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Abstract: The lack of general algorithms for the control of nonlinear systems is a generalized problem,
especially when attempting to stabilize systems such as ground vehicles, which have uncertainties and
are usually linearized under the assumption of small angles. To solve this problem, in this work, the
implementation of a suboptimal discrete control is developed to stabilize an autonomous automobile.
We assume the system is affine for the optimization procedure of finite horizon that allows us to
find a solution while avoiding solving the Ricatti-type equation, commonly encountered in this kind
of algorithm. This procedure is applied to the dynamical model of the lateral displacement and
orientation errors of the vehicle that was discretized through the method of Euler. These nonlinear
models discretized to compute a bounded control. The control is tested in different simulated
scenarios to show the efficiency of the system for solving typical tasks for the path planning of an
autonomous vehicle.

Keywords: autonomous vehicle; finite horizon; nonlinear systems; optimal control

1. Introduction

Driving a vehicle is a very complex task, that requires the full concentration of the
driver. To enable a computer system to replace the human driver effectively, it must
be equipped with multiple sensors and control algorithms for various aspects of a land
vehicle’s architecture. Many systems have been developed with different approaches to
solve a variety of circumstances, from urban driving to highways, where the number of
other vehicles, the presence of objects, and the velocity of the car are incredibly diverse.
These studies concern autonomous vehicles, which are able to travel long distances without
any human assistance beyond the supervision of the correct function of the developed
systems. Nevertheless, different problems can be solved and improved, and current
research is devoted to enhancing the response of the vehicle. This is carried out by using
new control algorithms applied to nonlinear models or new approaches that enhance the
measurements and reduce uncertainties. Some of the results obtained are described in the
next paragraphs. Their proposed solutions often included a combination of different types
of controllers, observers, estimators, adaptive control, or fuzzy control.

Jin et al. [1] created an observer for the side-slip angle with road friction adaptation.
Their proposition also relies on using discrete time control. In each iteration for the state and
parameter estimation, the optimization problem is solved. The integration of a continuous
sensor is fused with the discrete time control.

Xiong et al. [2] designed another slip angle estimator that uses high-fidelity Inertial
Measurement Unit (IMU) information, and the attitude estimator created a method such
that the accumulated error is eliminated. The attitude estimator information is gathered
by two estimators based on the vehicle dynamic model. This algorithm includes a delay
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estimation and prediction to improve the performance, given that it takes time to detect
abnormal estimations created by a critical steering in the vehicle.

Shao et al. [3] reduce the risk of rollover in an efficient and robust manner, using a slip
angle observer with sliding mode in combination with a switching term that depends on a
linear observer. They included an adaptive sliding mode control in which, in order to have
compensated for the system uncertainties, the gain is adaptively tuned. This is used in the
steer-by-wire system that must be equipped to decrease lateral acceleration in the vehicle.
The controller for the rollover must be properly adjusted with the other control system to
prevent potential incidents such as collisions.

Wang et al. [4] used two models combined, the vehicle model and the vision model.
This was made to increase the robustness of the estimation of the body slip-angle. They
included an inter-sample compensation and multi-rate Kalman filter to improve the ac-
curacy of the estimator strategy that constrains the error in the heading and the lateral
position. This inter-sample period is created for the difference in the sampling time of a
regular camera and the period of the motor of the vehicle, the latter being faster than the
former. Their controller for reference tracking considers two degrees of liberty.

Zhang [5] considered a robot arm to steer the hand wheel with a lateral tracking control
strategy that was proposed using a cost function. He obtained a strategy that constrains the
error in the heading and the lateral position. His strategy also includes active acceleration
and braking. The robustness in performance was achieved through the design made by
linear matrix inequalities while a scheduling gain approach is used for the robustness in
the control system to the time-changing variables.

Tagne et al. [6], for lateral control, designed a higher-order sliding mode control.
The steering angle is used as the control input and the error in the lateral displacement is the
output. Their work uses the super-twisting algorithm to ensure the controller works in high
velocities, since it reduces the lateral displacement. Using high-order sliding mode and the
super-twisting algorithm allows for robust control against nonlinearities and parameter
uncertainties, while also reducing chattering.

