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Abstract: Autonomous ground vehicles (AGVs) operating in complex environments face the chal-
lenge of accurately following desired paths while accounting for uncertainties, external disturbances,
and initial conditions, necessitating robust and adaptive control strategies. This paper addresses the
critical path-tracking task in AGVs through a novel control framework for multilevel speed AGVs,
considering both structured and unstructured uncertainties. The control system introduced in this
study utilizes a nonlinear adaptive approach by integrating integral backstepping with terminal
sliding mode control (IBTSMC). By incorporating integral action, IBTSMC continuously adjusts the
control input to minimize tracking errors, improving tracking performance. The hybridization of
the terminal sliding mode method enables finite time convergence, robustness, and a chatter-free
response with reduced sensitivity to initial conditions. Furthermore, adaptive control compensators
are developed to ensure robustness against unknown but bounded external disturbances. The Lya-
punov stability theorem is employed to guarantee the global asymptotic stability of the closed-loop
system and the convergence of tracking errors to the origin within finite time. To validate the effec-
tiveness of the proposed control scheme, high-fidelity cosimulations are conducted using CarSim
and MATLAB. Comparative analysis is performed with other methods reported in the literature. The
results confirm that the proposed controller demonstrates competitive effectiveness in path-tracking
tasks and exhibits strong efficiency under various road conditions, parametric uncertainties, and
unknown disturbances.

Keywords: autonomous vehicles; backstepping; sliding mode; adaptive control

1. Introduction
1.1. Research Gap and Motivation

The fundamental objectives of future intelligent transportation systems revolve around
optimizing traffic flow, ensuring improved driving safety, enhancing human comfort, max-
imizing transport efficiency, and minimizing road accidents [1,2]. Such goals strongly
depend on the seamless integration of self-driving vehicles in multilevel traffic environ-
ments while demonstrating capabilities of safe and reliable route planning, traffic decision
making, perception of complex environments, and navigation towards predefined destina-
tions [3,4]. Recent technological progress in AI, as well as in software tools and hardware
systems, has considerably contributed to the growing interest in the development of path-
planning methods, sensing systems, and decision-making algorithms for autonomous
systems [5]. While substantial attempts have been made to enhance the safety and efficacy
of driverless cars, certain barriers remain, primarily because of the complex response of var-
ious vehicular components, input saturation (e.g., tire force saturation), other unmodeled
dynamics, external disturbances, structural nonlinearities, and uncertainties concerned
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with modeling parameters. Such challenges serve as the underpinning reasons for our
much-needed studies to improve on existing control systems in terms of performance,
robustness, reliability, and simplicity in design for the purpose of lane keeping or path-
tracking performance [6,7]. Therefore, it is increasingly crucial to develop a comprehensive
control system that can adapt to a wide range of operating conditions, regardless of the
complexities embedded in the vehicle design. The ability to consistently ensure accurate
lane keeping and precise path tracking in autonomous vehicles, especially in challeng-
ing driving situations, can successfully achieve this goal and considerably improve user
satisfaction and the widespread adoption of self-driving cars [8].

The inherent limitations in the development of comprehensive algorithms and the
adaptability of control strategies are two main obstacles in the deployment of path-
following control systems. In order to address these challenges, a range of control methods
has been proposed, including active front wheel steering (AFS), direct yaw moment control
(DYC), and their hybrid combinations [9]. Although AFS and DYC have their respective
advantages, such as simpler design and reduced control effort, it is well known that com-
bined controllers can yield enhanced efficiency, improved performance, and increased
stability during critical maneuvers [10]. AFS is frequently utilized to rectify undesirable
handling characteristics, specifically addressing issues related to the vehicle’s tendency
to either understeer or oversteer. This is achieved by applying steering force specifically
to the front wheels, enabling better control and stability during maneuvering [11]. How-
ever, AFS encounters certain limitations in attaining accurate path tracking, especially in
demanding scenarios involving front steering saturation, speedy maneuvers, and abrupt
turns [12]. Conversely, DYC offers a promising solution for improving dynamic orientation
and heading angle, especially under demanding driving conditions. By generating an
additional yaw moment through the application of brakes, DYC enhances the vehicle’s
maneuverability and stability, contributing to better control and responsiveness when faced
with challenging circumstances [13]. In order to achieve precise path tracking, particularly
under challenging driving conditions, the integration of a coordinated control strategy
that combine AFS and DYC (AFS + DYC) has proven to be effective and reliable. Such
integrated control schemes ensure that the desired trajectory is accurately followed, even
in demanding driving scenarios, enhancing both the effectiveness and dependability of the
path-tracking system [8]. These integrated control schemes provide a substantial boost to
safety measures and instill a heightened sense of assurance when it comes to accomplishing
precise path-tracking goals.

