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Abstract: The purpose of this study is to investigate the uncertainty of the design variables of a
front suspension lower control arm under fatigue-loading circumstances to estimate a reliable and
robust product. This study offers a method for systematic uncertainty quantification (UQ), and the
following steps were taken to achieve this: First, a finite element model was built to predict the
fatigue life of the control arm under bump-loading conditions. Second, a sensitivity scheme, based
on one of the global analyses, was developed to identify the model’s most and least significant design
input variables. Third, physics-based and data-driven uncertainty quantification schemes were
employed to quantify the model’s input parameter uncertainties via a Monte Carlo simulation. The
simulations were conducted using 10,000 samples of material properties and geometrical uncertainty
variables, with the coefficients of variation ranging from 1 to 3%. Finally, the confidence interval
results show a deviation of about 21.74% from the mean (the baseline). As a result, by applying
systematic UQ, a more reliable and robust automobile suspension control arm can be designed during
the early stages of design to produce a more efficient and better approximation of fatigue life under
uncertain conditions.

Keywords: automobile suspension control arm; fatigue analysis; uncertainty propagation; sensitivity
analysis; surrogate models

1. Introduction

Over the past few decades, structural optimization has become increasingly significant
in the automobile sector. The suspension system is one of the car’s most crucial subsystems;
it is responsible for protecting the vehicle’s chassis and other components from road shocks,
as well as for ensuring stability, comfort, and safety. The suspension system supports
the weight of the entire vehicle. One of the independent suspension system designs used
in vehicles is the double wishbone suspension system, which employs lower and upper
control arms. Forces are transferred from the automobile wheels to the control arm via
the ball joint assembly to the wheel as the vehicle crosses over bumps, speed bumps, and
other obstacles. Control arms can bend or break when driving over major potholes or can
become worn out due to brushing, indicating that the multiaxial loadings associated with
many sources of uncertainty are applied to the control arms.

Understanding and managing uncertainty has become increasingly important in the
automotive sector to progress the design process, optimize manufacturing procedures,
and improve day-to-day technical operations. Areas where uncertainty exists include data
collection, processing and interpretation, system modeling, production processes, and
operational settings. On the other hand, modern systems require more sophisticated and
critical designs that must operate with great dependability, tight safety margins, and high
performance. Design approaches for analyzing uncertainty have become more popular as
a result and are now being applied in the context of interdisciplinary design [1,2].

The stimulation frequencies of road bumps or speed breakers can cause fatigue dam-
age and dynamic amplification to the suspension’s control arm structure. To ensure service
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life, it is crucial to take into account the uncertainty in models and parameters. Fatigue
damage calculations contain several parameters and combinations of conditions to ac-
count for realistic operating scenarios. Although accounting for the variability of some
characteristics, such as material qualities and model geometry, is standard practice in the
industry, other parameters are typically treated as constants despite data suggesting they
may fluctuate dramatically [3]. To understand their significance in terms of the struc-
tural response and dependability of the suspension control arm, it is necessary to study
these variables. Therefore, the sensitivity of the variables must be addressed before the
uncertainty quantification analysis.

The need to identify the most influential factors in the design of support structures,
such as suspension control arms, has made sensitivity analysis a popular area of interest in
mechanical components. However, determining such values can be challenging due to the
complexity of structural design, which includes design requirements, intricate nonlinear
models, and numerous input model parameters, all of which significantly increase the un-
certainty of the sensitivity results. Researchers from various fields recommend using global
sensitivity analysis to account for model uncertainties and nonlinearities in the sensitivity
results [4]. Global sensitivity analysis examines the individual and combined effects of the
uncertainty of each input parameter on the total variance of the response to determine the
most relevant input model parameters. Consequently, a comprehensive examination of the
design space that considers interactions between input model parameters can be carried out,
providing more reliable sensitivity indices [5]. Global sensitivity analysis has been widely
used in the field of structural design due to its advantages. However, previous studies
have not provided clear conclusions on which factors to either discard or prioritize (known
as model reduction and prioritizing) [6,7] due to the inconsistent selection of input model
parameters and the lack of unambiguous convergence metrics. To address this problem,
it has been suggested to use multiple global sensitivity analysis methods. For example,
rank regression and the Morris methodology, also known as types of elementary effects ap-
proaches, have been used with good agreement [4]. However, these methods are not robust
enough to identify the most crucial characteristics, and they are limited as researchers will
use them before adopting more advanced techniques [5]. Sobol indices, a type of analysis
of variance approach, have been successfully used in models with uncorrelated inputs, and
are frequently used as a baseline for alternative sensitivity approaches [4,8]. They are able
to distinguish between influential and non-influential characteristics, as well as the impacts
of their interactions. However, they are computationally expensive and cannot be used for
complex models with numerous input parameters as their accuracy highly depends on the
number of simulations needed to reach convergence [9].

In order to improve the effectiveness of Sobol’s approach, additional sampling meth-
ods and metamodels (surrogate models) have been suggested. Furthermore, the use of
metamodels in conjunction with Monte Carlo (MC) simulation has been shown to produce
more accurate results than those found in their sampling counterparts [4]. Even though
metamodels have been extensively used to quantify uncertainty in mechanical component
structures, they have not yet been used in combination with Sobol’s global sensitivity
analysis to assist in the design of suspension control arms under fatigue stresses. Therefore,
it is necessary to develop sensitivity schemes that enhance the effectiveness and decision
making of current sensitivity analyses in the design for fatigue resistance.

