario. A simple example is using scenario parameters to define the trajectories of
other vehicles.

To perform calibration for different vehicle derivatives, derivative-specific ego vehicle
characteristics have to be adaptable using scenario parameters. Differences in the chassis,
powertrain, and aerodynamics of the ego vehicle have to be considered. Specifically, differ-
ences in the sensor sets are relevant for ADAS/ADS calibration and need to be controlled by
scenario parameters, e.g., the position of cameras. Additionally, the functionality of partner
software and hardware, such as delays in sensor fusion algorithms, can be an example of
scenario parameters for vehicle clusters.

For the calibration of HMI functionalities, considering different scenarios regarding the
behavior of the driver is important. For example, during calibration in take-over scenarios,
when the driver has to take over the driving task because the ADAS/ADS reaches the limits
of its operating conditions, driver attention is a variable parameter that can be implemented
as a scenario parameter.

The modular testing framework features a logical scenario database, in which both
machine-readable scripts for implementing scenarios in simulation and a database with
all scenario parameters and their properties can be stored [14]. The creation of scenario
models is the objective of research in the field of virtual ADAS/ADS validation [17–19].
Models can be derived from accident databases, field operational tests, driving simulator
studies, traffic simulations, and expert knowledge [20].

In order to consider different logical and concrete scenarios during virtual calibration,
several test cases with different concrete scenarios must be created for each data set to
be tested. In the virtual testing framework, the dataset to be used in a test is defined by
individual calibration parameters. Just like for scenario parameters, information about
available calibration parameters of the SUT is stored in the exchangeable calibration pa-
rameter database of the framework [14]. Co-domains and default values are stored here as
information for the testing agent strategy and the writing method of the parameters for the
simulation module.

2.2. Evaluation Parameters

The performance evaluation of the SUT in the simulated scenario is particularly impor-
tant as it serves as a target value for virtual calibration methods. Evaluation metrics have
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to quantify functionality, comfort, safety, efficiency, and the naturalness of driving. Since
some of these performance aspects are perceived subjectively and may vary depending on
the test driver, there is research on objectifying ADAS/ADS evaluation [11,21–23]. Studies
are performed with different test drivers and driving scenarios to collect objective charac-
teristic values from measurements and subjective feedback. Based on correlation analysis,
evaluation metrics can be created that are able to predict subjective driver perceptions
of SUT performance from objectively measured characteristic values. The studies can be
performed on proofing grounds or in a more efficient, safe, and reproducible manner in a
driving simulator (Driver-in-the-Loop). In addition, ADAS/ADS evaluation metrics can be
designed based on system specifications or the knowledge of system experts.

Due to different aspects of ADAS/ADS performance, virtual calibration can represent
finding a Pareto-optimal solution. However, it has been shown in the state-of-the-art that
reducing individual aspects by weighted sums to an overall rating is better suited for
automated virtual calibration than identifying Pareto fronts in the space of calibration
parameters [10]. One reason is the comparatively long simulation time, which is why the
number of test cases to be simulated and evaluated is a critical factor.

Nevertheless, the virtual testing framework of Markofsky and Schramm [14] offers
some possibility to test different weightings of individual performance aspects. It deploys
a concept of performance evaluation based on direct and indirect evaluation parameters,
so-called key performance indicators. Direct KPIs are calculated directly from simulated
measurement data or logged internal signals of the SUT. Indirect KPIs process multiple
direct KPIs or scenario parameters to map them to new indices, e.g., using correlation
models or quality loss functions. This concept allows for the implementation of complex
multi-layer performance rating metrics, as they are needed for virtual calibration.
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Figure 2 shows the structure of evaluation metrics in the virtual ADAS/ADS testing
framework. In the bottom layer, direct KPIs are evaluated from simulated measurement
data and SUT signals, which were logged during the simulation. Direct KPIs represent
mostly physical values, e.g., a minimal distance or a maximum jerk during a target cut-in
scenario. These direct KPIs are processed by indirect KPI evaluation metrics, which calcu-
late new numerical indicators from a single or multiple direct KPIs or scenario parameters.
Different metrics, such as prediction models known from state-of-the-art research, can be
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implemented as indirect KPI evaluation metrics. Several metrics can be linked sequentially,
which enables the design of processing chains represented in Figure 2 as a dotted arrow.
This results in individual ratings for different aspects of SUT performance, such as comfort,
safety, etc. These are weighted and summed up, resulting in an overall rating for the
performance of the SUT in the simulated scenario.

This structure brings the advantage that all calculations above the pool of direct KPIs
can be repeated without re-simulating the test case. Thus, new indirect KPI evaluation
metrics and new weights of the performance aspect ratings can be implemented and
analyzed for already evaluated test cases.

In the virtual ADAS/ADS testing framework, so-called simulation quality criteria
(SQCs) are used to check in postprocessing whether the defined test case was implemented
correctly in simulation. This is conducted after the SUT’s performance has been evaluated.
Errors in simulation models, for example, due to an improper choice of scenario parameters,
can lead to deviations of events in simulation from the specified scenario. SQCs can be
used to verify the correct execution of simulation test cases and ensure that calculated KPIs
are valid.

All evaluation parameters and corresponding evaluation scripts are stored in the
evaluation database of the modular framework, where they can be accessed by the testing
agent and the evaluation module [14]. This enables the testing agent to integrate only
case-relevant evaluation parameters into the test case description during sampling, which
enhances postprocessing efficiency.

2.3. Test Case Definition and Sampling

A test case in the virtual ADAS/ADS testing framework includes a logical scenario,
defined scenario parameters to derive a concrete scenario in simulation, calibration param-
eters defining the used data set of the SUT, and evaluation parameters to be calculated in
postprocessing. This definition transfers test case sampling, i.e., the creation of new test
cases and the analysis of test case results, into processing mathematical parameter spaces.

The testing agent performs test case sampling in the virtual ADAS/ADS testing frame-
work. It creates new test cases in the dynamic test database, transfers them to the processing
pipeline, and analyzes results. In order to obtain the necessary information about various
parameters, it has access to the calibration parameter database, the logical scenario database,
and the evaluation database. To cover different use cases of virtual verification, validation,
and calibration of ADAS/ADS, the testing agent allows the implementation of different
test case sampling strategies through the exchangeable testing agent strategy module.

In virtual calibration, the basic objective of test case sampling is to vary the calibration
parameters of the SUT to achieve the highest overall performance rating possible in different
scenarios. One way to achieve this objective is to test the calibration parameter space using
a grid of nodes created by a design of experiments, as proposed by Beglerovic et al. [11].
A simple form is a full factorial design, where a grid of test cases is placed over the entire
parameter space. The resulting number of test cases ntc ∈ N can be calculated according to
formula (1) with ncp ∈ N calibration parameters to be considered, ncp,nodes,i ∈ N nodes of
individual parameters, nls ∈ N logical scenarios to be considered and ncs,j ∈ N concrete
scenarios to be considered for each logical scenario:

ntc =
ncp

∏
i=1

ncp,nodes,i·
(

nls

∑
j=1

ncs,j

)
(1)

This test case sampling method is suitable for rough testing of the calibration parameter
space, but ntc increases exponentially as the number of nodes ncp,nodes,i is increased for higher
accuracy. Therefore, most approaches in the state-of-the-art use optimization algorithms as
test case sampling methods for virtual calibration [7,10]. Particle swarm optimization (PSO)
has proven particularly suitable for this task [10]. Compared to deterministic methods, the
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population-based, stochastic PSO has the advantage of only approaching optimal solutions
and not converging to a local minimum too early. In addition, the algorithm efficiently solves
complex optimization problems without information about the solution space, which is the
case in ADAS/ADS calibration [24]. Even for in-house developed ADAS/ADS, the behavior
with respect to the performance rating in different scenarios is difficult to predict, especially
for black-box systems purchased from suppliers.