In order to achieve satisfactory lane-keeping performance, it is imperative to stabilize
lateral displacement and minimize deviations in vehicle angle from the desired state [14]. A
robust path-tracking control scheme should focus on minimizing the convergence of errors
to negligible levels, ensuring precise and accurate tracking of the desired trajectory despite
uncertainties and disturbances [15]. This necessity becomes especially crucial during
dynamic situations, such as navigating on twisty roads with reduced grip, executing
sudden critical maneuvers, driving on slippery surfaces, or facing scenarios that require a
desired yaw rate. Under such conditions, the preference lies with robust adaptive control
approaches, which possess the ability to effectively handle unknown dynamics; generate
control efforts according to the required demand; and guarantee overall system safety,
security, and stability in achieving optimal path-tracking performance [4].

1.2. Literature Review

Extensive research investigations have focused on path-tracking control for road ve-
hicles, aiming to develop a diverse range of robust control algorithms. These encompass
the implementation of sliding-mode controller (SMC) techniques [16], the utilization of
neural networks [17,18], integration of fuzzy systems (FLS) [19,20], adoption of backstep-
ping methodologies [21], and exploration of various optimal and model-predictive control
approaches [22]. In particular, SMC has been successfully employed for the chassis control
of four-wheel independent control electric vehicles [23], as well as for hierarchical energy
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efficiency optimization control strategies in distributed drive electric vehicles [24]. These
studies contribute to the ongoing exploration of effective and adaptable control strategies
precise path tracking in diverse driving scenarios. For example, in [22], a controller design
approach was proposed for path tracking of autonomous ground vehicles using multi-
constraint nonlinear predictive control (NMPC) to improve transient performance and
consider rollover prevention. The proposed method incorporated a neural network au-
toregressive model, Frenet–Serret differential geometry-based path following, and vehicle
vertical motion modeling in order to accomplish enhanced yaw stabilization and transient
tracking performance while considering input saturation. In [20], a robust fuzzy control
approach was presented for lateral path following of autonomous road vehicles subject to
parametric uncertainties, disturbances, and varying speeds. The proposed method utilized
a non-singleton fuzzy system to account for parametric variations and errors related to mea-
surements to guarantee path-following performance under diverse operating conditions
and external disturbances. In [25], a high-performance automatic steering control strategy
was developed for AGVs by establishing a vehicle–road system model and proposing
automatic a steering control algorithm based on a backstepping sliding mode variable
structure control. The study demonstrated improved system dynamics, robustness against
vehicular velocity, real-time performance, and tracking accuracy.

1.3. Contribution and Paper Organization

By reviewing the existing literature, it can be inferred that the path-tracking control of
autonomous vehicles poses challenges due to the nonlinear and complex dynamics of the
vehicle, as well as the uncertainties associated with tire–road forces. These factors contribute
to the overall complexity of the system dynamics, making path tracking control more
difficult. Previous studies have proposed coordinated control architectures that combine
active front wheel steering (AFS) and direct yaw moment control (DYC), commonly referred
to as AFS+DYC. These coordinated control methods have demonstrated promising results
in achieving accurate and safe path-tracking performance. Through the integration of both
AFS and DYC, these methods significantly enhance the overall performance and reliability
of the path-tracking control system.Therefore, this paper makes several key contributions,
which can be summarized as follows:

• An integral backstepping control method is hybridized with a terminal sliding mode
control method to enhance the lateral path-tracking performance of AGVs;

• A novel disturbance observer is designed to handle unknown but bounded distur-
bances, and a controller compensator is devised based on an adaptive disturbance
observer and unknown weight approximations;

• High-fidelity cosimulations are conducted using CarSim, and MATLAB is utilized
to verify the effectiveness of the proposed controller in terms of stabilizing tracking
errors and robustness against parametric uncertainties and external disturbances.

2. Problem Formulation

In this study, a widely utilized two-degrees-of-freedom bicycle model is employed.
This model assumes a flat road surface and symmetry between the right and left tracks of
the vehicle. Furthermore, it takes into account the minimal compliance of the chassis and
suspension system components, disregarding their response to minor road irregularities,
and no pitch and roll motion due to aerodynamic forces. By considering these factors, with
this study, we aim to accurately capture the essential dynamics of the vehicle for analysis
and development of control strategies.

Furthermore, negligible variations in longitudinal forces are typically assumed when
the travel speed remains constant. However, it is crucial to highlight that an adequate
forward speed is required to produce lateral forces in relation to the slip angles during
cornering maneuvers. Consequently, the complexities of longitudinal dynamics can be
disregarded, simplifying the three degrees of freedom in the plane of motion into a con-
ventional bicycle model. By focusing on two primary modes of motion derived from the
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vehicle dynamics discussed herein, the desired path-tracking dynamics can be expressed
(Figure 1).
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Figure 1. Yaw-plane two-DoF model.