Therefore, it is crucial to compute how uncertainties affect model predictions. This
study suggested an uncertainty propagation and sensitivity analyses platform in order
to measure the variability in fatigue responses of the front-lower suspension control arm.
For the sensitivity analysis of the suspension control arm, the Sobol indices approach was
suggested, and a Morris one-step-at-a-time (MOAT) parameter screening method [10] was
applied for comparison. Surrogate models were compared to replace the computationally
expensive finite-element analysis in COMSOL Multiphysics version 6.1 by generating a
training sample data using Latin hypercubes (LHCs). A surrogate-based Monte Carlo
simulation was then performed to determine the suspension’s lower control arm fatigue
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life uncertainty. Finally, confidence intervals were computed to quantify the uncertainty in
the fatigue life of the lower control arm of the automobile suspension.

The remaining parts of this study are organized as follows: Section 2 explains the
details of uncertainty in the fatigue for suspension control arms. Section 3 presents the
study methodology, which includes the computational method, fatigue life prediction
model, sensitivity analysis scheme, uncertainty propagation model, and surrogate model
formulation. The results and discussion are provided in Section 4. Finally, Section 5
provides the study’s conclusion.

2. Uncertainties in Fatigue

Fatigue failure is a common problem in engineering practice, and it can occur randomly.
It is particularly challenging to ensure the fatigue resistance of engineering components
under specific loading regimes since service conditions and material qualities often fluctu-
ate [11–14]. Conventional strain-life or stress-life curves that represent only the average
response of interest have been shown to be inadequate by [15]. Therefore, probabilistic
approaches that take these uncertainties into account are used in practical engineering. In
this analysis, probabilistic fatigue modeling is carried out by integrating FE analysis with
the Latin hypercube sampling (LHS) technique, which considers the material properties of
variability and geometrical uncertainty as capable of producing statistical properties.

The structural engineer is particularly interested in a material’s modulus of elasticity
since its value is essential for instability failure scenarios. Even in research that deals with
mechanical property variability, Young’s modulus is frequently considered deterministically.
However, Galambos and Ravindra [16] addressed the diversity in elastic modulus values
and presented important research in this field. For both the tension and compression elastic
modulus behavior, they proposed a coefficient of variation (COV) of 0.06 based on the
available data at the time. Mansour et al. [17] also researched the variability of Young’s
modulus and proposed a COV of 0.031. However, they agreed that the distribution should
be normal. Therefore, the COV for this study was set to 0.03 in order to examine fatigue
uncertainty within the smaller variability of Young’s modulus under the assumption of a
normal distribution; the same COV was also applied to Poisson’s ratio.

Furthermore, the geometrical tolerances between actual and design dimensions are
unavoidable due to manufacturing processes or design margins [18,19]. This geometrical
tolerance, also known as dimensional tolerance, must be controlled within an authorized
range to maintain the interchangeability and assembly of engineering components. As Hu
et al. [20] noted, even a small change in dimensional parameters can have a significant
impact on how real components respond to stress and strain, thus affecting how well they
withstand fatigue.

This study considers geometrical uncertainty when determining the sizes of the sus-
pension control arm. The sampling of dimensions was done in accordance with design
margins or manufacturing faults by establishing the tolerance range of each measurement.
Following that, the sampled dimensions were used for geometric modeling, and model
updates were carried out using finite element (FE) modeling in COMSOL. A few common
control arm dimensions were chosen as the geometrical uncertainty inputs from the design
and deformation failure analysis perspectives, as shown in Figure 1. In engineering practice,
a normal distribution is typically used to model dimensional tolerance [21]. According to
DIN EN ISO 286-1 [22], the geometrical tolerances of these dimensions are considered to be
±0.1% changes from the planned size based on the tolerance requirements. Moreover, for
this study, the COV for each dimension was considered to be 0.1%, as shown in Table 1.
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5 Pin radius (r1) 21.875 mm Normal 1 
6 Bolt 1 radius (r2) 21.875 mm Normal 1 
7 Bolt 2 radius (r3) 17.5 mm Normal 1 
8 Young’s Modulus (E1) 200 GPa Normal 3 
9 Poisson’s ratio (nu1) 0.3 - Normal 3 

10 Fillet_1 (f1) 110.25 mm Normal 1 
11 Fillet_2 (f2) 175 mm Normal 1 
12 Fillet_3 (f3) 21.875 mm Normal 1 
13 Fillet_4 (f4) 110.25 mm Normal 1 
14 Fillet_6 (f6) 17.5 mm Normal 1 
15 Fillet_7 (f7) 8.75 mm Normal 1 
16 Fillet_8 (f8) 11.2 mm Normal 1 
17 Fillet_9 (f9) 8.05 mm Normal 1 
18 Fillet_10 (f10) 8.05 mm Normal 1 
19 Fillet_14 (f14) 11.2 mm Normal 1 
20 Fillet_15 (f15) 11.2 mm Normal 1 
21 Fillet_17 (f17) 5.25 mm Normal 1 
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Table 1. Uncertain variables of the front lower suspension control arm.