Fekih et al. [7] developed a fault-tolerant control based on Linear-Quadratic Regulator
(LQR) control with a feed-forward gain for path tracking. In the case of parameter vari-
ations or uncertainties, the proposal includes a weight adjustment algorithm. They also
incorporated an observer to detect and identify sensor faults through sensor fusion, along
with a fault-tolerant controller to ensure stability.

Wang et al. [8] proposed the union of two methods, the first one is a tire force
distribution rule, and the second one is a path-tracking controller with a time-varying
Model Predictive Control (MPC). In this case, the strong nonlinearities and coupling of
the dynamics of the tire are described with a UNiTire model that is combined with slip
conditions; however, the model for the controller was linearized using Taylor expansion.

Moreno-Gonzalez et al. [9] used the paradigm known as Model- Free control for
a control that is decoupled in its architecture. The Model-Free framework reduces the
dynamics of a complex system with strong nonlinearities to a simple model with online
updating, ensuring stability in different velocities and dynamic constraints. The method
was evaluated based on trajectory tracking, stability, safety, and passenger comfort.

Barari et al. [10] proposed a two-layer hierarchical control strategy for coordinated
control. The upper layer uses a self-tunable super-twisting sliding mode control to handle
parametrical uncertainties, while the lower layer employs Model Predictive Control (MPC)
for control action in active front steering and direct yaw moment control. The design takes
into account parametric uncertainties in mass, cornering stiffness of tires, and moment
of inertia.

The hierarchical architecture used by G. Chen et al. [11] to achieve better performance
and energy savings includes, among other parts, a sliding mode control for the yaw moment
and the total force, an energy-efficiency optimization to reduce losing power, and a blended
strategy for controlling the brake. The energy optimization in the motor also produces an
energy recovery using a motor efficiency map and, to reduce losing power as a consequence
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of the tire sideslip, the lateral force is decreased. The steering angle is designated on the
basis of the Ackerman steering theorem [12]. This proposition uses a linear model for
the accelerations and a nonlinear equation for the control of the steering angle. In the
area of fuzzy systems, Nguyen et al. [13] used the fuzzy static output developed with
Fuzzy Lyapunov Function and the non-parallel distributed compensation to counteract the
uncertain behaviors from dynamics of the vehicle and specifically the forces acting in the
tires. This approach involves reformulating the control problem as an optimization problem
using convexification techniques. The control constraints are expressed as linear matrix
inequalities, which can be efficiently solved using semidefinite programming techniques.

Taghavifar et al. [14], proposed a fuzzy control that was implemented in the form of a
fuzzy neural network to enhance the path-tracking performance. The control is adaptive
and based on the design of exponential and sliding modes in the approach of fuzzy neural
networks. The chattering is eliminated using a convergence control law adjusted with the
base on the variable exponential sliding manifold. A hierarchical controller is included in
the design for the stability of the closed-loop system, the controller was obtained using a
Lyapunov approach.

However, all the approaches mentioned above were not designed using the nonlinear
model of the system. The vehicle model is often linearized through the consideration of
small angles. Nevertheless, the model of the vehicle has strong nonlinearities, as can be
seen in the model of the bicycle described by Rajamani [12].

The present paper aims to design a control algorithm that effectively incorporates the
nonlinearities inherent in the vehicle model, thereby enhancing the performance of the
closed-loop system. The proposed approach introduces a suboptimal control strategy for
the vehicle, leveraging information from lateral position and orientation errors. Its primary
contribution involves the development of a nonlinear discrete suboptimal control, utilizing
the nonlinear dynamical model of the vehicle. It is crucial to highlight that synthesizing an
optimal controller for nonlinear systems, be they discrete or continuous, necessitates solving
the Bellman equation, which is generally unknown. However, the proposed controller
design adeptly circumvents the need to solve the Bellman equation within the suboptimal
nonlinear discrete algorithm. Instead, a minimization procedure is employed to ensure the
achievement of local minimum, ensuring efficient control performance. To evaluate the
effectiveness of the proposed controller, extensive numerical simulations are conducted.
The chosen tests include a lane-keeping assessment, where the vehicle is required to stay
centered within a lane or realign itself with a new center after changing lanes. This capability
enables the vehicle to avert collisions with surrounding vehicles, objects, and structures,
enhancing safety and efficiency. Additionally, a velocity profile tracking test is performed,
a key component of path planning for guiding a vehicle from point A to point B along a
specific route. These simulations demonstrate the robustness and practical applicability of
the proposed control strategy in critical real-world scenarios.