It is essential for the vehicle’s yaw angle to converge to the desired state within a
limited time period in order to ensure yaw stability. This convergence allows for better
control and stability during the vehicle’s rotational motion. Additionally, minimizing the
lateral offset of the vehicle by reducing its lateral position plays a crucial role in effective
lane-keeping performance, thus enhancing overall safety. The lateral displacement error
denotes the minimum distance between the vehicle and the intended trajectory, quantified
through an orthogonal projection. Consequently, in this study, the path-tracking control
approach is based on the utilization of a bicycle model. This model serves as a simplified
representation of the vehicle’s dynamics, enabling a comprehensive analysis of its behavior
with respect to steering and lateral movements. By employing this model, a deeper
understanding of the vehicle’s response and control can be attained, facilitating effective
path-tracking strategies [26].

m
(
vxγr + v̇y

)
= ∑

i
Fyi i = f , r

Izzγ̇r = ∑ M = Fy f da − Fyrdb + ∆M
(1)

In the provided bicycle model, the lateral forces exerted by the front and rear tires
are denoted as Fy f and Fyr, respectively. The variables m and Izz represent the vehicle’s
mass and moment of inertia about the yaw axis, respectively. The front and rear wheelbase
components are indicated by da and db, respectively. The vehicle’s traveling speed is
represented by vx, while γr signifies the chassis yaw rate, and vy denotes the lateral velocity
of the vehicle. Additionally, the direct yaw moment applied to the vehicle, denoted as ∆M,
can be expressed as follows:

∆M = ∑
j

∑
i

FxijD(−1)i i = f , r; j = r, l (2)
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In the proposed system, the tires are distinguished by subscript i, where r and l
denote the right and left track tires respectively, while subscripts j with f and r represent
the front and rear tires, respectively. To effectively distribute the controller-generated
direct yaw control (DYC) among the four tires, an optimal policy can be employed, taking
into consideration the vehicle’s wheelbase components, which are denoted as da and db.
This distribution of DYC ensures balanced handling and control throughout the vehicle.
Furthermore, adhering to the assumptions made for the two-degrees-of-freedom (two-DoF)
bicycle model, the DYC is evenly divided between the right and left tire tracks, allowing
for precise and responsive steering performance. The correlation between the tire sideslip
angles and the lateral forces produced by the tires can be approximated as proportional,
where the specific proportionality is dictated by the cornering stiffness parameters. This
relationship signifies that changes in the sideslip angles directly influence the magnitude of
lateral forces generated by the tires. By understanding and considering this proportional
connection, it becomes possible to effectively control and manipulate the vehicle’s lateral
dynamics during cornering maneuvers.

Fyi = ciβi , ci = ĉi + δĉi i = f , r (3)

where δĉi accounts for the deviations from the nominal value of the tire cornering stiffness
due to modeling uncertainties. These uncertain parameters capture the bounded uncer-
tainties that arise beyond the linear deflection region and near the tire’s saturation point.
Consequently, the expressions for the sideslip angles regarding the front and rear axle tires
can be formulated as follows:

β f + ϑ f = atan

vx sin
(

atan
(

vy
vx

))
+ γrda

vx cos
(

atan
(

vy
vx

))
 (4)

βr = atan

vx sin
(

atan
(

vy
vx

))
− γrdb

vx cos
(

atan
(

vy
vx

))
 (5)

The vehicle’s sideslip angle can be defined as the ratio of the lateral velocity component
to the longitudinal velocity component, represented as atan

(
vy
vx

)
. Here, ϑ f denotes the

front wheel steering angle, and β f and βr represent the tire slip angles for the front and rear
axles, respectively. By substituting Equations (2) and (5) into Equation (1), the governing
equations can be effectively reformulated as follows:

v̇y =
c f

m

atan

vx sin
(

atan
(

vy
vx

))
+ γrda

vx cos
(

atan
(

vy
vx

))
− ϑ f

+

cr

m

atan

vx sin
(

atan
(

vy
vx

))
− γrdb

vx cos
(

atan
(

vy
vx

))
− vxγr

(6)

γ̇r =
c f da

Izz

atan

vx sin
(

atan
(

vy
vx

))
+ γrda

vx cos
(

atan
(

vy
vx

))
− ϑ f

−
c f db

Izz

atan

vx sin
(

atan
(

vy
vx

))
− γrdb

vx cos
(

atan
(

vy
vx

))
+

∆M
Izz

(7)

In light of the aforementioned dynamics, the governing equations of the system can
be reformulated as follows:
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η̇1(t) = F1

(
η
−
(t)
)
+ G1

(
η
−
(t)(t)

)
θ1(t)

η̇2(t) = F2

(
η
−
(t)
)
+ G2

(
η
−
(t)(t)

)
θ2(t)

(8)

where η
−
(t) =

[
vy γr

]
, G1

(
η
−
(t)
)
= − c f

m , G2

(
x−(t)

)
= 1

Izz
, θ1(t) = ϑ f , θ2(t) = ∆M, and the

following scalar functions are introduced as:

F1

(
η
−
(t)
)
=

c f

m

atan

vx sin
(

atan
(

vy
vx

))
+ γrda

vx cos
(

atan
(

vy
vx

))
+

cr

m

atan

vx sin
(

atan
(

vy
vx

))
− γrdb

vx cos
(

atan
(

vy
vx

))
− vxγr

(9)

F2

(
η
−
(t)
)
=

c f da

Izz

atan

vx sin
(

atan
(

vy
vx

))
+ γrda

vx cos
(

atan
(

vy
vx

))
−

c f db

Izz

atan

vx sin
(

atan
(

vy
vx

))
− γrdb

vx cos
(

atan
(

vy
vx

))