No. Parameters Mean Value Unit Distribution COV. %

1 Plate width (w1) 70 mm Normal 1
2 Cross plate width (w2) 52.5 mm Normal 1
3 Thickness (ts) 70 mm Normal 1
4 Supporting plate

thickness (tp)
24.5 mm Normal 1

5 Pin radius (r1) 21.875 mm Normal 1
6 Bolt 1 radius (r2) 21.875 mm Normal 1
7 Bolt 2 radius (r3) 17.5 mm Normal 1
8 Young’s Modulus (E1) 200 GPa Normal 3
9 Poisson’s ratio (nu1) 0.3 - Normal 3
10 Fillet_1 (f1) 110.25 mm Normal 1
11 Fillet_2 (f2) 175 mm Normal 1
12 Fillet_3 (f3) 21.875 mm Normal 1
13 Fillet_4 (f4) 110.25 mm Normal 1
14 Fillet_6 (f6) 17.5 mm Normal 1
15 Fillet_7 (f7) 8.75 mm Normal 1
16 Fillet_8 (f8) 11.2 mm Normal 1
17 Fillet_9 (f9) 8.05 mm Normal 1
18 Fillet_10 (f10) 8.05 mm Normal 1
19 Fillet_14 (f14) 11.2 mm Normal 1
20 Fillet_15 (f15) 11.2 mm Normal 1
21 Fillet_17 (f17) 5.25 mm Normal 1
22 Fillet_18 (f18) 4.9 mm Normal 1

3. Methodology

In this study, a computational model and an uncertainty quantification framework
were developed to investigate the uncertainty of the design variables of a front suspension
lower control arm under fatigue-loading conditions. The principal methodology is depicted
in Figure 2. The remainder of this section is allocated as follows: computation modeling,
sensitivity analysis, probabilistic modeling, and specification of the analysis. These are the
main proposed methods of this study.
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Figure 2. Schematic representation of the general methodology of analysis employed to quantify the
fatigue load uncertainty.

3.1. Computational Modeling of the Control Arm

The stresses and deformations caused by mechanical loads can be computed using
structural analysis, which helps ascertain how loads affect the physical structure. Since the
lower control arm is connected to the wheel and chassis of a car, it is subject to several loads
that cause deformation. Failure of the lower control arm is caused by deformation and
cyclic stresses, so it is necessary to determine the stresses acting on the lower arm before it
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is manufactured. Once the stresses for various loads have been computed using structural
analysis, fatigue analysis can be performed based on the stress value after the maximum
and minimum stresses have been determined.

For this study, the suspension lower control arm model was prepared in COMSOL,
and finite element analysis was performed using COMSOL 6.1 software with the structural
mechanics module. Figure 3 illustrates the arrangement of the finite elements used for the
front suspension lower control arm in this study. In the design process, the appropriate
design variables for the parts involves considering the stress distribution (von Mises stress
value). In static analysis, the maximum von Mises stress was considered, and fatigue
analysis was conducted via the stress-life approach. To achieve the design objective, it is
essential to understand the loads assigned to the suspension control arm. For example,
as shown in Figure 3a, the forces acting on a vehicle’s tires can be measured in the x, y,
and z directions, where x signifies the longitudinal force, y represents the lateral force, and
z is the vertical force. The longitudinal force is caused by rolling resistance and traction–
compression cycles, which are caused by braking, while the lateral force is produced by
camber and toe angles. In this study, the significant force is the vertical force, which is
initiated due to the vehicle’s weight and bumping cycles caused by the road bump.

Vehicles 2023, 5, FOR PEER REVIEW 6 
 

 

structural analysis, fatigue analysis can be performed based on the stress value after the 
maximum and minimum stresses have been determined. 

For this study, the suspension lower control arm model was prepared in COMSOL, 
and finite element analysis was performed using COMSOL 6.1 software with the struc-
tural mechanics module. Figure 3 illustrates the arrangement of the finite elements used 
for the front suspension lower control arm in this study. In the design process, the appro-
priate design variables for the parts involves considering the stress distribution (von Mises 
stress value). In static analysis, the maximum von Mises stress was considered, and fatigue 
analysis was conducted via the stress-life approach. To achieve the design objective, it is 
essential to understand the loads assigned to the suspension control arm. For example, as 
shown in Figure 3a, the forces acting on a vehicle’s tires can be measured in the x, y, and 
z directions, where x signifies the longitudinal force, y represents the lateral force, and z 
is the vertical force. The longitudinal force is caused by rolling resistance and traction–
compression cycles, which are caused by braking, while the lateral force is produced by 
camber and toe angles. In this study, the significant force is the vertical force, which is 
initiated due to the vehicle’s weight and bumping cycles caused by the road bump. 

 
  

(a) (b) (c) 

Figure 3. Suspension control arm: (a) forces acting on vehicle tires; (b) 3D model and boundary 
conditions; and (c) geometry mesh. 

The model is highly dependent on loading and boundary conditions. As previously 
noted, this study considers a vertical force to be a constant amplitude imposed at the bush-
ing that connects to the tire, while the other two bushings that connect to the body of the 
car are considered constrained. A tetrahedral mesh was used to approximate the surface 
contour more accurately, as seen in Figure 3b. To reduce the computational time and to 
ensure that the FE analysis results were not affected by the mesh size changes, a mesh 
convergence study was conducted, and the least number of meshes with the highest ac-
curacy was selected. 