In addition, particle swarm optimization acts robustly against the non-deterministic
behavior of the simulation. In the simulation for virtual ADAS/ADS testing, the SUT partly
interacts with other actors, such as road users, whose behavior can be implemented based
on stochastic algorithms. This can lead to slight deviations in KPIs in the same test case.
The stochastic implementation of particle swarm optimization, whereby the algorithm does
not try to find one optimal solution but to obtain near-optimal solutions, makes it robust to
small non-deterministic variations in the KPIs [10].

Another advantage of the population-based approach is the parallel processing of
several test cases. Mostly due to the comparatively long processing times of test cases
in virtual ADAS/ADS testing, this offers the possibility of increasing efficiency. When
hardware-in-the-loop tests are used, the simulation must be performed in real-time, but
test cases can be distributed across a cluster of test benches and performed in parallel.

The following Algorithm 1 shows the implementation of a PSO for virtual ADAS/ADS
calibration in the testing agent strategy module of the testing framework of Markofsky and
Schramm [14].

Algorithm 1: PSO Calibration Test Case Sampling
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too early. In addition, the algorithm efficiently solves complex optimization problems 
without information about the solution space, which is the case in ADAS/ADS calibration 
[24]. Even for in-house developed ADAS/ADS, the behavior with respect to the 
performance rating in different scenarios is difficult to predict, especially for black-box 
systems purchased from suppliers. 

In addition, particle swarm optimization acts robustly against the non-deterministic 
behavior of the simulation. In the simulation for virtual ADAS/ADS testing, the 

 
 

Algorithm 1. PSO Calibration Test Case Sampling 
  

Input: Names of calibration parameters to vary 𝒄𝒑୴ୟ୰୷ with 𝑛ୡ୮  ∈  ℕ being the 
number of calibration parameters to vary, names of constant calibration 
parameters 𝒄𝒑ୡ୭୬ୱ୲, values of constant calibration parameters 𝒄𝒑ୡ୭୬ୱ୲,୴ୟ୪୳ୣୱ, 
names of logical scenarios to be considered during calibration 𝒍𝒔 with 𝑛୪ୱ  ∈  ℕ 
being the number of logical scenarios, vectors with scenario parameter names 𝒔𝒑௠ and matrices with scenario parameter values 𝑺𝑷୴ୟ୪୳ୣୱ,௠ to specify concrete 
scenarios to be considered during calibration with 𝑛ୡୱ,௠  ∈  ℕ being the number 
of concrete scenarios and 𝑚 = 1 … 𝑛୪ୱ, number of PSO particles 𝑛୮ୟ୰୲୧ୡ୪ୣୱ  ∈  ℕ, 
number of PSO iterations 𝑛୧୲ୣ୰ୟ୲୧୭୬ୱ  ∈  ℕ, optional: initialization positions for 
particles 𝑪𝑷୴ୟ୰୷,୧୬୧୲  ∈  ℝ௡ౙ౦× ௡౦౗౨౪౟ౙౢ౛౩  

 Output: Best particle position 𝒙ୠୣୱ୲  ∈  ℝ௡ౙ౦, cost of best particle position 𝑦ୠୣୱ୲  ∈ ℝ, evaluated particle positions 𝑿ୣ୴ୟ୪ ∈  ℝ௡ౙ౦× ௡౦౗౨౪౟ౙౢ౛౩× ௡౟౪౛౨౗౪౟౥౤౩, costs of evaluated 
particle positions 𝒀ୣ୴ୟ୪ ∈  ℝ ௡౦౗౨౪౟ౙౢ౛౩× ௡౟౪౛౨౗౪౟౥౤౩  

1: Get lower bounds 𝒍𝒃 ∈  ℝ௡ౙ౦  and upper bounds 𝒖𝒃 ∈  ℝ௡ౙ౦  of calibration 
parameters to vary 𝒄𝒑୴ୟ୰୷ from the calibration parameter database of the testing 
framework 

2: if 𝑪𝑷୴ୟ୰୷,୧୬୧୲ =  ∅  then 
3:  Initialize particle positions 𝑿 ∈  ℝ௡ౙ౦× ௡౦౗౨౪౟ౙౢ౛౩  randomly for each entry 𝑥 =𝑿(𝑖, 𝑗) with 𝑥 ∈ [𝒍𝒃(𝑖), 𝒖𝒃(𝑖)] 
4: else 
5:  Initialize particle positions 𝑿 ∈  ℝ௡ౙ౦× ௡౦౗౨౪౟ౙౢ౛౩ with 𝑿 =  𝑪𝑷୴ୟ୰୷,୧୬୧୲ 
6: end if 
7: Initialize particle velocities 𝑽 ∈  ℝ௡ౙ౦× ௡౦౗౨౪౟ౙౢ౛౩ randomly for each entry 𝑣 = 𝑽(𝑖, 𝑗) 

with 𝑣 ∈  [0,1] 



Vehicles 2023, 5 810Vehicles 2023, 4, FOR PEER REVIEW 9 
 

 

8: Initialize local best position 𝑳 ∈  ℝ௡ౙ౦× ௡౦౗౨౪౟ౙౢ౛౩ for each particle with 𝑳 = 𝑿 
9: Initialize evaluated particle positions 𝑿ୣ୴ୟ୪ = 𝟎 and costs of evaluated particle 

positions 𝒀ୣ୴ୟ୪ = 𝟎 
10: Process initial particle positions  𝒄, 𝑿ୣ୴ୟ୪, 𝒀ୣ୴ୟ୪ =  ℱ(𝒄𝒑୴ୟ୰୷, 𝒄𝒑ୡ୭୬ୱ୲, 𝒄𝒑ୡ୭୬ୱ୲,୴ୟ୪୳ୣୱ, 𝒍𝒔, 𝒔𝒑௠, 𝑺𝑷୴ୟ୪୳ୣୱ,௠, 𝑿, 𝑿ୣ୴ୟ୪, 𝒀ୣ୴ୟ୪)  
11: Initialize global best position 𝒈 ∈  ℝ௡ౙ౦ from entry in 𝑿 with the smallest value 

in 𝒄 
12: for 𝑖 = 1 → 𝑛୧୲ୣ୰ୟ୲୧୭୬ୱ do 
13:  for 𝑗 = 1 → 𝑛୮ୟ୰୲୧ୡ୪ୣୱ do 
14:   Calculate new velocity 𝑽୬ୣ୵(: , 𝑗) =  𝒳 ∙ 𝑽(: , 𝑗) + 𝑎ଵ ∙ 𝑟ଵ  ∙ ൫𝑳(: , 𝑗) − 𝑿(: , 𝑗)൯ + 𝑎ଶ ∙ 𝑟ଶ  ∙ ൫𝒈 − 𝑿(: , 𝑗)൯  with inertia factor 𝒳 ∈ ℝ , acceleration factors 𝑎ଵ, 𝑎ଶ  ∈ ℝ, and random factors 𝑟ଵ, 𝑟ଶ  ∈ [0,1] 
15:   Calculate new position 𝑿୬ୣ୵(: , 𝑗) =  𝑿(: , 𝑗) + 𝑽୬ୣ୵(: , 𝑗) 
16:   for 𝑘 = 1 → 𝑛ୡ୮ do 
17:    if 𝑿୬ୣ୵(𝑘, 𝑗)  > 𝒖𝒃(𝑘) do  
18:     𝑿୬ୣ୵(𝑘, 𝑗) = 𝒍𝒃(𝑘) + ൫𝑿୬ୣ୵(𝑘, 𝑗) − 𝒖𝒃(𝑘)൯ mod |𝒖𝒃(𝑘) − 𝒍𝒃(𝑘)| 
19:    end if 
20:    if 𝑿୬ୣ୵(𝑘, 𝑗)  < 𝒍𝒃(𝑘) do  
21:     𝑿୬ୣ୵(𝑘, 𝑗) = 𝒖𝒃(𝑘) − ൫𝒍𝒃(𝑘) − 𝑿୬ୣ୵(𝑘, 𝑗)൯ mod |𝒖𝒃(𝑘) − 𝒍𝒃(𝑘)| 
22:    end if 
23:   next 
24:  next 
25:  Set 𝑿 = 𝑿୬ୣ୵ and 𝑽 = 𝑽୬ୣ୵ 
26:  Process particle positions  𝒄, 𝑿ୣ୴ୟ୪, 𝒀ୣ୴ୟ୪ =  ℱ(𝒄𝒑୴ୟ୰୷, 𝒄𝒑ୡ୭୬ୱ୲, 𝒄𝒑ୡ୭୬ୱ୲,୴ୟ୪୳ୣୱ, 𝒍𝒔, 𝒔𝒑௠, 𝑺𝑷୴ୟ୪୳ୣୱ,௠, 𝑿, 𝑿ୣ୴ୟ୪, 𝒀ୣ୴ୟ୪) 