2. Materials and Methods

The methods used to obtain the results exposed in the next section can be divided into
two categories. The first category is the mathematical development of the equations that
describe the control with the model of the vehicle in discrete time, and the second is the
description of how to make the mathematical simulation in Matlab Simulink 2022a.

The mathematical development of the control starts from the definition of controllabil-
ity for a pair of points in a discrete-time system and proceeds to describe how this applies
in the case of affine systems when trying to find an optimal control that minimizes certain
performance indexes. Then, the suboptimal is adapted to the model of the vehicle, which
has to be discretized for this purpose. The description of the settings for the mathematical
simulations includes the parameters used for the model and the necessary parameters for
the control. It also included the proof of the properties of the control parameters, which are
defined to need these properties.



Vehicles 2023, 5 981

2.1. Suboptimal Control
2.1.1. Optimization Procedure of Finite Horizon

We remind the reader that the controllability of discrete systems has the following
basic definition.

Definition 1. The pair (xo, x1) is said to be controllable if an admissible control u(k) exits and,
when applied to the system defined by x(k + 1) = f (x(k), u(k)) takes the system from x0 to x1 in
N finite number of steps. Where x(k), f (., .) ∈ Rn, u(k) ∈ Rm.

To be admissible, a control must be bounded. According to the definition, one of the
problems for nonlinear discrete systems is finding the N step in which the state finally
converges to x1. In the present paper, we consider that the value of the step will be changed
in the case that the system state is not equal to the final state x1; in other words, the number
of steps is fixed.

2.1.2. Affine Systems Suboptimal Discrete Nonlinear Control

The discrete affine system is described below

x̄(k + 1) = f0(x̄(k)) + f1(x̄(k))u(k), (1)

where k = 0, 1, .., N, x̄(k), f0(x̄(k)) ∈ Rn, f1(x̄(k)) ∈ Rn×m and u(k) ∈ Rm. The sampling
time for this discrete system is defined as Ts. The problem considered here is to find the
control input u(k) that minimizes the following quadratic performance index when applied
to the system:

J =
1
2

x̄T(N)Sx̄(N) +
1
2

N−1

∑
k=0

{
x̄T(k)Qx̄(k) + uT(k)Ru(k)

}
, (2)

where t f = TsN is the finite time horizon, N some integer representing the step, matrices
Q, S ≥ 0 and R > 0 have the appropriate dimensions, and they are used as weighting
matrices for the relative importance of the values of x̄(k) and u(k). The higher the values of
the matrices elements, the more significant the corresponding x̄(k) and u(k) are. Suppose
that the Definition 1 is satisfied by a pair of points

(
x0, xt f

)
of the nonlinear discrete

system (1). The main ideas of the dynamic programming approach exposed below, was
proposed originally in [15]. This approach was applied to the Unmanned Aerial Vehicle
(UAV) in [16], to an Autonomous Soaring UAV in [17] and to an hybrid exoskeleton in [18].

Theorem 1. Consider the quadratic performance index (2) and the system in Equation (1). The sub-
optimal sequence ũ(N − k), which makes the performance index reach a local minimum, is

ũ(N − k) = −
[

f T
1 (x̄(N − k))Q f1(x̄(N − k)) + R

]−1
f T
1 (x̄(N − k))Q f0(x̄(N − k)), (3)

for all k = 2 N, .., N, where matrices Q and R are symmetric positive semidefinite.