The mesh in COMSOL Multiphysics always defaults to a physics-controlled mesh 
with a specified parameter set when you create a model. The predetermined element size 
parameters are as follows: maximum element size (maxE), minimum element size (minE), 
maximum element growth rate (maxGR), curvature factor (cf), and the resolution of nar-
row regions (rnr). The mesh convergency was conducted in a range of extra coarse and 
extra fine mesh sizes. After the convergency test, the maximum von Mises stress values 
did not change significantly after the normal mesh size configuration; as such, this study 
used a fine mesh size (maxE = 8.3 mm, minE = 1.035 mm, maxGR = 1.45, cf = 0.6, and rnr = 
0.5) near the necks of the two bushings since these areas are critical for fatigue, and the 
other part was meshed using the normal mesh size setting (maxE = 10.35 mm, minE = 1.865 
mm, maxGR = 1.5, cf = 0.5, and rnr = 0.6) to reduce the computational time. 

  

Figure 3. Suspension control arm: (a) forces acting on vehicle tires; (b) 3D model and boundary
conditions; and (c) geometry mesh.

The model is highly dependent on loading and boundary conditions. As previously
noted, this study considers a vertical force to be a constant amplitude imposed at the
bushing that connects to the tire, while the other two bushings that connect to the body
of the car are considered constrained. A tetrahedral mesh was used to approximate the
surface contour more accurately, as seen in Figure 3b. To reduce the computational time
and to ensure that the FE analysis results were not affected by the mesh size changes, a
mesh convergence study was conducted, and the least number of meshes with the highest
accuracy was selected.

The mesh in COMSOL Multiphysics always defaults to a physics-controlled mesh
with a specified parameter set when you create a model. The predetermined element size
parameters are as follows: maximum element size (maxE), minimum element size (minE),
maximum element growth rate (maxGR), curvature factor (cf), and the resolution of narrow
regions (rnr). The mesh convergency was conducted in a range of extra coarse and extra
fine mesh sizes. After the convergency test, the maximum von Mises stress values did not
change significantly after the normal mesh size configuration; as such, this study used a
fine mesh size (maxE = 8.3 mm, minE = 1.035 mm, maxGR = 1.45, cf = 0.6, and rnr = 0.5)
near the necks of the two bushings since these areas are critical for fatigue, and the other
part was meshed using the normal mesh size setting (maxE = 10.35 mm, minE = 1.865 mm,
maxGR = 1.5, cf = 0.5, and rnr = 0.6) to reduce the computational time.
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3.2. Fatigue Life Prediction

Low-cycle fatigue (LCF) and high-cycle fatigue (HCF) are two distinct phases of fatigue
characteristics [23]. LCF is typically referred to as “strain-life/strain-based” because strain
rather than stress is the most significant descriptive measure of LCF. However, strain is also
applicable for damage in HCF, but since HCF occurs in the elastic phase, both stress and
strain can be used as the factor. HCF is also regarded as “stress-life/stress-based” since
stress is used for practical and historical purposes. The number of cycles determined in this
case (suspension control arm) corresponds to an HCF paradigm, which is typically defined
as a number of cycles counts needed until reaching a fatigue of more than 104 [24,25].

The type of load pattern applied to a structure under constant load cycles can also
have an impact on its performance. The load can be classified as either proportional or
non-proportional. In proportional loading, the primary loads and strains remain oriented
throughout the load cycle. Another method to distinguish between these two scenarios is to
consider the characteristics of the external load. The structural response to a single external
load source is represented by a stress tensor, whose components undergo phase changes. If
the external load is applied multiple times or, if it is a traveling load, the components of the
stress tensor may shift out of phase. Different methods of fatigue evaluation are required
for these two distinct types of load cycles [26–29].

In this research, it was assumed that the load was sinusoidal, which denotes a propor-
tional load. Stress-life models can assess fatigue under proportional loading via the S-N
curve model (Wöhler curve model) [30] or Basquin model [31,32]. The S-N curve model
(Wöhler curve model) was employed in this study since it is one of the oldest and simplest
models for fatigue prediction, and it demonstrates a clear relationship between fatigue
life and applied stress. The fatigue properties of the suspension control arm material are
summarized in Figure 4. This material has an endurance limit of 110 MPa.
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Figure 4. S-N curve.

Considering that the suspension arm may have a rough surface due to poor cleanliness
or fairly large inclusions, this could affect the value of the endurance limit. For instance,
the large inclusions can shorten the lifetime. To ensure safety, the S-N curve data should be
modified, and one possible modification is to adjust the amplitude stress as follows [33].

σa = k· fSN(N), (1)

where σa is the stress amplitude, which is determined from the difference between the peak
stresses and the mean stress ((σmax − σmin)/2); N is the number of the fatigue lifetime
cycle; k is the modification factor; and fSN is the S-N curve. Based on past experience, the
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modification factor caused by the production process of machining can be set between 0.6
and 0.8 [34].