27:  Update local best positions 𝑳 for each particle based on 𝒄 
28:  Update global best position 𝒈 based on 𝒄 
29: next 
30: Get best position 𝒙ୠୣୱ୲ = 𝒈  
31: Get best cost 𝑦ୠୣୱ୲ of best position 𝒈 from 𝒀ୣ୴ୟ୪ 
32: return 𝒙ୠୣୱ୲,𝑦ୠୣୱ୲, 𝑿ୣ୴ୟ୪, 𝒀ୣ୴ୟ୪   

 

First, for all calibration parameters to be varied by the optimizer, the limits of their 
co-domains are retrieved from the calibration parameter database (line 1). If no initial 
particle positions 𝑪𝑷୴ୟ୰୷,୧୬୧୲  were specified in the input of Algorithm 1, the particle 
positions 𝑿  are randomly initialized in the space of calibration parameters to vary 
considering the respective co-domain (line 3). Otherwise 𝑿 =  𝑪𝑷୴ୟ୰୷,୧୬୧୲ is set (line 5). In 
addition, particle velocities 𝑽 are randomly initialized and the local best positions 𝑳 of 
each individual particle are set to the current positions 𝑿 (line 7 and 8). Due to the high 
processing time of test cases in virtual ADAS/ADS testing, all evaluated particle positions 𝑿ୣ୴ୟ୪ as well as their costs 𝒀ୣ୴ୟ୪ are saved in metrics, which are initialized in line 9. This 
allows Algorithm 2 to check whether the particle positions 𝑿 to be evaluated are already 
present in 𝑿ୣ୴ୟ୪ and associated test cases do not need to be processed again. Algorithm 2 
is used in line 10 for the first time to determine the costs 𝒄 for the initial particle positions 

First, for all calibration parameters to be varied by the optimizer, the limits of their
co-domains are retrieved from the calibration parameter database (line 1). If no initial
particle positions CPvary,init were specified in the input of Algorithm 1, the particle positions
X are randomly initialized in the space of calibration parameters to vary considering the
respective co-domain (line 3). Otherwise X = CPvary,init is set (line 5). In addition, particle
velocities V are randomly initialized and the local best positions L of each individual particle
are set to the current positions X (line 7 and 8). Due to the high processing time of test cases
in virtual ADAS/ADS testing, all evaluated particle positions Xeval as well as their costs
Yeval are saved in metrics, which are initialized in line 9. This allows Algorithm 2 to check
whether the particle positions X to be evaluated are already present in Xeval and associated
test cases do not need to be processed again. Algorithm 2 is used in line 10 for the first time
to determine the costs c for the initial particle positions X. Based on the smallest value in c a
global best position g is defined from the corresponding position in X (line 11). After this
initial cost calculation, the main loop of the algorithm starts.

PSO iteratively adjusts the positions of particles in the calibration parameter space to
converge to a global optimum with minimal cost. For this purpose, the initialized particles
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are moved with a velocity Vnew in each iteration, which is determined according to the
formula in line 14. The particle velocity of the previous iteration V and the connection
vectors of the current particle position to the local best position of the respective particle
and the global best position are considered with weights. The inertia factor X weights the
particle velocity of the previous iteration V. A higher value results in more exploration of
the search space but also slows down the convergence of the PSO [10]. The acceleration
constants a1 and a2 are used to influence the motion tendency of particles to local or global
best positions, while r1 and r2 are two equally distributed random factors that are supposed
to apply a natural behavior to the particle swarm.

After moving particle positions X with particle velocity Vnew (line 15), the new particle
positions Xnew are checked to see if they are within the co-domains of the corresponding
calibration parameters. The original PSO does not take constraints of parameter space into
account, so measures have to be implemented to deal with out-of-bound positions. In the
implementation presented in Section 4, the algorithm shows the best performance when
a periodic search space, according to Zhang et al. [25], is applied, where out-of-bound
particles are reset into the search space before evaluation (lines 16 to 22).

After this step, particle positions are processed to obtain costs c for each particle
(line 26). The local best positions of each particle L and the global best position g are
updated if new costs are lower than the cost of the previously stored positions (lines 27
and 28). After niterations the global optimal position xbest and corresponding costs ybest are
returned together with the evaluation history Xeval and Yeval.

The following Algorithm 2 shows the implementation of the particle processing
procedure applied in Algorithm 1.

Algorithm 2: Particle Processing F
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Algorithm 2. Particle Processing ℱ 
  

Input: Names of calibration parameters to vary 𝒄𝒑୴ୟ୰୷ with 𝑛ୡ୮  ∈  ℕ being the 
number of calibration parameters to vary, names of constant calibration 
parameters 𝒄𝒑ୡ୭୬ୱ୲, values of constant calibration parameters 𝒄𝒑ୡ୭୬ୱ୲,୴ୟ୪୳ୣୱ, 
names of logical scenarios to be considered during calibration 𝒍𝒔 with 𝑛୪ୱ  ∈  ℕ 
being the number of logical scenarios, vectors with scenario parameter names 𝒔𝒑௠ and matrices 𝑺𝑷୴ୟ୪୳ୣୱ,௠ with scenario parameter values to specify concrete 
scenarios to be considered during calibration with 𝑛ୡୱ,௠  ∈  ℕ being the number 
of concrete scenarios and 𝑚 = 1 … 𝑛୪ୱ, matrix 𝑿 ∈  ℝ௡ౙ౦× ௡౦౗౨౪౟ౙౢ౛౩ of particle 
positions to process, already evaluated particle positions 𝑿ୣ୴ୟ୪ ∈ ℝ௡ౙ౦× ௡౦౗౨౪౟ౙౢ౛౩× ௡౟౪౛౨౗౪౟౥౤౩, costs of already evaluated particle positions 𝒀ୣ୴ୟ୪ ∈ ℝ ௡౦౗౨౪౟ౙౢ౛౩× ௡౟౪౛౨౗౪౟౥౤౩ 

 Output: Cost vector 𝒄 ∈  ℝ ௡౦౗౨౪౟ౙౢ౛౩  containing costs of evaluated particle 
positions, updated evaluated particle positions 𝑿ୣ୴ୟ୪ ∈  ℝ௡ౙ౦× ௡౦౗౨౪౟ౙౢ౛౩× ௡౟౪౛౨౗౪౟౥౤౩ , 
updated costs of evaluated particle positions 𝒀ୣ୴ୟ୪ ∈  ℝ ௡౦౗౨౪౟ౙౢ౛౩× ௡౟౪౛౨౗౪౟౥౤౩ 

1: for 𝑖 = 1 → 𝑛୮ୟ୰୲୧ୡ୪ୣୱ do 
2:  Round each entry in particle position vector 𝒙 = 𝑿(: , 𝑖) to two decimal values 
3:  if 𝒙 already exists in 𝑿ୣ୴ୟ୪ do 
4:   Get cost 𝑐 ∈ ℝ for 𝒙 from 𝒀ୣ୴ୟ୪ 
5:  else 
6:   for each concrete scenario to be considered during calibration specified 

through 𝒍𝒔, 𝒔𝒑௠ and 𝑺𝑷୴ୟ୪୳ୣୱ,௠ do 
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Algorithm 2 forms a loop for processing particles individually (line 1). As mentioned
earlier, a strength of PSO is the parallel processing of particle positions and their associated
test cases. The loop in line 1 can be replaced by an appropriate implementation to distribute
particle positions on a cluster of test benches.