Proof. First, consider the following definition:

J∗N,N =
1
2

x̄T(N)Sx̄(N) (4)

The term is independent of the control law u(N) at the discrete time N. Then, it
receives the name of the optimal value of J at the discrete time N. The definition of the
following step is
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J∗N−1,N = min
u(N−1)

{
1
2

x̄T(N)Sx̄(N) +
1
2

x̄T(N − 1)Qx̄(N − 1) +
1
2

uT(N − 1)Ru(N − 1)
}

= min
u(N−1)

{
J∗N,N +

1
2

x̄T(N − 1)Qx̄(N − 1) +
1
2

uT(N − 1)Ru(N − 1)
}

,
(5)

Through the state space equation given by (1) the computed value of the state x̄(N) is

J∗N−1,N(x̄(N − 1), u(N − 1)) = min
u(N−1)

{
1
2
[ f0(x̄(N − 1)) + f1(x̄(N − 1))u(N − 1)]TS·

· [ f0(x̄(N − 1)) + f1(x̄(N − 1))u(N − 1)]+

+
1
2

x̄T(N − 1)Qx̄(N − 1) +
1
2

uT(N − 1)Ru(N − 1)
} (6)

The minimum value of JN−1,N will be found as the next step, consequently

u∗(N − 1) = −
[

f T
1 (x̄(N − 1))S f1(x̄(N − 1)) + R

]−1
f T
1 (x̄(N − 1))S f0(x̄(N − 1)), (7)

The term
[

f T
1 (x̄(N − 1))S f1(x̄(N − 1)) + R

]−1 exists as long as the matrix R > 0. The
control algorithm given by (7), as can be seen, turns out to be the optimal control, since

∂2 JN−1,N(x̄(N − 1), u(N − 1))
∂2u(N − 1)

= R > 0 (8)

The existence of the minimum is verified due to the strong convexity of the right-hand
side of (6) to u(N − 1). For the step N − 2, in light of the fact that the value of u∗(N − 1)
has been the optimal value for the step N− 1, and in accordance to the optimality principle
of Bellman, this control formulates the optimal value for x̄(N − 1). Subsequently, for this
step N − 2

J̃N−2,N(x̄(N − 2) , u(N − 1), u(N − 2)) = min
u(N−1),u(N−2)

{
1
2

x̄(N)TSx̄(N)+

+
1
2

x̄T(N − 1)Qx̄(N − 1) +
1
2

x̄T(N − 2)Qx̄(N − 2)

+
1
2

uT(N − 1)Ru(N − 1) +
1
2

uT(N − 2)Ru(N − 2)
} (9)

We observe a relation, where the terms requiring x̄(N −m)always rely on the control
u(N −m− 1). According to this relation, x̄(N) relies on u(N − 1), x̄(N − 1) relies on
u(N − 2), and so on. However, the term u(N − 1) found before is the optimal control and
x̄(N − 1) is derived from the state Equation (1). Subsequently,

J̃N−2,N(x̄(N − 2), u(N − 2)) = min
u(N−2)

{
1
2

x̄(N)TSx̄(N) +
1
2
[ f0(x̄(N − 2))+

+ f1(x̄(N − 2))u(N − 2)]TQ[ f0(x̄(N − 2))+

+ f1(x̄(N − 2))u(N − 2)] +
1
2

x̄T(N − 2)Qx̄(N − 2)+

+
1
2

uT(N − 1)Ru(N − 1) +
1
2

uT(N − 2)Ru(N − 2)
}

(10)

Now, to obtain the suboptimal control u(N − 2), we make use of this last equation
in this step, avoiding the very complex problem of having a Riccati-type equation in the
discrete domain. However, note that (10), with regard to u(N − 2), is strongly convex,
guaranteeing that a minimum exists. Nevertheless, instead of the optimal value of u(N − 2),
we have an approximation. The reason for this is that, in order to find the true optimal
control signal u(N − 2), the Riccati-type equation has to be solved first, applying the
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solution to the nonlinear discrete model, which is hard to find. We used the above procedure
to find the suboptimal control for N − 2.