(10)

3. Main Results
3.1. Design of Integral Backstepping with Terminal Sliding Mode Controller

In this section, the development of an integral backstepping controller is presented
for path-following control of autonomous road vehicles. Integral backstepping controllers
provide several advantages in control applications. They enhance tracking performance
by effectively addressing steady-state tracking errors through integral action. These con-
trollers are robust to model uncertainties, disturbances, and parameter variations, ensuring
reliable performance under varying operating conditions. They also reduce sensitivity
to disturbances and compensate for persistent disturbances and external forces. Integral
backstepping controllers mitigate steady-state errors, leading to precise regulation of sys-
tem output. Additionally, they offer versatility across control applications, making them
suitable for a wide range of engineering and control scenarios.

To achieve improved tracking performance through the integral backstepping con-
troller, the system governing equations in Equation (8) can be reformulated as:

η̇1(t) = F1

(
η
−
(t)
)
+ G1

(
η
−
(t)
)

ξ1(t)

ξ̇1(t) = U1(t)
(11)

η̇2(t) = F2

(
η
−
(t)
)
+ G2

(
η
−
(t)
)

ξ2(t)

ξ̇2(t) = U2(t)
(12)

where θ1(t) and θ1(t) are replaced by ξ1 and ξ2, respectively, as the virtual controllers, and
U1 and U2 represent the new control inputs.

Theorem 1. For the system dynamics for the autonomous ground vehicle (AGV) expressed in
Equations (11) and (12), an integral backstepping with terminal sliding mode controller (IBTSMC)
can be designed with global asymptotic stability.
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Proof of Theorem 1. By defining e1 = η1 − η1d and e2 = η2 − η2d as the tracking errors for
the system, a terminal sliding mode controller is developed because of the several benefits it
offers, including rapid convergence, robustness, and avoidance of singularities. To achieve
these advantages, we adopt a non-singular terminal sliding surface approach:

s1 = e1 + v1

t∫
0

(e1(ρ))
q/pdρ (13)

s2 = e2 + v2

t∫
0

(e2(ρ))
q/pdρ (14)

where v, p, q ∈ R+ and 1 < p
q < 2; and p and q are odd numbers. Given the time derivative

of the sliding surfaces:

ṡ1 = ė1 + v1e
q/p
1 (t) +

v1q
p

t∫
0

(e1(ρ))
q− p/pdρ (15)

ṡ2 = ė2 + v2e
q/p
2 (t) +

v2q
p

t∫
0

(e2(ρ))
q− p/pdρ (16)

Let us create a Lyapunov candidate function as:

V1(si, t) =
1
2

2

∑
i=1

s2
i (17)

Taking the time derivative of Equation (17) yields:

V̇1(si) =
∂V1(si)

∂si

∂si
∂t

=
∂V1

∂s1


F1

(
η
−
(t)
)
+ G1

(
η
−
(t)
)

ξ1(t) + v1e
q/p
1 (t)+

v1q
p

t∫
0

(e1(ρ))
q− p/pdρ− η̇1d

+

∂V1

∂s2

F2

(
η
−
(t)
)
+ G2

(
η
−
(t)
)

ξ2(t) + v2e
q/p
2 (t) +

v2q
p

t∫
0

(e2(ρ))
q− p/pdρ− η̇2d


(18)

Let us assume that there exists ξ1 = Ω1

(
η
−

)
and ξ2 = Ω2

(
η
−

)
such that:

∂V1

∂s1

F1

(
η
−
(t)
)
+ G1

(
η
−
(t)
)

ξ1(t) + v1e
q/p
1 (t) +

v1q
p

t∫
0

(e1(ρ))
q− p/pdρ− η̇1d

 6 −ψ1(s1) (19)

and

∂V1

∂s2

F2

(
η
−
(t)
)
+ G2

(
η
−
(t)
)

ξ2(t) + v2e
q/p
2 (t) +

v2q
p

t∫
0

(e2(ρ))
q− p/pdρ− η̇2d

 6 −ψ2(s2) (20)

where ψ1(s1) and ψ2(s2) are positive definite functions. Thus,

V̇1(si) 6 −ψ1(s1)− ψ2(s2) 6 −ψ3(s1, s2) (21)
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Thus, the stability proof of the closed-loop system can be completed, given the vir-

tual control signals. Now, let us define two new variables as ζ1 = ξ1 − Ω1

(
η
−

)
and

ζ2 = ξ2 −Ω2

(
η
−

)
.