In the first step of particle processing, each value of a particle position is rounded to
two decimal values (line 2). This measure is implemented to increase the reusability of
already processed particles, which is checked in line 3. If a particle position was already
processed and can be located in Xeval, the corresponding particle costs saved in Yeval are
considered. Since particles in PSO converge to local or global best positions after a few
iterations, this measure strongly increases the efficiency of the algorithm.

For each particle position in X that has not been processed before, the necessary test
cases are created. For each concrete scenario to be considered during virtual calibration, there
needs to be a dedicated test case to calculate the overall cost of the particle position. Thereby,
nls different logical scenarios are considered, each containing ncs,m concrete scenarios. The
necessary scenario parameter values are defined in matrices SPvalues,m or can be retrieved
as default values from the logical scenario database of the framework. To create a test case,
a logical scenario and key-value pairs of the scenario parameters must be specified, which
are created in this step (line 7). Additionally, the currently investigated particle position x
together with constant calibration parameters and default values retrieved from the calibration
parameter database, are converted to key-value pairs to define the data set to be tested in
this test case (line 8). In line 9, the names of the performance rating KPI and all other KPIs
needed for evaluating the SUT’s performance in the respective logical scenario are retrieved
from the evaluation database of the framework. This information is then used to complete the
necessary information for test case creation. After the creation of all test cases (line 10), these
are processed (line 12), and costs for each particle position are calculated (line 13). Since the
PSO is designed to minimize the cost of particle positions, in this step, the cost is calculated
from the difference between the maximum achievable performance rating and the mean
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value of performance ratings for all test cases. In addition, it is checked to see whether the
SQCs of all test cases were positive. If an SQC is negative and additional error-handling
measures are not activated, it can be assumed that the test case was not implemented correctly
in the simulation. Therefore, the costs of this particle position are set to the maximum value,
and affected test cases are labeled accordingly in the dynamic test database in order to be
investigated manually (line 14). This procedure is repeated for all particle positions in X and
the cost vector c is returned together with updated Xeval and Yeval.

With this PSO implementation consisting of Algorithm 1 and Algorithm 2, in which
no additional stop conditions are implemented, the number of test cases ntc to be simulated
can be calculated according to formula (2).

ntc = niterations·nparticles·
(

nls

∑
j=1

ncs,j

)
(2)

Nevertheless, the actual number of test cases is generally below this value due to the
converging nature of PSO and the reuse of already evaluated particle positions (Algorithm 2,
line 4) which strongly increases optimization efficiency.

3. Use Cases and Methods of Virtual Calibration

After introducing the necessary components for virtual ADAS/ADS calibration, the
focus of this section will be on the design of virtual calibration methods based on these
components to cover different calibration use cases.

The task of ADAS/ADS calibration accompanies the entire development process of a
vehicle. During development, the V-model process is iteratively performed several times,
and in each iteration, updates and bug fixes in the hardware and software of the systems
are implemented. The V-model is a generic process for product development [2]. Following
the top–down principle, specifications are defined, and system design is developed. After
the implementation of components, system integration and testing are performed following
the bottom–up principle. Several stages of system calibration are performed together
with verification and validation in the system integration and testing process. While basic
calibration is performed in the early stages of the development process, data sets are fine-
tuned and adapted to hardware and software changes during various process stages until
the start of production (SOP). The calibration process must be completed at type approval
pre-tests since, for some systems, no changes in data sets are allowed after these tests.

A large part of ADAS/ADS calibration on the system level is currently performed in
prototype vehicles on proofing grounds or in road traffic. The use case of this calibration
test is mostly limited to the optimization of system behavior in a few selected scenarios
and, eventually, an adaptation to different vehicle derivatives. Virtual calibration offers the
possibility of optimizing data sets in simulation, which can be used as a starting point for
calibration in prototype vehicles. This not only increases the efficiency of the process, but
virtual calibration also offers the possibility of covering new use cases that were previously
not possible to cover due to the limitations of calibration in prototype vehicles.

3.1. Use Case 1: Calibration for Optimal Behavior in a Large Set of Scenarios

As presented in Section 1, a major challenge of ADAS/ADS calibration is a large
number of scenarios within the ODD of the systems. To take into account the different inter-
acting effects of parameter changes in a pool of scenarios, each data set needs to be tested
in each scenario. Both everyday scenarios and rare, possibly challenging scenarios must be
considered. This prevents critical system behavior in challenging scenarios resulting from
data sets only tuned for unchallenging everyday scenarios.

This use case is present in calibrating nearly all complex ADAS/ADS. In ACC calibra-
tion, for example, logical scenarios such as target cut-in, target cut-out, following braking
target, driver reducing set speed, etc., at different speeds, distances, and accelerations must
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be considered [21]. Thus, the first important component of a method for virtual calibration
in a large pool of scenarios is the logical scenario database of the testing framework. This
database contains the logical scenarios to be considered and their scenario parameters. In
addition, the necessary KPIs for determining performance ratings must be implemented
in the evaluation database. For some ADAS/ADS, the desired functionality and focus of
performance rating can vary in different logical scenarios, which is why KPIs are defined
separately for logical scenarios. For example, in calibrating automated parking systems,
the performance evaluation in some logical scenarios focuses on correct positioning in a
parking space. In contrast, other logical scenarios focus on the reaction to obstacles while
driving to a parking space.

A challenge in this use case is the design of the test case sampling method. If a large
number of logical scenarios nls with a large number of concrete scenarios ncs,j have to be
considered in calibration, simulating these scenarios for each data set to be tested results in
a high number of test cases ntc (see formulas (1) or (2)). A multi-scenario-level optimization
method based on the presented PSO can be applied to tackle this challenge. In a first
calibration run, only a small set of representative scenarios is considered, as proposed by
Beglerovic et al. [11] and Langner et al. [7]. However, instead of only testing the identified
optimal dataset in a larger set of scenarios after calibration by deploying a virtual validation
approach, a second optimization run with fewer iterations is performed in which more
scenarios are considered. The optimal data set found in the first optimization run is used
as a starting point in the second run.
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Just like simulation for ADAS/ADS testing, the basic idea of this approach is based on
computer games, in which levels of increasing difficulty are run through, with the player’s
skills also increasing during playing. As shown in Figure 3, the optimization in Level 1
is performed with random initial positions of PSO particles. The pool of scenarios to be
considered for calibration, which is defined by ls, spm and SPvalues,m, is very small in this
first level. Only one or a few concrete scenarios are considered for each logical scenario. The
first optimization run results in the optimal position xbest,level1 ∈ Rncp for the considered
scenarios. This is used to determine the initial particle positions for the next level according
to the following formula (3):
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CPvary,init,level2 = xbest,level1·1 + Xshift (3)

To calculate the initial particle positions CPvary,init,level2 ∈ Rncp×nparticles,level2 of optimiza-
tion in level 2, xbest,level1 is multiplied by 1 ∈ Rnparticles,level2 with 1 = (1, 1, . . . , 1) and a shift
matrix Xshift ∈ Rncp×nparticles,level2 is added. This allows different topologies to be defined
for the initial particle positions for optimization in Level 2 based on xbest,level1. For exam-
ple, one particle in CPvary,init,level2 can be defined as xbest,level1, and other particles feature
differences in one parameter each, which is decreased and increased by a value a ∈ R:

Xshift =


0 −a a 0 0 · · · 0 0
0 0 0 −a a · · · 0 0
...

...
...

...
...

. . . 0 0
0 0 0 0 0 0 −a a

 (4)

This topology results in a total number of particles nparticles,level2 = 2ncp + 1 in Level 2.
The scenario pool in Level 2, which has to be considered in optimization, is larger than in the
previous level. On the one hand, more concrete scenarios are added for each logical scenario,
including, for example, rare, possibly challenging concrete scenarios. On the other hand,
new logical scenarios with multiple concrete scenarios can be added. The approach assumes
that for consideration of representative scenarios in the scenario pool of Level 1, the optimal
position xbest,level2 will not match xbest,level1 but it is not distant in the space of calibration
parameters. Therefore, nparticles,level2 < nparticles,level1 and niterations,level2 < niterations,level1
can be used without decreasing the performance of PSO. For this reason, the number of
test cases will increase in Level 2 due to the larger pool of considered scenarios, but not to
the same extent as if all scenarios were considered right away in the first level.