ũ(N − 2) = −
[

f T
1 (x̄(N − 2))Q f1(x̄(N − 2)) + R

]−1
f T
1 (x̄(N − 2))Q f0(x̄(N − 2)) (11)

Considering the development described, we can determine that the general equations are

ũ(N − k) = −
[

f T
1 (x̄(N − k))Q f1(x̄(N − k)) + R

]−1
f T
1 (x̄(N − k))Q f0(x̄(N − k)), (12)

J̃N−k,N(x̄(N − k), u(N − k)) = J̃N−k+1,N +
1
2

{
x̄T(N − k)Qx̄(N − k)+ ũT(N − k)Rũ(N − k)

}
, (13)

for all k = 2, ..., N. Reaching the minimal value of the performance index (2) is ensured by
the suboptimal sequence obtained through these steps; see Equation (8). �

2.1.3. Suboptimal Control of the Land Vehicle

Consider the following mathematical model proposed in terms of the lateral and
orientation errors with respect to the lane [12]:

m(ë1 −Vxψ̇des) = 2Cα f (δ− f1)− 2Cαr f2

Iz ë2 = 2Cα f ` f f1 + 2Cαr`r f2,
(14)

where

f1 =

(
− arctan

(
ė1 −Vxe2 + ` f (ė2 + ψ̇des)

Vx

))

f2 =

(
− arctan

(
ė1 −Vxe2 − `r(ė2 + ψ̇des)

Vx

)) (15)

The model is illustrated in Figure 1. Model variables can be consulted in the Table 1.

Figure 1. Lateral vehicle model considering the error in lateral position.

Table 1. Model variables.

Variables Description

e1 Distance between the center of gravity (c.g.) and the center of the lane
e2 Orientation error between the orientation of the vehicle and the road orientation
δ Front wheel steering angle
Vx Longitudinal velocity of the c.g. of the vehicle
ψ̇des Rate of change of the desired orientation of the vehicle
Cα f Individual cornering stiffness (front tires)
Cαr Individual cornering stiffness (rear tires)
` f Distance of front steer axle from the c.g.
`r Distance of rear steer axle from the c.g.
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Now, we define the vector state as

x =
[

x1 x2 x3 x4
]T

x1 = e1, x2 = ė1, x3 = e2, x4 = ė2, u = δ,
(16)

then
·
x = f̃0(x) + f̃1u, (17)

where

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4



f̃0(x) =


x2

− 1
m η − 1

m µ−Vxψ̇des
x4

− ` f
Iz

η + `r
Iz

µ



f̃1 =


0

2Cα f
m
0

2Cα f ` f
Iz


η = 2Cα f arctan

(
x2 −Vxx3 + ` f (x4 + ψ̇des)

Vx

)

µ = 2Cαr arctan
(

x2 −Vxx3 − `r(x4 + ψ̇des)

Vx

)

(18)

According to the approximation of Euler, for x̄

·
x̄ ≈ x̄(k + 1)− x̄(k)

Ts
, (19)

as before the sampling time is Ts

x̄(k + 1) = Ts f̄0(x̄(k)) + x̄(k)︸ ︷︷ ︸
f0(x̄(k))

+ Ts f̄1︸︷︷︸
f1

u(k), (20)

where k = 0, 1, 2, 3, ..., then

x̄(k + 1) = f0(x̄(k)) + f1u(k), (21)

where

f0(x̄(k)) =


Tsx2(k) + x1(k)

− 1
m η(k)− 1

m µ(k)− TsVxψ̇des + x2(k)
Tsx4(k) + x3(k)

− ` f
Iz

η(k) + `r
Iz

µ(k) + x4(k)


f T
1 =

[
0 2

m TsCα f 0 2
Iz
` f TsCα f

]
η(k) = 2TsCα f arctan

(
x2(k)−Vxx3(k) + ` f (x4(k) + ψ̇des)

Vx

)

µ(k) = 2TsCαr arctan
(

x2(k)−Vxx3(k)− `r(x4(k) + ψ̇des)

Vx

)
(22)
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According to the control given by (7), the suboptimal control in the discrete time N− 1,
as a function of the error x̃ = x− xt f , is

u∗(N − 1) = −
[

TTST + R
]−1

TTS f0(x̄(N − 1)), (23)

where

T =


0

2
m TsCα f

0
2
Iz
` f TsCα f



S =


s11 s12 0 0
s21 s22 0 0
0 0 s33 s34
0 0 s43 s44



f0(x̄(N − 1)) =


Ts x̃2(N − 1) + x̃1(N − 1)