Given the time derivative of Equation (21):

ζ̇1 = U1 − Ω̇1

(
η
−

)
ζ̇2 = U2 − Ω̇2

(
η
−

) (22)

Using some mathematical manipulations, the tracking error dynamics can be writ-
ten as:

ėi = Fi

(
η
−
(t)
)
+ Gi

(
η
−
(t)
)

ζi(t) + Gi

(
η
−
(t)
)

Ωi

(
η
−

)
− η̇id i = 1, 2 (23)

Now, let us construct a Lyapunov candidate function as:

V2(si, ζi) =
1
2

2

∑
i=1

(
s2

i + ζ2
i

)
(24)

The time derivative of Equation (24) becomes:

V̇2(si, ζi) =
∂V2(si)

∂si

∂si
∂t

+
∂V2(ζi)

∂ζi

∂ζi
∂t

=
∂V1

∂s1



F1

(
η
−
(t)
)
+ G1

(
η
−
(t)
)

ζ1(t)

+G1

(
η
−
(t)
)

Ω1

(
η
−

)
+ v1e

q/p
1 (t)+

v1q
p

t∫
0

(e1(ρ))
q− p/pdρ− η̇1d



+
∂V2

∂s2


F2

(
η
−
(t)
)
+ G2

(
η
−
(t)
)

ζ2(t) + G2

(
η
−
(t)
)

Ω2

(
η
−

)
+ v2e

q/p
2 (t)+

v2q
p

t∫
0

(e2(ρ))
q− p/pdρ− η̇2d

+
∂V2(ζ1)

∂ζ1

(
U1 − Ω̇1

(
η
−

))
+

∂V2(ζ2)

∂ζ2

(
U2 − Ω̇2

(
η
−

))

(25)

The system can be further rearranged as:

V̇2(si, ζi) 6 −ψ3(s1, s1) +
∂V2

∂s1

[
G1

(
η
−
(t)
)

ζ1(t)
]
+

∂V2

∂s2

[
G2

(
η
−
(t)
)

ζ2(t)
]
+

∂V2(ζ1)

∂ζ1

(
U1 − Ω̇1

(
η
−

))
+

∂V2(ζ2)

∂ζ2

(
U2 − Ω̇2

(
η
−

)) (26)

By using some mathematical manipulations, Equation (26) can be rewritten as:

V̇2(si, ζi) 6 −ψ3(s1, s1) +
∂V2

∂s1

[
G1

(
η
−
(t)
)

ζ1(t)
]
+

∂V2

∂s2

[
G2

(
η
−
(t)
)

ζ2(t)
]
+

ζ1(t)
(
U1 − Ω̇1

(
η
−

))
+ ζ2(t)

(
U2 − Ω̇1

(
η
−

)) (27)
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V̇2(si, ζi) 6 −ψ3(s1, s1) + ζ1(t)
(

∂V2

∂s1
G1

(
η
−
(t)
)
U1 − Ω̇1

(
η
−

))
+

ζ2(t)
(

∂V2

∂s2
G2

(
η
−
(t)
)
U2 − Ω̇2

(
η
−

)) (28)

Finally, by defining the control inputs as:

U1 =

[
∂V1

∂s1
G1

(
η
−
(t)(t)

)]−1
Ω̇2

(
η
−
(t)
)

U2 =

[
∂V2

∂s2
G2

(
η
−
(t)(t)

)]−1
Ω̇2

(
η
−
(t)
) (29)

Equation (28) reduces to V̇2(si, ζi)− 6 ψ3(s1, s1), which completes the stability proof.

3.2. Adaptive Robustness Against External Disturbances

The sources of external disturbance in path-tracking for autonomous vehicles can
stem from various factors. These sources may include unpredictable weather conditions,
such as strong winds, rain, or snow, which can affect the vehicle’s handling and stability.
Road conditions, such as uneven surfaces, potholes, or debris on the road, can introduce
disturbances that impact the vehicle’s trajectory. The effect of external disturbances can be
incorporated in the system dynamics of Equation (8) as:

η̇1(t) = F1

(
η
−
(t)
)
+ G1

(
η
−
(t)
)

ξ1(t) + φ1

(
η
−
(t)
)

ξ̇1(t) = U1(t)
(30)

η̇2(t) = F2

(
η
−
(t)
)
+ G2

(
η
−
(t)
)

ξ2(t) + φ2

(
η
−
(t)
)

ξ̇2(t) = U2(t)
(31)

where φ1

(
η
−
(t)
)

and φ2

(
η
−
(t)
)

are bounded but unknown disturbances applied to the

AGV system dynamics.

η̇1(t) = F1

(
η
−
(t)
)
+ G1

(
η
−
(t)
)

ξ1(t) + WT
1 σ

(
η
−
(t)
)

ξ̇1(t) = U1(t)

η̇2(t) = F2

(
η
−
(t)
)
+ G2

(
η
−
(t)
)

ξ2(t) + WT
1 σ

(
η
−
(t)
)

ξ̇2(t) = U2(t)

(32)

where W1, W2 ∈ Rn×s represent the unknown weight matrices, and

φ1

(
η
−

)
=

[
φ1

1

(
η
−

)
, φ2

1

(
η
−

)
, ..., φs

1

(
η
−

)]T
and φ2

(
η
−

)
=

[
φ1

2

(
η
−

)
, φ2

2

(
η
−

)
, ..., φs

2

(
η
−

)]T

are global Lipschits functions acting as the base functions with φ1

(
η
−

)
, φ1

(
η
−

)
: Rn → Rs.