In fatigue evaluation when using the S-N curve model, the amplitude stress can be
modified to account for the mean stress. The mean stress σm is defined as the average of the
minimum and maximum stresses during a load cycle. There are three kinds of mean stress
correction methods: as per Gerber [35], Goodman [36], and Soderberg [37]. The Gerber and
Goodman methods predict failure when the mean stress is at the ultimate tensile stress,
whereas the Soderberg method predicts failure when the mean stress is at the yield limit.
This study used a yield limit, so we used the Soderberg method. Based on the Soderberg
method, the amplitude stress is modified using the mean stress as

σa ← σa

(
1− σm

σy

)
, (2)

where σy is a yield stress that you need to specify. Figure 5 presents COMSOL’s simulation
results for fatigue life, with the mean values of the design variables listed in Table 1. The
results indicate that the minimum life cycle occurs around the necks of the two bushings.
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3.3. Sensitivity Analysis Model

Sensitivity analysis can identify the parameter or set of parameters that has the greatest
impact on the model’s response. As a result, it provides valuable insight into which model
input has the most influence on the unpredictability of the model’s response [38]. It is also a
useful tool for model developers and users to verify the model’s uncertainty around input
parameters, and to provide feedback for model refinement to increase confidence. The
results of the sensitivity analysis can help model builders focus on the essential variables
that influence the model’s response, especially in the case of a very complex model. As
mentioned in the introduction, there are two types of sensitivity analysis: local and global
sensitivity analysis. Local sensitivity analysis evaluates variations in the model’s response
with respect to variations in a single parameter input [39,40]. In global sensitivity analysis,
all parameters are altered simultaneously across the entire parameter space, allowing for
the evaluation of both the relative contributions of each individual parameter and the
interactions between parameters with respect to the variance of the model’s response.

A variety of global sensitivity methods are available for systems application models,
including multiparametric sensitivity analysis, Fourier amplitude sensitivity analysis, the
partial rank correlation coefficient, and Sobol’s approach. Zhang et al. [41] attempted
to compile the benefits and drawbacks of these approaches, and they concluded that
the variance decomposition-based Sobol sensitivity analysis is currently one of the most
effective approaches for conducting global sensitivity analysis.

The Sobol method examines the complete input parameter distribution and decom-
poses the variance of the response into contributions from the input parameters and their
interactions. The effects of the parameters are calculated based on the model assessment
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data. The number of terms in the Sobol indices of the variance of the response with m
input parameters grows as 2m. To manage this, it is customary to compute only the m
first-order effects (first-order Sobol indices) and the m total effects (total Sobol indices). The
first-order index shows the contribution of the parameter to the response variance without
interaction. The total effect indices show the overall contribution of a parameter to the
response variance, including interaction.

Given a scalar response that is defined as y = M(x1, x2, . . . , xm), the variance-based
first-order Sobol index is defined as [42]

Si =
Varxi

(
Ex\i (y|xi)

)
Var(y)

, (3)

where xi indicates the ith input parameter and x\i represents all parameters except xi. The
inner expectation value means that the mean of y is calculated over all possible values of
x\i while xi is fixed. Then, the outer variance is calculated over all possible xi values.

The total Sobol index is defined as [42]

ST,i = 1−
Varx\i

(
Exi

(
y
∣∣∣x\i))

Var(y)
, (4)

which measures the summation of the first-order effect and the interactions with other
parameters of the ith input parameter. The second term in the equation can be seen as the
first-order effect of all parameters except for the ith parameter. Therefore, subtracting the
second term from one yields the contribution of all terms related to xi.

In this study, the Sobol indices were computed for the fatigue response of the front
lower suspension control arm. With the help of the uncertainty quantification module in
COMSOL, there are two different ways through which to compute the Sobol indices. One
method is to use the post-processing of a polynomial chaos expansion (PCE) model. The
contributions from each input parameter and their interactions can be easily separated
given the PCE’s specification. As a result, the Sobol indices can be calculated using
the PCE-trained coefficients. In an earlier study from Blatman and Sudret [43], more
information on the computation of Sobol indices based on the PCE model was provided.
The alternative method for calculating the Sobol indices is the Monte Carlo approach. In
this kind of study, a Gaussian process is provided as a surrogate model because performing
Monte Carlo simulation directly with model evaluation is computationally expensive. The
approach adheres to the recommended method of computing the first and total Sobol
indices simultaneously, which was also discussed in Saltelli et al. [5].

3.4. Uncertainty Propagation

Studying the uncertainty propagation of a model is equivalent to approximating
the probability density function (PDF) of the response. To construct an accurate PDF of
the response, a large number of samples are required. However, this operation is very
expensive, so the analysis uses a surrogate model instead. To approximate the PDF, the
kernel density estimation (KDE) method is used. This method formulates density in terms
of the known kernel functions, which have the following form [44]:

f̂ (x) =
1

nh

n

∑
i=1

Kh

(
x− xi

h

)
, (5)

where Kh is a specified symmetric PDF. This study assumed that the kernel function is
given as the standard normal distribution, and h is a smoothing parameter, which is termed
the bandwidth. Silverman’s rule was also applied for the smoothing parameter h. More
details related to the KDE can be found in Sheather [44].
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To evaluate the uncertainty propagation, a confidence interval was used. A confidence
interval gives us an indication of the degree of uncertainty in an estimated probability
distribution. In statistics, a probability distribution describes all the possible values that a
random variable can take within a range. This range is bound to be within certain minimum
and maximum possible values, but precisely where the possible value is likely to be plotted
on the probability distribution depends on a number of factors. These factors include the
distribution’s mean, standard deviation, and skewness. The most common expression for
the mean of a statistical distribution with a discrete random variable is the mathematical
average of all the terms. To calculate it, add up the values of all the terms and then divide
them by the number of terms. The mean of a statistical distribution with a continuous
random variable, also called the expected value, is obtained by integrating the product of
the variable with its probability, as defined by the distribution. A greater standard error will
result in a wider interval; the wider the interval, the less precise the estimate is. Detailed
information on confidence intervals can be found in Dekking et al. [45].