− 1
m η̃(N − 1)− 1

m µ̃(N − 1)− ã1(N − 1)
Ts x̃4(N − 1) + x̃3(N − 1)

− ` f
Iz

η̃(N − 1) + `r
Iz

µ̃(N − 1) + x̃4(N − 1)


η̃(N − 1) = 2TsCα f arctan

(
b̃1(N − 1)) + ` f (x̃4(N − 1) + ψ̇des)

Vx

)

µ̃(N − 1) = 2TsCαr arctan
(

b̃1(N − 1)− `r(x̃4(N − 1) + ψ̇des)

Vx

)
ã1(N − 1) = TsVxψ̇des + x̃2(N − 1),

b̃1(N − 1) = x̃2(N − 1)−Vx x̃3(N − 1),

(24)

then

u∗(N − 1) = −m2 I2
z

Rm2 I2
z + 4s44m2`2

f T2
s C2

α f + 4s22 I2
z T2

s C2
α f

{
2
m

s21TsCα f [x̃1(N − 1) +

+ Ts x̃2(N − 1)] +
2
m

s22TsCα f

[
x̃2(N − 1)− TsVxψ̇des −

1
m

η̃(N − 1)−

− 1
m

µ̃(N − 1)
]
+

2
Iz
` f s43TsCα f [x̃3(N − 1) + x̃4Ts(N − 1)]−

− 2
Iz
` f s44TsCα f

[
− 1

Iz
`rµ̃(N − 1)+

1
Iz
` f η̃(N − 1)− x̃4(N − 1)

]}
,

(25)

for N − k, where k = 2, 3, .., N, we have that

ũ(N − k) = −
[

TTQT + R
]−1

TTQ f0(x̄(N − k)), (26)
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where

Q =


q11 q12 0 0
q21 q22 0 0
0 0 q33 q34
0 0 q43 q44



f0(x̄(N − k)) =


Ts x̃2(N − k) + x̃1(N − k)

− 1
m η̃(N − k)− 1

m µ̃(N − k)− ã1(N − k)
Ts x̃4(N − k) + x̃3(N − k)

− ` f
Iz

η̃(N − k) + `r
Iz

µ̃(N − k) + x̃4(N − k)


η̃(N − k) = 2TsCα f arctan

(
b̃1(N − k) + ` f (x̃4(N − k) + ψ̇des)

Vx

)

µ̃(N − k) = 2TsCαr arctan
(

b̃1(N − k)− `r(x̃4(N − k) + ψ̇des)

Vx

)
ã1(N − k) = TsVx x̃4(N − k) + x̃2(N − k)

b̃1(N − k) = x̃2(N − k)−Vx x̃3(N − k),

(27)

then

u∗(N − k) = −m2 I2
z

Rm2 I2
z + 4q44m2`2

f T2
s C2

α f + 4q22 I2
z T2

s C2
α f

{
2
m

q21TsCα f [x̃1(N − k) +

+ x̃2Ts(N − k)] +
2
m

q22TsCα f

[
x̃2(N − k)− TsVxψ̇des −

1
m

η̃(N − k)+

+
1
m

µ̃(N − k)
]
+

2
Iz
` f q43TsCα f [x̃3(N − k) + x̃4Ts(N − k)]−

− 2
Iz
` f q44TsCα f

[
1
Iz
`r η̃(N − k)+

1
Iz
` f µ̃(N − k)− x̃4(N − k)

]}
,

(28)

for k = 2, 3,. . . N. Notice that S and Q have to be positive semidefinite matrices (and
symmetric), so eig{S} and eig{Q} are positive and real, and q12 = q21, q34 = q43, s12 = s21,
s34 = s43.

2.2. Numerical Simulation
2.2.1. Configuration of Numerical Simulations

Two scenarios of simulation were used to illustrate the response of the proposed sub-
optimal control. Both are implemented in Matlab Simulink with a velocity of Vx = 30 m/s.
The first scenario is a lane-keeping task, starting with a lateral error of 1 m and the model is
expected to reach e1 = 0 m with the action of the suboptimal control. The listed parameters
in Table 2 were used for the lateral model in the simulation.