Theorem 2. For the system dynamics for the autonomous ground vehicle (AGV) expressed in
Equations (8) and (33), an integral backstepping with terminal sliding mode controller (IBTSMC)
can be designed with global asymptotic stability, and the adaptation laws are derived as:

˙̂W1 = Γ−1
1 σ

(
η
−
(t)
)

s1

˙̂W2 = Γ−1
2 σ

(
η
−
(t)
)

s2

(33)
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with the following control compensators:

uc
1 =

[
G1

(
η
−
(t)
)]−1

ŴT
1 σ

(
η
−
(t)
)

uc
2 =

[
G2

(
η
−
(t)
)]−1

ŴT
2 σ

(
η
−
(t)
) (34)

Proof of Theorem 2. By defining ξ1(t) = Ω1

(
η
−

)
+ uc

1 + ζ1(t) and ξ2(t) = Ω2

(
η
−

)
+ uc

2 +

ζ2(t), the system dynamics in Equation (33) can be rewritten as:

η̇1(t) = F1

(
η
−
(t)
)
+ G1

(
η
−
(t)
)[

Ω1

(
η
−

)
+ uc

1 + ζ1(t)
]
+ WT

1 σ

(
η
−
(t)
)

ξ̇1(t) = U1(t)

η̇2(t) = F2

(
η
−
(t)
)
+ G2

(
η
−
(t)
)[

Ω2

(
η
−

)
+ uc

2 + ζ2(t)
]
+ WT

1 σ

(
η
−
(t)
)

ξ̇2(t) = U2(t)

(35)

where uc
1 and uc

2 are the control compensation signals. Under the new system dynamics, ṡ1
and ṡ2 can be expressed as:

ṡ1 = F1

(
η
−
(t)
)
+ G1

(
η
−
(t)
)

ζ1(t) + G1

(
η
−
(t)
)

Ω1

(
η
−

)
+ v1e

q/p
1 (t)+

v1q
p

t∫
0

(e1(ρ))
q− p/pdρ− η̇1d + G1

(
η
−
(t)
)

uc
1 + WT

1 σ

(
η
−
(t)
) (36)

ṡ2 = F2

(
η
−
(t)
)
+ G2

(
η
−
(t)
)

ζ2(t) + G2

(
η
−
(t)
)

Ω2

(
η
−

)
+ v2e

q/p
2 (t)+

v2q
p

t∫
0

(e2(ρ))
q− p/pdρ− η̇2d + G2

(
η
−
(t)
)

uc
2 + WT

2 σ

(
η
−
(t)
) (37)

Additionally, it is assumed that W̃1 = W1 − Ŵ1 and W̃2 = W2 − Ŵ2, where Ŵ1 and
Ŵ2 are approximations of unknown weight matrices W1 and W2, respectively. Now, let us
construct a new Lyapunov candidate function as:

V3
(
si, ζi, W̃1, W̃2

)
=

1
2

2

∑
i=1

(
s2

i + ζ2
i

)
+

1
2

W̃T
1 Γ−1

1 W̃1 +
1
2

W̃T
2 Γ−1

2 W̃2 (38)

Given the time derivative of Equation (38), together with Equations (36) and (37), as
well as the proof in Theorem 1, we have:

V̇3
(
si, ζi, W̃1, W̃2

)
= ṡ1s1 + ṡ2s2 + ζ̇1ζ1 + ζ̇2ζ2 − W̃T

1 Γ−1
1

˙̂W1 − W̃T
2 Γ−1

2
˙̂W2

= s1


F1

(
η
−
(t)
)
+ G1

(
η
−
(t)
)

ζ1(t) + G1

(
η
−
(t)
)

Ω1

(
η
−

)
+ v1e

q/p
1 (t)+

v1q
p

t∫
0

(e1(ρ))
q− p/pdρ− η̇1d + G1

(
η
−
(t)
)

uc
1 + WT

1 σ

(
η
−
(t)
)



+s2


F2

(
η
−
(t)
)
+ G2

(
η
−
(t)
)

ζ2(t) + G2

(
η
−
(t)
)

Ω2

(
η
−

)
+ v2e

q/p
2 (t)+

v2q
p

t∫
0

(e2(ρ))
q− p/pdρ− η̇2d + G2

(
η
−
(t)
)

uc
2 + WT

2 σ

(
η
−
(t)
)

+

ζ1

(
U1 − Ω̇1

(
η
−

))
+ ζ2

(
U2 − Ω̇1

(
η
−

))
− W̃T

1 Γ−1
1

˙̂W1 − W̃T
2 Γ−1

2
˙̂W2

(39)
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By rearranging Equation (39) and using the result of Theorem 1:

V̇3
(
si, ζi, W̃1, W̃2

)
6 −ψ3(s1, s1) + s1G1

(
η
−
(t)
)

uc
1 + s1WT

1 σ

(
η
−
(t)
)
+

s2G2

(
η
−
(t)
)

uc
2 + s2WT

2 σ

(
η
−
(t)
)
− W̃T

1 Γ−1
1

˙̂W1 − W̃T
2 Γ−1

2
˙̂W2

(40)

By applying the compensator controllers signals in Equation (34), the system dynamics
in Equation (41) can be expressed as:

V̇3
(
si, ζi, W̃1, W̃2

)
6 −ψ3(s1, s1) + s1W̃T

1 σ

(
η
−
(t)
)
+ s2W̃T

2 σ

(
η
−
(t)
)
−

W̃T
1 Γ−1

1
˙̂W1 − W̃T

2 Γ−1
2

˙̂W2

(41)

By rearranging Equation (41), one can write:

V̇3
(
si, ζi, W̃1, W̃2

)
6 −ψ3(s1, s1) + W̃T

1

[
σ

(
η
−
(t)
)

s1 − Γ−1
1

˙̂W1

]
+ W̃T

2

[
σ

(
η
−
(t)
)

s2 − Γ−1
2

˙̂W2

]
(42)

Finally, by applying the adaptation laws derived in Equation (33), the time derivative
of the function can be reduced as:

V̇3
(
si, ζi, W̃1, W̃2

)
6 −ψ3(s1, s1) (43)

And since ψ(s1, S2) is a positive definite function, the stability proof is complete.

4. Discussion

A high-fidelity CarSim–Matlab simulation was conducted to validate the effectiveness
of the proposed IBTSMC strategy. A schematic diagram of the simulation is shown in
Figure 2. Table 1 provides the simulation parameters used in this study. In this study, the
assumption was that the car is traveling on a dry road, preventing any sideways sliding.
This section evaluates the performance of the designed controller under different operating
conditions. The performance of the proposed controller in this study is compared to a
benchmarking robust backstepping super-twisting sliding mode control (BSSTSMC) [27].
Reference trajectories η1d and η2d are expressed as follows [22]:

η1d = d
dt tan−1

{
0.5
(

1
cosh( p̄)

)2
−0.31

(
1

cosh(q̄)

)2
}

η2d = d
dt{2.01(1 + tanh( p̄))− 2.85(1 + tanh(q̄))}

p̄ = −1.2 + 2.3(vxt− 27.2)/25
q̄ = −1.2 + 2.3(vxt− 56.45)/21.94

(44)

where vx denotes the longitudinal velocity of the vehicle, and the resultant trajectory is a
double-lane change maneuver, which is a critical maneuver used for the analysis of vehicle
stability, lane-keeping performance, and transient performance.

The path-tracking performance of the autonomous car during cosimulations at a
nominal speed of 20 m/s is demonstrated in Figure 3. The evaluation is based on the
lateral path deviation as the car follows the desired trajectories corresponding to the DLC
maneuver. The lateral displacement with respect to the longitudinal displacement in
the global coordinate system obtained by applying the designed controller is depicted in
Figure 3. The autonomous vehicle based on the proposed controller demonstrated the
capability to swiftly attain the intended trajectories and consistently track the variations of
the reference trajectories in terms of lateral displacement compared to the benchmarking
BSSTSMC method.
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Figure 2. General schematic of the CarSim–Matlab cosimulation framework.

Table 1. Parameters used in the cosimulations [5].

Parameter (unit) Definition Value

Izz (kg m2) Moment of inertia 2350
m (kg) Total mass 1485
db (m) Front wheelbase 1.65

ĉ f (N/rad) Front cornering stiffness 67,500
ĉr (N/rad) Rear cornering stiffness 74,500

da (m) Rear wheelbase 1.05

Due to the higher traveling speed, the double-lane change maneuvers are executed in a
shorter time, resulting in more critical transient responses. The performance of the proposed
controller at different traveling speeds is evaluated using the root mean square error (RMSE)
and maximum tracking error, as shown in Table 2. The obtained results indicate that despite
the requirement for faster lane-change actions, variations in longitudinal velocity have no
impact on the tracking performance indicators.

Table 2. Performance of the proposed controller at various traveling speeds.

Traveling Speed

20 m/s 30 m/s 40 m/s Unit

y 0.0367 0.0784 0.0985 m
max(ey) 0.0533 0.1125 0.1881 m
ψ 9.3344× 10−4 6.7825× 10−3 7.2548× 10−3 rad
max(eψ) 0.0025 0.0038 0.0069 rad
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Figure 3. Comparisons of the global lateral position responses of the vehicle with the proposed
controller and the benchmarking BSSTSMC approach.

Figure 4 shows the time histories of the yaw-rate tracking performance of the pro-
posed control method compared to the benchmarking BSSTSMC method. It is apparent
that, compared to the proposed control scheme, the benchmarking method has difficulty
producing the required yaw-rate for the vehicle, and thus the vehicle understeers during
the two change of lane actions. Such an understeering performance can pose risk at higher
speeds and may cause infringing the lane-keeping task.
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Figure 4. Comparisons of the desired yaw rate tracking performance of the proposed controller and
the benchmarking BSSTSMC approach.