The multi-scenario-level virtual calibration method can be performed at multiple
levels, with more scenarios considered at each level. This allows virtual calibration to be
performed efficiently for a large pool of scenarios. The determination of which scenarios
are included in each level can be based on factors such as the frequency of their occurrence
in real road traffic. The approach provides an optimal data set for a large pool of scenarios.
Individual performance ratings can also be used to check exactly which scenarios in the
data set have weaknesses and to derive possible system modifications.

3.2. Use Case 2: Calibration for Different System Modes

As with conventional powertrain and chassis systems, ADAS/ADS controlling the
vehicle can be calibrated for different system modes. The customer has the possibility to
switch between modes and thus select the desired behavior of the system. Liesner [10]
shows an approach for virtual calibration of an ACC for modes “normal” and “sport.”
Another system for which calibration to different system modes is particularly interesting
is a predictive longitudinal control system. This system not only reacts to other target
vehicles in the driving corridor of the ego vehicle, such as ACC, but also adjusts driving
velocity to the upcoming route. Changes in legislative speed limits, turns, elevations, traffic
lights, and road infrastructure are considered. The system holds the potential to offer the
customer a normal, sporty, or fuel-efficient automated driving experience through different
data sets calibrated for each system mode.

This is another use case where virtual calibration can be used to increase efficiency
and identify multiple optimal data sets for different system modes in simulation, which
can serve as a starting point for fine-tuning in prototype vehicles. The virtual calibration
method is not very different from use case 1, except that different performance rating
evaluation metrics for different system modes have to be implemented in the evaluation
database of the testing framework.
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The differences in performance rating evaluation metrics mainly affect the calculation
of indirect KPIs and weights of performance rating aspects, while direct KPIs remain the
same. For every system mode, a separate virtual calibration run has to be performed, as
exemplarily shown in Figure 4. The output is two different data sets from the ADAS/ADS
for two different system modes, A and B. The multi-scenario-layer calibration method of
use case 1 can be applied in each calibration run to consider a large set of scenarios.

3.3. Use Case 3: Calibration for Different Customer Groups and Markets

A similar use case is the calibration of different data sets for different customer groups
and markets. This measure can promote acceptance of ADAS/ADS offered in various
markets. As already mentioned, an optimal data set represents a trade-off between differ-
ently weighted performance aspects such as comfort, safety, efficiency, and naturalness of
driving. Depending on the customer group or market, different weightings of these aspects
may be preferred by customers. In some cultures, safety is more important than efficiency
or comfort. For example, customers want a more “inefficient” but safer, lower velocity
for automated parking in a parking lot. In addition, different markets have different legal
requirements for the behavior of ADAS/ADS. One example is mandatory minimum dis-
tances when following another vehicle, which is relevant for ACC calibration. Furthermore,
scenarios to be considered during calibration also differ in different markets, for example,
regarding lane markings, traffic signs and rules, lane width, driving behavior of other road
users, ego driver behavior, quality of digital information such as map data, etc.

In order to generate data sets for different customer groups and markets in virtual cal-
ibration, the different preferences of individual performance aspects must be implemented
in performance evaluation metrics of indirect KPIs, as in use case 2. However, new direct
KPIs may also have to be defined in this use case, for example, if market-specific function-
alities have to be considered. In addition, it is necessary to consider different scenario sets
for different markets that take the previously mentioned differences into account.
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Market-specific performance rating evaluation metrics and logical scenarios are de-
fined in the evaluation database and the logical scenario database of the testing framework.
As shown exemplarily for two markets, A and B, in Figure 5, a separate virtual calibration
run must be performed for each data set that needs to be created for a specific market or
group of markets. For each run, market-specific performance rating evaluation metrics and
a market-specific pool of calibration relevant scenarios defined by ls, spm and SPvalues,m
are considered. The resulting optimal data sets can be used as a starting point for testing
prototype vehicles within the market, increasing the efficiency of expensive testing abroad.
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3.4. Use Case 4: Calibration for Different Vehicle Derivatives

The basic motivation for using data sets of calibration parameters is the possibility of
deploying different systems, not only ADAS/ADS, in different vehicle derivatives without
having separate software versions [26]. Different derivatives refer not only to vehicles
featuring different configurations but also to different model series or even platforms on
which an ADAS/ADS is deployed.

In order to generate data sets for different vehicle derivatives in virtual calibration,
derivative-specific properties must be covered by the vehicle models used in the simulation.
Additionally, these properties are stored as scenario parameters in the logical scenario
database for each logical scenario to make them accessible for virtual calibration methods
in the testing agent module. Derivative-specific properties may include, for example,
differences in sensor positions but also the computation performance of partner systems.
In each calibration run, calibration-relevant properties of the ego vehicle are defined within
each logical scenario through scenario parameters.
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As illustrated in Figure 6, the pool of calibration-relevant scenarios is enriched by
scenario parameters defining the respective vehicle derivative. These are added to spm
and SPvalues,m for each logical scenario within ls. For each data set to be generated for an
individual vehicle derivative, a calibration run has to be performed. The multi-scenario-
level method of use case 1 can be applied if a large set of scenarios must be considered
while keeping the same ego vehicle-relevant scenario parameters for each concrete scenario.
In addition, different performance rating evaluation metrics and market-specific scenarios
can be considered, as in use case 3, if some derivatives are only offered in certain markets.

3.5. Use Case 5: Calibration for Different Sub-Areas of the ODD

To optimize the behavior of ADAS/ADS, different data sets can be deployed for
different sub-areas of the system’s ODD. The system switches to the corresponding data set
if vehicle sensors indicate the vehicle is moving in the respective sub-area [27]. Sub-areas
can be, for example, different road categories, weather conditions, or system settings by the
driver. For example, using a different data set for traffic jams in an ACC can increase the
naturalness of driving.

To generate data sets for different ODD sub-areas in virtual calibration, the entire pool
of calibration-relevant scenarios of the system’s ODD is divided into sub-pools of scenarios
for each sub-area of the ODD.
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The division of scenarios can be performed using the scenario parameters of con-
crete scenarios defined through spm and SPvalues,m. For example, target cut-in scenarios
featuring a velocity below 10 km/h can be assigned to traffic jam driving. The probabil-
ity of the occurrence of concrete scenarios in real road traffic within ODD sub-areas can
provide the necessary data to perform the division of the scenario pool. As illustrated in
Figure 7, optimal data sets for each ODD sub-area are created by individual calibration
runs that can apply the presented multi-scenario-level method if large scenario pools need
to be considered.

4. Implementation and Evaluation

In this section, implementations of the presented methods for virtual ADAS/ADS
calibration are demonstrated, and their results are evaluated. All implementations are
executed on a personal computer featuring an Intel Core i7-9850H CPU, NVIDIA Quadro
T2000 GPU, and 32 GB RAM. The focus is on the functionality of methods and not on
validating simulation models, scenario models, or evaluation metrics, which are consid-
ered available. To create example use cases, a simplified model of an ACC controller is
implemented as a SUT based on the sliding-mode principle, as presented by Liesner [10].
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The illustrated ACC controller in Figure 8 receives as control inputs the velocity vego ∈
R of the ego vehicle, the acceleration aego ∈ R, the distance ∆x ∈ R, and the velocity
vtarget ∈ R of a recognized target vehicle in the driving corridor of the ego vehicle. Object
perception is not part of the SUT but is implemented as a partner system in the ego vehicle
model. Additional control inputs are a minimum offset distance ∆xOffset ∈ R to other
vehicles and a set velocity vset ∈ R and set a time gap τset ∈ R specified by the driver model.
In function (I), a desired relative velocity change ∆vtw ∈ R is determined from the desired
distance ∆xw ∈ R, actual distance ∆x ∈ R and velocity signals when following another
vehicle. Function (I) is formed by two horizontal parabolas and a straight line, according to
Liesner [10], with ∆vtw limited to prevent the total desired velocity from being higher than
vset. In free driving, without a detected target vehicle, the desired velocity change ∆vw ∈ R
is determined from the difference between set velocity vset and ego vehicle velocity vset.
The desired acceleration aw ∈ R of the ego vehicle is calculated using the functions (II) for
free driving and (III) for following a target vehicle. These are linear functions calculating
aw based on the total desired velocity change ∆vw, using different gradients for positive
∆vw than for negative ∆vw. Function (III) is characterized by two straight lines according
to the following formula (5), with ma,pos,follow ∈ R and ma,neg,follow ∈ R being calibration
parameters to modify the acceleration behavior of the ACC when following a target vehicle.