In this study, uncertainty propagation was performed by conducting a number of
model evaluations while using Latin hypercube sampling data with the selected parameters
after conducting sensitivity analysis. These data were used to create surrogate models by
using PCE and the GP model in COMSOL. Next, a Monte Carlo analysis was performed
using the surrogate model to make predictions. A KDE was generated with the sampled
data to produce an estimation of the probability density for each response. The suggested
surrogate models for both sensitivity analysis and uncertainty propagation in this study
will be discussed in the next section.

3.5. Surrogate Models

Surrogate models are mathematical models that estimate the computationally expen-
sive simulation models, and they are based on the desired design of experiment samples.
In this section, the two most commonly used approaches for surrogate modeling are ex-
plained along with their adaptive methods, which are also used for sensitivity analysis and
uncertainty propagation analysis in this study.

3.5.1. Polynomial Chaos Expansion

To reduce the computational time, a surrogate model based on PCE was extensively
implemented in the statistical analysis of various engineering applications. The main idea
behind PCE is to provide a polynomial surrogate for the computational model. In this
regard, the polynomial chaos expansion that establishes a relationship between the system
response (Y) and the independent input parameters of the n-dimensional x = {x1, x2, ..., xn}
is given as follows [46]:

Y = ∑ cαΨα(x), (6)

where α is a multidimensional index that indicates the degree of the polynomial in each of
the input variables, Ψα denotes the multivariate polynomials, and cα denotes the unknown
coefficients to be determined. The multivariate polynomials Ψα are formed by the tensor
products of the univariate orthogonal polynomials, which are as follows:

Ψα =
n

∏
i=1

ϕ
(i)
α (xi), (7)

where ϕ
(i)
α is the univariate orthogonal polynomial in the ith variable of degree α. The

probability distribution of the input parameters is taken into consideration when select-
ing the univariate orthogonal polynomials. Some commonly used classical univariate
polynomials with orthonormal distributions can be obtained in [47]. For example, if the
input data distribution is uniform or normal, the suggested univariate polynomials are
Legendre and Hermite, respectively. If the input parameters do not have a distribution,
such as that which is suggested in Xiu and Karniadakis [48], the algorithm defines an
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isoprobabilistic transformation to a uniform distribution, and then constructs the PCE
using the transformed input parameter.

Based on Equation (5), PCE provides an infinite polynomial series, which means it
needs to be truncated to a finite sum for computational purposes, resulting in a truncation
error. According to the definition of PCE, truncation is defined as the total degree of all
polynomials being less than or equal to p. Additionally, the polynomial expansions are
further truncated using a hyperbolic truncation method that utilizes a parametric q-norm,
q [0, 1]. The truncation method truncates all polynomials with total degrees that are less
than p when q = 1. For q < 1, hyperbolic truncation retains all high-degree terms in each
input parameter but discards the equivalent high-order interaction terms. The truncation
method truncates all the interaction terms between the input parameters when q = 0.

A sparse representation of PCE refers to a sparsely selected polynomial basis from
all the truncated polynomial expansions. An adaptive algorithm based on the least-angle
regression method is used to select the significant sparse coefficients from all the truncated
polynomial expansions. During the iterative process, the algorithm only adds new poly-
nomial bases that are mostly correlated with the residuals that are built using the existing
polynomial basis. The sparse representation is used for reducing the computational cost
and, more importantly, for avoiding overfitting. Here, the leave-one-out cross-validation
error estimation is defined with a correction factor that considers overfitting to ensure that
the generalization error estimate is not underestimated. The generalization error refers to
the error for the sample points with unknown model evaluations. Additional details on the
sparse PCE representation and error estimation can be found in [43,48].

3.5.2. Gaussian Process

The Gaussian process, commonly referred to as the Kriging model, is one of the most
popular surrogate models that provide an estimation of the responses. A Gaussian process
model is a probabilistic model that specifies a distribution over functions and evaluates the
variance of the estimation at each sample point in the input parameter space. The Gaussian
process’s mean, often referred to as the trend, and covariance function, also known as a
kernel or correlation function, are used to define it. While the Gaussian process model is
being trained, the mean and covariance hyperparameters are tuned. Consequently, the
Gaussian process model may be written as follows (considering x as the input parameters
and the responses as vector y):

y = m(x) + f (x), (8)

where f (x) denotes a Gaussian process with zero mean and covariance kθ(x, x∗), and m(x) is
the mean function. Here, θ denotes the covariance function’s hyperparameters. The joint
distribution of the calculated data and the estimated data can then be expressed as [49][

f
f∗

]
= N

(
0,
[

kθ(x, x) kθ(x, x∗)
kθ(x∗, x) kθ(x∗, x∗)

])
, (9)

where f = y − m(x), y is the calculated response, and x∗ and f∗ are the testing input
parameters and estimated response, respectively.