Table 2. Parameters required for the simulation 1.

Parameter Value Unit

m 1573 Kg
Iz 2873 Kgm2

` f 1.1 m
`r 1.58 m

Cα f 80,000 N/rad
Cαr 80,000 N/rad

1 These parameters represent a passenger sedan [12].
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Furthermore, the Q matrix must be selected to be positive-definite, and the same holds
for the R matrix. These matrices have been selected by trial and error and are given:

Q =


2.5 0.8 0 0
0.8 0.3 0 0
0 0 5.25 0.2
0 0 0.2 0.3

, R = 1 (29)

To recreate the conditions of a lane-keeping task in the environment of Matlab
Simulink, we used the block model shown in Figure 2. In the model, the principal blocks
are the Lateral Model, Suboptimal Control, and ψdes. The Lateral Model block contains the
equations of the lateral dynamics of the vehicle in discrete time, Equations (14) and (15).
The Suboptimal control block includes the proposed suboptimal control Equation (28).
And the ψdes block was added to have the possibility of changing the desired orientation
in accordance to the kind of road that will be simulated, but in this case, since we have
a straight road, the value returned from this block is zero. The parameters from Table 1
are added in the Lateral Model Bloc and in the Suboptimal control block because these
parameters were used in the equations mentioned before. The parameter ts, also known as
the sampling time, is set to be equal to 0.01 s. The simulation is set to use fixed time steps,
to introduce ts as a constant and avoid the necessity of creating a function to introduce
the sampling time to the model. The block with the mathematical expression of 1

z is the
representation of the time delay that allows us to move from x(n + 1) to x(n). The rest of
the blocks are there to show the results of the different variables (e1, ė1, e2, ė2, and u(N)).

Figure 2. Block model implemented in Matlab Simulink for the lane-keeping test.

For the second test implemented, which is the tracking of a velocity profile, we added
another two blocks, the first one is to create the velocity profile designed for this test.
This profile starts at v(0) = 0 m/s and increments smoothly until reaching the velocity
of v = 2 m/s when the time stamp is equal to 20 s, remains in the velocity of v = 2 m/s for
60 s, and then returns to v = 0 m/s during the next 20 s. The other block is for integrating
the signal to be used in the discrete model. The Block Model for the second test is shown in
Figure 3. This test uses the same parameters as before including, the fixed time step for
the solver.
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Figure 3. Block model implemented in Matlab Simulink for the tracking of a velocity profile.

2.2.2. Properties of Matrices Q and R

The necessity of having positive definite matrices Q and R was established in the
development of the equations for the suboptimal control. This section presents the proof
that the selected Q and R are positive definite.

2.2.3. Symmetry of Matrices Q and R

For a matrix to be positive definite, first it has to be symmetric.

Definition 2. A matrix B is symmetric if it is equal to its transpose [19].

B = BT (30)

Since Matrix R is of size 1× 1, then R is equal to its transpose R = RT . For matrix Q,

Q =


2.5 0.8 0 0
0.8 0.3 0 0
0 0 5.25 0.2
0 0 0.2 0.3

, (31)

the values q12 = q21 = 0.8,q34 = q43 = 0.2. Then,

QT =


2.5 0.8 0 0
0.8 0.3 0 0
0 0 5.25 0.2
0 0 0.2 0.3

, (32)

and Q = QT .

2.2.4. Positive Definiteness of Matrices Q and R

To demonstrate this property, the following definition can be used.

Definition 3. If all the principal minors of a real and symmetric matrix B are positive, then B is a
positive-definite matrix (Criterion of Sylvester ) [20].