aw =

{
∆vw·ma,pos,follow if ∆vw ≥ 0
∆vw·ma,neg,follow if ∆vw < 0

(5)

The selection of the outputs of functions (II) and (III) depends on detecting a target
vehicle in the driving corridor in front of the ego vehicle, illustrated as a switch in Figure 8.
Next follows the application of limits for ACC-controlled accelerations according to ISO
22179 [28]. In addition, a gradient limit jlimit,free ∈ R is applied for free driving and
jlimit,follow ∈ R for following a target vehicle, which are additional calibration parameters
to modify the acceleration behavior of the SUT. In the final step, aw is passed to a PI
controller, which calculates a desired drive torque Mw ∈ R which results in a throttle value
ϕthrottle ∈ [0, 1] and a brake value ϕbrake ∈ [0, 1].

The ACC model shown in Figure 8 represents a simplified implementation to demon-
strate the methods presented in this paper. It features only a part of the functionalities
of a series of ACCs but is suitable for demonstrating and evaluating example use cases
and methods.

For virtual testing of the SUT, the open-source CARLA [29] simulation based on
Unreal Game Engine is integrated into the simulation module of the virtual ADAS/ADS
testing framework presented in Section 2. With the Scenario Runner add-on and the
Metrics Manager add-on, different logical scenarios and performance evaluation metrics
can be implemented. While the simulation of vehicle dynamics uses the already integrated
NVIDIA PhysX model [30] in CARLA, sensors and perception systems are modeled by a
delay Tperception ∈ R when detecting new vehicles in the driving corridor of the ego vehicle.
The implementation also includes a driver model that applies a PI controller to take over
lateral control of the ego vehicle and transfers vset and τset to set up the SUT.

4.1. Implementation and Evaluation of Multi-Scenario-Level Method for Use Case 1

The multi-scenario-level virtual calibration method introduced in Section 3.1 provides
an approach to tackle the challenge of considering a large set of logical and concrete
scenarios in ADAS/ADS calibration. In the following example, the method will be applied
to calibrate the presented ACC model in different concrete target cut-in scenarios. In this
logical scenario, the ego vehicle drives in a free lane until a target vehicle cuts into that lane
in front of it. The ACC operates first in free driving mode and then changes to following the
new target vehicle. The logical target cut-in scenario is implemented in the logical scenario
database of the testing framework and features the following variable scenario parameters:
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• Distance dcut−in ∈ R in m between the target vehicle and the ego vehicle when cut-in
is performed by the target vehicle (driving environment cluster)

• Relative velocity vrel ∈ R in km/h between target velocity and ego velocity during
and after target cut-in (driving environment cluster)

• Lane change duration Tcut−in ∈ R in s of the target vehicle (driving environment cluster)
• Desired velocity vset in km/h set up by the driver (driver cluster)
• Desired time gap τset in s set up by driver (driver cluster)
• Delay Tperception in s of perception hardware and software of the ego vehicle (ego

vehicle cluster)

Other characteristics of the logical scenario, such as the scenery of a three-lane straight
highway, the powertrain and chassis of the ego vehicle, and parameters of lateral control
by the driver model, are not implemented as variable scenario parameters in this example
and remain constant.

The presented ACC model’s acceleration behavior when following another vehicle is
controlled by calibration parameters ma,pos,follow, ma,neg,follow and jlimit,follow. In the example
use case, these parameters are optimized in nine concrete target cut-in scenarios, which are
detailed in Table A1 in Appendix A. Other calibration parameters are kept constant. The
parameter ma,pos,follow has only a small effect in the considered target cut-in scenario but is
nevertheless included in optimization to show the robustness of the method against slightly
influential parameters. The scenario pool shown in Table A1 was assembled manually in this
example. In an extended application, the scenarios to be considered for calibration can be
derived from real driving data or expert knowledge. For performance evaluation, a metric based
on quality loss functions is implemented in the evaluation database of the testing framework,
which is explained in more detail in Section 4.2. The metric assesses the performance of the
ACC model in the considered target cut-in scenario by an index from 1 to 10.

In the scenario pool of Level 1, only three representative concrete target cut-in scenar-
ios for three road categories, country road, city, and highway, are present. Co-domains
of calibration parameters are limited to ma,pos,follow ∈ [0.1, 1], ma,neg,follow ∈ [0.1, 1] and
jlimit,follow ∈ [0.5, 6]. Optimization is performed using the presented PSO, which is im-
plemented in the testing agent strategy module of the framework. It is configured with
X = 0.4, a1 = 0.4, a2 = 0.6, nparticles = 20 and niterations = 30.
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Besides inputs and outputs of optimization in Level 1, Figure 9 shows costs in each
iteration in the upper plot and evaluated particle positions in the lower plot. Large points
in the lower plot mark initial particle positions, chosen randomly during PSO initialization
in this first optimization level. PSO converges to the optimal position ma,pos,follow = 0.56,
ma,neg,follow = 0.24 and jlimit,follow = 0.74 with cost ybest = 0.77 and the associated per-
formance rating of 9.23 on an index from 1 to 10. The worst position analyzed in this
optimization run has a performance rating of 5.79. Of the theoretically 1800 test cases to
be processed according to formula (2), only 786 were needed due to the reuse of already
processed particle positions presented in Section 2.

The identified optimal position is used to calculate initial particle positions for level 2,
in which all nine concrete target cut-in scenarios of Table A1 are considered for calibration.
In addition to the representative concrete scenarios considered in Level 1, an additional
scenario and a challenging scenario are added for each road category. The shift matrix
Xshift in formula (3) is chosen as follows based on the topology presented in formula (4):

Xshift =

0 −0.2 0.2 0 0 0 0
0 0 0 −1.4 0.2 0 0
0 0 0 0 0 −0.24 0.5

 (6)

In (6), the values for decreasing and increasing individual calibration parameters
are not the same as in (4) for ma,neg,follow and jlimit,follow, since otherwise their co-domains
would be violated. Therefore, the following optimization in Level 2 is performed using a
lower number of particles and a lower number of iterations than in Level 1.
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Figure 10 illustrates that PSO converges to an optimal position, similar to Level 1.
Considering all concrete scenarios in Table A1, ma,pos,follow = 0.2, ma,neg,follow = 0.31
and jlimit,follow = 0.69 are identified as the optimal data set with a performance rating of
8.87. While the optimal values of ma,neg,follow and jlimit,follow are not far from the optimal
values of Level 1 and within the initial positions defined by CPvary,init, the optimal value
of ma,pos,follow in Level 2 differs strongly from Level 1. This is due to the small effect of
this calibration parameter on the performance of the SUT in the target cut-in scenario. If
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other logical scenarios, such as target acceleration or target cut-out behind a new target,
were considered in optimization, similar behavior to that for the other parameters would
also occur for this calibration parameter. Nevertheless, the method shows robustness to
parameters with little effect in the scenarios considered since optimal values are identified
for ma,neg,follow and jlimit,follow.

This example use case shows that with a suitable choice of representative scenarios
in Level 1 and a suitable topology for initial particle positions in Level 2 defined by Xshift,
an optimal data set in Level 2 can be identified using fewer PSO particles and iterations.
The question of how to distribute logical and concrete scenarios to different levels and
which topologies for Xshift result in a beneficial performance of the method is the subject of
subsequent research.