The posterior distribution of the Gaussian process is given as [49]

y
(

x’
)
∼ N(µ(x∗), cov(x, x∗)), (10)

where cov(x, x∗) and µ(x) are the covariance and mean of the model, respectively:

µ(x∗) = m(x∗) + kθ(x∗, x)kθ(x, x)−1 f (x)
cov(x∗, x) = kθ(x∗, x∗)− kθ(x∗, x)kθ(x, x)−1kθ(x, x∗)

(11)

Covariance functions are an essential component of Gaussian processes that control
the prior and posterior shapes of the model. They encode prior domain knowledge about f .
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These functions, instinctively, allow the model to be generalized by correlating new input
data (x′) to the existing observation data (x). COMSOL provides three commonly used
kernel functions: the spectral exponential kernel, and the Marten kernel, where v = 5/2
and v = 3/2. The spectral exponential kernel function is given as [49]

kSE
(
x, x′

)
= exp

(
−

m

∑
d=1

(
xd − x′d

)2

2l2
d

)
, (12)

where each ld is the length scale parameter for dimension d. The Marten kernel also
functions when given as [50]

kM 3
2
(r) =

(
1 +
√

3r
)

exp
(
−
√

3r
)

, and kM 5
2
(r) =

(
1 +
√

5r +
5
3

r2
)

exp
(
−
√

5r
)

, (13)

where r is given as function of x and x′:

r
(
x, x′

)
=

√√√√ m

∑
d=1

(
xd − x′d

)2

l2
d

. (14)

Further details about the covariance function and the Gaussian process can be found
in Williams and Rasmussen [49].

The kernel function k also describes the prior on the types of functions that might be
represented in the observed data; for instance, it can convey expectations for smoothness
or periodicity. The hyperparameters θ in the parametric kernels influence this prior and, in
turn, the posterior prediction. These kernel hyperparameters can be modified in accordance
with a dataset’s characteristics to define a prior value over the functions that are suitable for
the situation. To maximize the Gaussian process’s marginal likelihood, p( f |x), the kernel
hyperparameters are often trained using the gradient-based optimization of [50]

log p( f |x) = −1
2

f kθ(x, x) f − 1
2

log
∣∣∣kθ(x, x) + σ2 I

∣∣∣− n
2

log 2π, (15)

where σ2 I is a nugget factor, and here σ is an additional hyperparameter, which is used
while training the Gaussian process model.

In regard to adapting the Gaussian processes, the Gaussian process is created adap-
tively by incorporating a new input parameter point at the position of the maximum
entropy while it is applied to sensitivity analysis or uncertainty propagation. The Gaussian
process is trained to accurately replicate the underlying model in the whole input parameter
space for sensitivity analysis or uncertainty propagation. The entropy is expressed here as
the standard deviation of the Gaussian process model.

Each adaptation phase involves solving a global optimization problem to determine
the position corresponding to the maximum entropy or the maximum expected feasibility
function in order to explore the region in the input parameter space and to take advantage
of the most recently constructed Gaussian process. There are two different categories of
global optimization techniques in COMSOL: the Monte Carlo approach and the dividing
rectangles method [51]. The Monte Carlo approach was used in this investigation. It should
be noted that adaptive Gaussian process models need adequate initial model assessments
for the adaptation approach to find good adaptation points that can raise the model’s
accuracy. The unsearched region may not be effectively explored given an initial dataset
with too few sample points. Adding extra samples is one technique to solve this issue, so
this study applied a sequential optimal Latin hypercube sampling, where the ideal LHS
samples randomly cover the entire input parameter space.
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4. Results and Discussion

Section 3 describes how uncertainty propagation is used to perform computational
fatigue damage modeling and the subsequent design assessment. Model sensitivity analysis
is first carried out to eliminate the unnecessary factors from statistical calibration as it would
be costly to explore uncertainty propagation by using all design variables. The fatigue
analysis data are then used in uncertainty propagation to statistically infer the model’s
most important parameters. Finally, the calibrated model with measured uncertainty is
used to make predictions about the fatigue strength of the material in the specified loaded
stress state.

4.1. Sensitivity Analysis of the Model Input Parameters
4.1.1. Polynomial Chaos Expansion

To begin with, Table 2 describes the validation results of the developed surrogate
model for the fatigue life prediction described in Table 1. While we are developing the
surrogate model, 400 instances of sample data were generated for the training data via
the Latin hypercube sampling method. From the statistics, the comparison between the
four types of surrogate models are shown. The root-mean-square error (RMSE) shows the
adaptive sparse polynomial chaos expansion, and it shows less errors than the others; thus,
for sensitivity analysis, the adaptive sparse polynomial chaos expansion was chosen in this
study to proceed with.

Table 2. Surrogate model comparison for sensitivity analysis.