The leading principal minor is the determinant of a principal submatrix, which is
formed with the first n rows and columns of B, (|Bn×n|) [20]. There is only one principal
minor for R, and it is |R1,1| = 1. Therefore, the matrix R is positive definite.
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For matrix Q, there are four principal submatrices:

Q1,1 = 2.5, Q2,2 =

[
2.5 0.8
0.8 0.3

]
, Q3,3 =

2.5 0.8 0
0.8 0.3 0
0 0 5.25

, Q4,4 =


2.5 0.8 0 0
0.8 0.3 0 0
0 0 5.25 0.2
0 0 0.2 0.3

, (33)

The leading principal minors of matrix Q are

|Q1,1| = 2.5, |Q2,2| = 0.11, |Q3,3| = 0.58, |Q4,4| = 0.17, (34)

Being all positive, therefore, the matrix Q is positive definite.

3. Results

The lane-keeping test illustrates the capacity of the control to stabilize the system. It
should be noticed that the error of 1 m in the lateral displacement is corrected in a short
period of time, less than five seconds, and, after that, the system remains at the final state
for the remainder of the time without any further lateral displacement, as can be seen
in Figure 4. The suboptimal control signal keeps a small value (see Figure 5). For e2, it
is expected to start at zero and allow the vehicle to change its orientation to correct the
position and come back to zero after that. This movement is aligned with the behavior
described in the variable e1; in other words, the change in the signal ends in less than 5 s, as
can be seen in Figure 6.

Figure 4. Lane-keeping simulation with the suboptimal law applied, the objective is to reach e1 = 0 m.

Figure 5. Control signal generated by the suboptimal control law in the lane-keeping simulation.
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Figure 6. Orientation error when performing the lane-keeping simulation.

For the tracking of a velocity profile test, the predefined profile is shown in Figure 7,
as described in the configuration section for the simulation has a maximum of 2 m/s.

Figure 7. Predefined velocity profile for the simulation.

Adding the desired velocity profile to the suboptimal control gives the results pre-
sented in Figures 8 and 9. Figure 8 shows the comparison between the velocity profile
and the lateral velocity in the model. As observed, the control follows the velocity profile
in the variable of ė1, and the energy of the input control signal remains at a value less
than 2× 10−3, see Figure 9. In this test, e1 tracks the behavior of an integration of the
velocity profile, Figure 10. During the first 20 s, where the velocity is increasing, the lateral
displacement shows a curve. For the next 70 s, where the velocity is a constant value
different from zero, the lateral displacement grows with the corresponding slope. During
the time that the velocity is decreasing, the lateral displacement performs a curve in the
opposite direction, and finally, when the velocity reaches zero again, the displacement
becomes constant.

Figure 8. Result in simulation with the suboptimal control law for the variable ė1.
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Figure 9. Control signal generated by the suboptimal control law in the simulation with the predefined
velocity profile.

Figure 10. Result in simulation for the variable e1, the suboptimal control law was used with the
velocity profile.

4. Discussion

The proposed suboptimal control solves the stabilization problem for the vehicle
model without resorting to the small angle approximation and avoids solving the Bellman
equation. The small angle approximation, while allowing the use of the linear model of the
system, assumes that the argument of the arctan functions in the model is small.

Since the argument of the arctan functions depends on the velocity of the angle and
the velocity of the lateral displacement, even with small angles in the entrance, we can
have the case that the condition is not fulfilled, meaning that the argument is outside the
linear behavior range. The obtained results indicate that the goal of having a control that
does not rely on such assumption has been achieved.

Also, the simulation results showed that the proposed control system accomplished
two important requirements. The first one is that the control easily stabilizes the whole
system, and this is essential to make different control tasks with the vehicle. The second
is that it keeps a moderate control signal, and this obeys the formulation as a suboptimal
control; furthermore, the simulation demonstrates that the control signal generated is small
in the task that implies a gradual change in the variables to track speed profiles. The
simulations settings were standard for path planning of a vehicle. The results demonstrated
that the suboptimal control successfully accomplishes these tasks and can be used to control
the input angle δ to obtain a desired trajectory in y.

Summarizing, the main contribution of the present paper is a suboptimal control
strategy for the vehicle based on the lateral position and the orientation errors with the
following characteristics:

• The proposed control algorithm uses the nonlinear dynamical model of the vehicle for
the controller synthesis while the proposed controllers published in the literature are
based on the linearized model of the vehicle.

• The synthesis of the suboptimal control avoids the solution of the Bellman equation.
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