Besides the identification of an optimal data set for an overall optimal performance
rating, the method also allows for checking in which of the concrete scenarios the identified
data set has weaknesses. In this example, the lowest performance rating of individual
concrete scenarios is present for the challenging highway scenario, with a performance
rating of 8.01. If necessary, this information can be used to define specific software changes
to improve ACC behavior in this scenario. Due to the reuse of already evaluated par-
ticle positions, only 657 test cases instead of 945 test cases had to be processed in this
optimization run.

To quantify the potential of the multi-scenario-level method, the optimization of the
three calibration parameters is additionally performed at only one level, featuring all
concrete scenarios at once with random initial particle positions. Figure 11 shows results of
this calibration run.
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It can be observed that the optimal values of ma,neg,follow and jlimit,follow as well as the
cost ybest of optimal position are close to the values of Figure 10. The small deviation can
be explained by the non-deterministic behavior of PSO and simulation. The calibration
parameter ma,pos,follow deviates strongly since it has little effect on the performance of the
SUT in this logical scenario.

Using the multi-scenario-level method for virtual calibration of the ACC in this exam-
ple use case reduced the number of test cases required to 1443. This represents a significant
decrease compared to the 2349 test cases required for normal optimization. Thus, the
efficiency of virtual calibration, measured in test cases to be processed, was increased by
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38.57% using the multi-scenario-level method. It can be assumed that this increase in
efficiency is even higher if a larger pool of logical and concrete scenarios is considered. The
processing time of test cases in this implementation, including initialization and evaluation,
is 1.5 min. Test cases are performed in real-time as it is required for hardware-in-the-loop
(HiL) testing. In this simple example use case, the multi-scenario-level method saved
22.65 h of simulation time. Efficiency could be further increased by distributing test cases
among a cluster of HiL test benches, for which the PSO is well suited due to the possibility
of parallel particle position evaluation.

4.2. Implementation and Evaluation of Different Performance Rating Metrics for Use Cases 2 and 3

To calibrate ADAS/ADS for different system modes and markets, corresponding methods
are presented in Sections 3.2 and 3.3 of this paper. In the following example implementation,
the use case is to identify an optimal data set for comfort-oriented ACC behavior and a safety-
oriented data set in the already introduced target cut-in scenario. The comfort-oriented data
set does not neglect safety but allows the ego vehicle to drive closer to target vehicles in favor
of more comfortable braking. The safety-oriented data set can be applied in specific markets
where customers value the safer behavior of the ACC over comfort. A core component of
methods to cover this use case is different performance rating metrics, which are used to
calculate costs for optimization of the two required data sets. In this example implementation,
performance evaluation metrics were defined based on expert knowledge rather than extensive
subject studies. Implemented metrics in the evaluation database of the testing framework
are based on quality loss functions introduced by Taguchi et al. [31], which are used to map
direct physical KPIs to an overall performance rating. For the logical target cut-in scenario, the
following direct KPIs are defined in the evaluation database of the framework:

• Mean longitudinal braking deceleration
–
abrake ∈ R in m/s2 of ego vehicle during cut-in

• Maximal longitudinal braking deceleration abrake,max ∈ R in m/s2 of ego vehicle
during cut-in

• Minimal longitudinal jerk jmin ∈ R in m/s3 of ego vehicle during cut-in
• Maximal longitudinal jerk jmax ∈ R in m/s3 of ego vehicle during cut-in
• Minimal time to collision TTCmin ∈ R in s between ego vehicle and target vehicle

during cut-in (TTC = d/vrel with d ∈ R being the distance and vrel ∈ R being the
relative velocity between the two vehicles)

• Risk time Trisk ∈ R in s, which is the duration of the ego vehicle violating the legislative
minimum distance to the target vehicle

• Velocity immersion vimmersion ∈ R in m/s, which is the relative velocity at which the
ego vehicle immerses below the velocity of the target vehicle during braking

• Minimal time gap τmin ∈ R in s between ego vehicle and target vehicle during cut-in
(τ = d/vego with d ∈ R being the distance between the two vehicles and vego ∈ R
being the velocity of the ego vehicle)

Quality loss functions are implemented as indirect KPIs in the evaluation database
to calculate costs, which map direct KPIs to indices from 1 to 10 to derive an overall
performance rating. These indices are used to calculate mean ratings for the individual per-
formance rating aspects of comfort, safety, and naturalness of driving, which are weighted,
and a mean value for the overall performance rating is calculated.

Two different performance rating metrics are implemented as indirect KPIs to identify the
two different data sets during calibration. Appendix B includes Table A2 showing all values of
the performance rating metric to calculate costs for optimization of the comfort-oriented data set.

Table A3 shows the values of the safety-oriented performance rating metrics, while
formulas (A1) and (A2) represent applied quality loss functions. There are differences
implemented in the weights of individual performance rating aspects and in the definition
of quality loss functions to map safety-relevant direct KPIs TTCmin and Trisk. The safety-
oriented performance rating metric assigns more cost to lower TTCmin and higher Trisk,
and weights the aspect rating for safety higher than for comfort.
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The optimization is performed using PSO, whereby the different performance rating
metrics are applied to calculate costs. Since Section 4.1 already illustrated optimization
for different concrete scenarios, this example focuses on evaluating different performance
rating metrics. It only considers the representative country road target cut-in scenario of
Table A1 during calibration. Optimization results in an optimal comfort-oriented data set
with ma,pos,follow = 0.12, ma,neg,follow = 0.17 and jlimit,follow = 0.73 and a safety-oriented
data set with ma,pos,follow = 0.49, ma,neg,follow = 0.75 and jlimit,follow = 1.58.
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Figure 12 shows ACC behavior in the representative country road target cut-in sce-
nario, applying the different data sets generated in calibration. Distance d between vehicles,
velocities of the ego and target vehicles, and acceleration aego of the ego vehicle are shown.
The vertical dotted line shows the point in time when the target vehicle crosses the dividing
line between lanes. It can be observed that the implementation of different performance rat-
ing metrics successfully covered the example use case. Due to the calibrated parameters of
the safety-oriented data set, the ACC model in the right plots allows for higher deceleration
and jerk. Although the minimum distance between vehicles can only be changed slightly
due to limitations of the implemented ACC model, a higher and “safer” distance to the
target vehicle is established more quickly than when using the comfort-oriented data set.

The quality of data sets generated in virtual calibration can be improved by applying
performance evaluation metrics featuring non-constant quality loss functions. Higher decelera-
tions and jerks can be accepted for more challenging scenarios than for normal, unchallenging
scenarios. This requirement can be covered by performance evaluation metrics featuring
variable values of quality loss functions depending on scenario parameters. Since the focus of
this paper is on virtual calibration methods, this is an objective for subsequent research.

4.3. Implementation and Evaluation of Different Vehicle Models for Use Case 4

Section 3.4 presents a method to calibrate ADAS/ADS for application in different
vehicle derivatives. The core of the method is to implement derivative-specific properties
in vehicle models in simulation and to make them accessible as scenario parameters
stored in the logical scenario database of the framework. In the implemented example
use case, the presented ACC has to be calibrated for two vehicle derivatives equipped
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with different perception systems to identify target vehicles in the driving corridor in
front of the ego vehicle. Vehicle derivative A is equipped with an advanced perception
system that includes extended sensors or neural networks trained with a larger dataset for
target vehicle recognition. These properties can be considered by the scenario parameter
Tperception already presented in Section 4.1. The vehicle derivative equipped with an
advanced perception system is assigned Tperception = 0.1 in SPvalues,1, while Tperception = 1
is assigned to vehicle derivative B, which features a normal perception system.

Two optimization runs have to be performed to calibrate the ACC for each vehicle deriva-
tive. The concrete scenarios to be considered have to be enriched with the matching values
of Tperception. As calibration for a large set of scenarios was already illustrated before, in this
example use case only the representative country road target cut-in scenario of Table A1 is con-
sidered. The comfort-oriented performance rating metrics defined in Table A2 are used for cost
calculation. Optimization results in an optimal data set ma,pos,follow = 0.12, ma,neg,follow = 0.17
and jlimit,follow = 0.73 for vehicle derivative A and ma,pos,follow = 0.3, ma,neg,follow = 0.17 and
jlimit,follow = 0.97 for vehicle derivative B. During calibration of the ACC in vehicle derivative A,
an optimal performance rating of 9.6 is achieved, while in vehicle derivative B, a performance
rating of 9.29 is achieved. The following Figure 13 shows the behavior of the ACC in the
different vehicle derivates after applying the individual optimal data sets.
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Figure 13. ACC behavior when applying different optimal data sets for different vehicle derivatives.