No. Parameters

Space polynomial chaos expansion 0.4512
Adaptive polynomial chaos expansion 0.4350

Gaussian process 0.9645
Adaptive Gaussian process 0.4350

4.1.2. Sensitivity Analysis

The results of the influence of the car front suspension lower control arm input
parameters, which were based on the Sobol method (also known as the variance-based
sensitivity analysis method scheme for fatigue life), are depicted in Figure 6a,b. As can be
seen from the figure, there are two different types of Sobol indices: the first-order index
and total index. As mentioned in Section 2, the first-order index of a parameter shows
the sensitivity by varying this parameter alone. As shown in Figure 6b, the first-order
index result demonstrates that the control arm thickness (ts) and width (w) individually
had a significant influence on fatigue life. The total index shows how much a parameter
contributes to the overall sensitivity. As shown in the figure, for all parameters, the first
and total indices were equal, which indicates there is very little or no interaction between
the parameters. The Sobol indices and MOAT plots also show that the thickness (ts) of
the control arm presents the higher sensitivities, and this is followed by the control arm
plate width (w); meanwhile, the Young’s modulus (E) had the third largest contribution in
the third, and fillt-3 ( f 3) had the fourth largest contribution. As a result, small variations
in ts and w can significantly increase/decrease the stress concentration of the suspension
control arm, which—in turn—increases/decreases the accumulated structural damage
(fatigue life) during the suspension control arm operational life. The parameters tp and
f 8 also presented slight contributions to the response, particularly tp. The small variance
of the other parameters seems to not have any significant effect on the fatigue life of the
control arm. In summary, the most influential parameters, in contrast, were found to be
ts, w, E, f 3, tp, and f 8; thus, to reduce the variance of the response, it is recommended to
collect more data and conduct more sophisticated simulations to reduce the uncertainty of
those parameters.
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4.2. Uncertainty Propagation

The uncertainty quantification used in the fatigue life cycle is described and the model
input PDFs are presented; in addition, the confidence interval for the fatigue life cycle
response was computed. First, Table 3 presents the selected six parameters (w1, ts, tp, E, f 3,
and f 8) of the twenty-two used in the sensitivity analysis, along with their probability
distributions and coefficients of variation.

Table 3. Chosen parameters for the uncertainty propagation.

No. Parameters Mean Value Unit Distribution COV. %

1 Plate width (w1) 70 mm Normal 1
2 Thickness (ts) 70 mm Normal 1
3 Supporting plate thickness (tp) 24.5 mm Normal 1
4 Young’s modulus (E) 200 GPa Normal 3
5 Fillet_3 ( f 3) 21.875 mm Normal 1
6 Fillet_8 ( f 8) 11.2 mm Normal 1

Then, the surrogate model was developed by generating 300 instances of sample data
while using LHS for the chosen parameters. Table 4 also describes the validation results of
the developed surrogate model for the fatigue life prediction. Based on the RMSE result, the
adaptive Gaussian process surrogate model showed less errors than the others. A Monte
Carlo analysis was then conducted, using an adaptive Gaussian process surrogate model,
to evaluate the uncertainty propagation.

Table 4. Surrogate model comparison for uncertainty propagation.

No. Parameters

Space polynomial chaos expansion 0.3251
Adaptive polynomial chaos expansion 0.3165

Gaussian process 0.3314
Adaptive Gaussian process 0.3027

Based on the uncertainty quantification study, a kernel density estimation (KDE) plot is
shown in Figure 7, along with the corresponding confidence interval information in Table 5.
In the uncertainty propagation study, kernel density estimation is computed. Alternatively,
you can think of the KDE as a smoothed version of a histogram, which provides an estimate
of the probability density function of the quantity of interest based on the input parameters.
Based on the confidence interval table and plot of the quantity of interest, we can see that
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the mean number of cycles is around 22,902.4 with a standard deviation of 4979.2 or 21.74%
deviation from the mean. This is achieved as a result of the small variability of input
parameters, i.e., a large deviation from the mean (baseline).
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Table 5. Quantity of the interest confidence intervals.

Mean STD Min. Max. Lower
90%

Upper
90%

Lower
95%

Upper
95%

Lower
99%

Upper
99%

22,902.4 4979.2 7917.9 43,473.0 14,711.7 31,093.1 13,143.3 32,661.6 10,056.2 35,748.6

5. Conclusions

In this study, we developed a surrogate-based fatigue uncertainty quantification
framework that combines FE analysis with the LHS technique. The objective was to
investigate how geometrical uncertainty and material variability affect the fatigue life
for a front suspension lower control arm. We compared the fatigue life and examined
the failure probability under these uncertainties, along with a sensitivity analysis. For
the sensitivity analysis, we used the Sobol method with an adaptive polynomial chaos
expansion surrogate model to rank the influential random variables in the fatigue analysis
of the front suspension lower control arm. It was found that, out of twenty-two parameters,
five geometrical uncertainties and young modulus variabilities had the highest impact
on fatigue life and failure probability. We then performed a Monte Carlo analysis using
the adaptive Gaussian process surrogate model to examine the uncertainty propagation
according to the variability of the selected six parameters.

The uncertainty effect is expressed in terms of fluctuations from the mean value,
probability distributions, and percentage deviations from the mean (baseline). We observed
a COV of 21.74% as a result of this parameter uncertainty, indicating that uncertainty in
parameters has an impact on fatigue life cycle. In this study, the results are based on
COV assumptions. However, the outcome of this research clearly illustrates the need to
incorporate the uncertainties in car suspension control arm performance analysis for the
design and manufacturing process. In the future, researchers can explore more realistic
probability distribution functions other than normal distribution functions for uncertainty
analysis, and they can use the current results as a benchmark.
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