Subsequently, apart from the speed variations imposed on the controlled AGV results
demonstrated in Table 2, a challenging control situation was created for the road vehicle by
lowering friction limit to 0.7 for the tire and road. Additionally, the tire cornering stiffness
was modified to c f = ĉ f + 4000 sin(6t) and cr = ĉr + 4000 sin(6t) to add further complexity,
together with the force disturbance as a pulsed signal imposed on the vehicle’s center
of gravity. The performance of the proposed disturbance approximator is evaluated in
predicting the disturbances experienced by the vehicle. As such, the total disturbances,
together with the approximation performance, is shown in Figure 5, indicating satisfactory
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performance. Figure 6 shows the employed control signals, together with the auxiliary
compensating signals used to withstand the effect of unknown disturbances. Figure 6
displays bounded and smooth control signals without any chattering for both the steering
and yaw moment control.
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Figure 5. Time histories for the disturbance observer.
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Figure 6. Time histories for control inputs (steering input and DYC) and the compensating control signals.

Finally, to comprehensively assess the efficacy of the proposed control method, a
detailed analysis of the AGV’s path-tracking performance in the time domain is conducted,
and a comparative evaluation is presented against the benchmarking BSSTSMC method.
This evaluation, as depicted in Figure 7, provides critical insights into the control strategies’
abilities to guide the AGV along the desired trajectory.

In Figure 7, the trajectories generated by both the proposed controller and the BSSTSMC
benchmarking method are juxtaposed. This visual representation vividly illustrates the
control methods’ impact on the AGV’s trajectory tracking. Notably, it becomes evident
that the AGV under the influence of the proposed controller, as showcased in Figure 6,
where the control inputs are depicted, exhibits a significantly enhanced capacity to precisely
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adhere to the reference trajectory. The path-tracking trajectory remains remarkably close to
the intended path, with minor deviations that are well-contained within acceptable limits.
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Figure 7. Time histories of the performance of the proposed controller compared to the reference
trajectory and the benchmarking BSSTSMC scheme.

In stark contrast, the benchmarking BSSTSMC method exhibits noticeable discrep-
ancies from the reference trajectory. These deviations, as observed in the corresponding
trajectory in Figure 7, are more pronounced and extend beyond the desired path. This
divergence from the intended trajectory underscores the limitations of the benchmark-
ing method in effectively compensating for the various uncertainties and disturbances
inherent in complex AGV scenarios. The larger deviations in the trajectory point to the
potential challenges in maintaining accurate path-tracking performance under dynamic
and uncertain conditions.

The stark contrast between the proposed controller’s trajectory and the benchmarking
method’s trajectory shown in Figure 7 provides compelling evidence of the superiority
of the IBTSMC-based approach. The meticulous integration of integral backstepping and
terminal sliding mode control within the proposed framework empowers the AGV with
adaptive capabilities, allowing it to effectively mitigate uncertainties and disturbances
while adhering closely to the reference trajectory. This adaptive capacity, which is absent
in the benchmarking method, emerges as a key differentiator that enables the proposed
control strategy to excel in challenging and real-world scenarios.

In summary, the time-domain comparison presented in Figure 7 illuminates the tan-
gible benefits of the proposed IBTSMC controller in ensuring accurate and robust path
tracking for AGVs. The designed control inputs shown in Figure 6 play a pivotal role in
guiding the AGV along the intended trajectory with minimal deviations. This comparison
convincingly demonstrates the effectiveness of the proposed method over the benchmark-
ing BSSTSMC technique, further substantiating the viability of the developed control
framework for enhancing the path-tracking performance of autonomous ground vehicles.

5. Conclusions

In this paper, we presented a novel control framework, IBTSMC, for addressing the
critical path-tracking task in autonomous ground vehicles (AGVs). The proposed control
system, integrating integral backstepping with terminal sliding mode control, effectively
handles both structured and unstructured uncertainties.

• Integral Action for Enhanced Control: The IBTSMC framework employs continuous
adjustments to the control input through integral action, effectively reducing track-
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ing errors and elevating the overall tracking performance of autonomous ground
vehicles (AGVs).

• Hybrid Approach for Robustness: By combining the terminal sliding mode method,
the framework ensures finite time convergence; robustness against uncertainties; and
a smooth, chatter-free response, which is notably less sensitive to initial conditions.

• Disturbance Robustness and Validation: Adaptive control compensators are intro-
duced to counteract external disturbances, guaranteeing the robustness of the system.
The proposed control scheme was extensively evaluated via high-fidelity cosimula-
tions utilizing CarSim and MATLAB. Comparative analysis with existing methods
confirms the superiority of the proposed controller in path-tracking tasks, showcasing
remarkable efficiency across diverse road conditions, uncertainties, and disturbances.
The attained global asymptotic stability, supported by the Lyapunov stability theorem,
and the finite-time convergence of tracking errors to the origin collectively underscore
the dependability and effectiveness of the IBTSMC-based control framework.

Overall, this research contributes to the advancement of autonomous vehicle control
by offering a robust and efficient solution for ensuring safety and optimal navigation
performance in AGVs. The proposed IBTSMC controller holds potential for real-world
applications, providing a foundation for further exploration and implementation in the
field of autonomous vehicle technology. However, it is important to note that the presented
method may still face challenges in handling extremely complex and unpredictable envi-
ronments, as well as and faulty sensors and actuators, suggesting potential avenues for
future research, particularly merging with fault-tolerant control.
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