The effects of the enhanced perception system can be observed in the reaction of the
ACC to the target vehicle crossing the lane boundary of the ego-lane. This is shown by a
dotted vertical line in Figure 13. Vehicle derivative B experiences a long delay in detecting
the new target vehicle, leading to later braking by the ACC than in vehicle derivative A.
Therefore, the optimal data set generated for vehicle derivative B in virtual calibration
features a higher value for jlimit,follow, which allows a higher braking jerk. This prevents
the ego vehicle from driving too close to the target vehicle for too long. Nevertheless, the
ACC does not perform as well as in vehicle derivative A, as can be observed from different
performance ratings. This demonstrates that ADAS/ADS calibration also reaches limits
where hardware or software modifications are necessary to improve system performance.
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4.4. Implementation and Evaluation of Division of Scenarios in ODD Sub-Areas for Use Case 5

In Section 3.5, a method is presented to generate different data sets for different sub-
areas of the ODD in virtual ADAS/ADS calibration. As an example of implementation, the
already introduced concrete target cut-in scenarios in Table A1 are divided into sub-areas
according to the road category. This results in three pools of calibration-relevant scenarios
for three road categories. After optimization with the PSO and the comfort-oriented
performance rating metric of Table A2, the following optimal data sets are generated:

Table 1. Optimal data sets and costs for different ODD sub-areas.

Country Road City Highway

ma,pos,follow 0.15 0.46 0.51
ma,neg,follow 0.36 0.15 0.33
jlimit,follow 0.7 0.61 0.72

ybest 1.27 0.42 1.41

Based on the optimal data sets and costs in Table 1, it can be observed that better perfor-
mance ratings are achieved in city target cut-in scenarios due to lower velocities. However,
a different data set of the ACC is useful in this sub-area of the ODD, while the values of
calibration parameters for country road and highway scenarios are similar. The values of
ma,pos,follow do not align with those of other examples, as they have a minor impact on the
target cut-in scenarios considered during calibration. Thus, two data sets can be generated by
virtual calibration. One of the generated data sets is for city driving, and one is for country
roads and highways. The system can identify the respective road category using map data or
traffic sign recognition and switch between data sets to feature optimized behavior.

5. Conclusions and Future Work

This paper presents a holistic overview of the use cases of virtual ADAS/ADS calibration
and methods to cover these use cases. A logical scenario database, an evaluation database
featuring different performance rating metrics, and a particle swarm optimizer for test case
sampling are core components of the presented methods. The discussed use cases involve the
virtual calibration of ADAS/ADS in a variety of calibration-relevant scenarios for different
system modes, customer groups, markets, vehicle derivatives, and sub-areas of their ODD. A
multi-scenario-level calibration method is presented to tackle the challenge of a sharp increase
in the number of test cases when considering a large set of calibration-relevant scenarios.
This method is applied to optimize data sets iteratively for optimal system behavior in a
variety of scenarios. In the implemented example, the efficiency of the virtual calibration
of an ACC model can be increased by 38.57%, measured by the number of test cases to be
simulated. In addition, it is illustrated how the ACC model can be virtually calibrated for
comfort- and safety-oriented behavior by applying different performance rating metrics. By
implementing different vehicle models in simulation, the ACC model can be calibrated for
optimal behavior in a vehicle derivative featuring an enhanced perception system and for a
derivative with a normal perception system. Finally, different data sets were generated for the
road categories country road, city road, and highway, enabling the ACC to feature specific
behavior for these sub-areas of its ODD. By applying the presented methods, data sets can
efficiently be generated in virtual calibration in various use cases and serve as a starting point
for fine-tuning in prototype vehicles.

In the next step, the presented methods can be tested and evaluated in combination with
validated and enhanced simulation, scenario models, and performance rating metrics to calibrate
a series of ADAS/ADS. This allows the evaluation of presented methods under more complex
conditions and enables testing generated data sets in prototype vehicles. Advanced challenges
can be investigated, such as the need for computational simulation performance in combination
with hardware-in-the-loop test benches and the necessary simulation accuracy. In addition, the
question of which logical and concrete scenarios to consider for calibration and at what level
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of the presented multi-scenario-level calibration method these scenarios should be placed has
not yet been discussed. Data from real test drives featuring occurrence numbers of concrete
scenarios can serve as input for approaches to answering this question.
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Appendix A. Concrete Target Cut-in Scenarios to Be Considered in Example Use Case

Table A1. Concrete target cut-in scenarios to be considered in the example use case.

Concrete Scenario Description dcut−in vrel Tcut−in vset τset Tperception

Representative country road scenario 40 −10 4 100 2.5 0.1
Representative city scenario 20 −5 4 50 2.5 0.1
Representative highway scenario 60 −20 4 140 2.5 0.1
Additional country road scenario 30 −5 4 100 2.5 0.1
Additional city scenario 15 −2 4 50 2.5 0.1
Additional highway scenario 50 −5 4 140 2.5 0.1
Challenging country road scenario 30 −20 4 100 2.5 0.1
Challenging city scenario 15 −10 4 50 2.5 0.1
Challenging highway scenario 50 −30 4 140 2.5 0.1

Appendix B. Evaluation Metrics Used in Implementation

Table A2. Overview of comfort-oriented performance rating metric.

Performance Rating Aspect Direct KPI Quality Loss Function Parameters of Quality Loss
Function

Performance Rating
Aspect Weight

Comfort

–
abrake Asymmetric target value m = 1, A0 = 1, ∆0 = 4,

A1 = 0, ∆1 = 1

4abrake,max Asymmetric target value m = 1.5, A0 = 1, ∆0 = 4,
A1 = 0, ∆1 = 1

jmin Minimizing A0 = 6, ∆0 = 2
jmax Minimizing A0 = 6, ∆0 = 2

Safety
TTCmin Asymmetric target value m = 8, A0 = 0, ∆0 = 1,

A1 = 2, ∆1 = 6
2

Trisk Asymmetric target value m = 10, A0 = 4, ∆0 = 6,
A1 = 0, ∆1 = 1

Naturalness of driving
vimmersion Asymmetric target value m = 2.22, A0 = 4, ∆0 = 0.56,

A1 = 0, ∆1 = 1
1

τmin Asymmetric target value m = 1.5, A0 = 2, ∆0 = 1,
A1 = 8, ∆1 = 1
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Table A3. Overview of safety-oriented performance rating metric.

Performance Rating Aspect Direct KPI Quality Loss Function Parameters of Quality Loss
Function

Performance Rating
Aspect Weight

Comfort

–
abrake Asymmetric target value m = 1, A0 = 1, ∆0 = 4,

A1 = 0, ∆1 = 1

1abrake,max Asymmetric target value m = 1.5, A0 = 1, ∆0 = 4,
A1 = 0, ∆1 = 1

jmin Minimizing A0 = 6, ∆0 = 2
jmax Minimizing A0 = 6, ∆0 = 2

Safety TTCmin Asymmetric target value m = 8, A0 = 0, ∆0 = 1,
A1 = 4, ∆1 = 2 2

Trisk Asymmetric target value m = 4, A0 = 4, ∆0 = 4,
A1 = 0, ∆1 = 1

Naturalness of driving
vimmersion Asymmetric target value m = 2.22, A0 = 4, ∆0 = 0.56,

A1 = 0, ∆1 = 1
1

τmin Asymmetric target value m = 1.5, A0 = 2, ∆0 = 1,
A1 = 8, ∆1 = 1

Asymmetric target value quality loss function [31]:

L(y) =


A0
∆2

0
(y−m)2, for y > m

A1
∆2

1
(y−m)2, for y ≤ m

(A1)

Minimizing quality loss function [31]:

L(y) =
A0

∆2
0

y2 (A2)
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