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Abstract: Using Unmanned Aerial Vehicles (UAVs), commonly referred to as “drones”, as a supple-
mentary mode for last-mile deliveries has been a research focus for some years now. Motivation lies
in the reduced dependency on Conventional Vehicles (CVs) and fossil fuels and in serving remote
areas and underprivileged populations. We are building a flexible, modular framework for integrated
CV-UAV parcel delivery operations planning that is responsive to infrastructure and demand and
offers an open and practical tool for future adaptations. The entire model and solution methodology
are practical tools for decision making and strategic planning, with novelties such as the variable
Launch Site types for Launch and Recovery Operations (LAROs), the tailored Assignment and
Routing Optimization nested GA, the consideration of airspace restrictions of any shape and size,
the inclusion of GIS tools in the process, the modularity of the platform, and most importantly,
the inclusion of all the above in a single, comprehensive, and holistic approach. Because of the
need for safe UAV deployment sites and the high presence of restricted airspace zones in urban
environments, the intended field of application is assumed to be the delivery of small packages in
rural and under-connected areas, the execution of inter-city deliveries, and the expansion of a city’s
original service range. A single CV is equipped onboard with UAVs, while special locations, such
as Remote Depots (RDs) with UAVs and Virtual Hubs (VHs) for UAV deployment facilitation, are
introduced. The framework considers the presence of Restricted Zones (RZs) for UAV flights. Part of
the methodology is implemented in a GIS environment, taking advantage of modern tools for spatial
analysis and optimal path planning. We have designed a tailored nested GA method for solving
the occurring mode assignment and vehicle routing optimization problems and have implemented
our workflow on a devised case study with benchmark characteristics. Our model responds well
to unfavorable network types and demand locations, while the presence of RZs notably affects the
expected solution and should be considered in the decision-making process.

Keywords: UAV; optimization; vehicle routing; electromobility; multimodal transport

1. Introduction

The transformation of the transport sector is a pivotal part of efforts towards a sustain-
able future, especially in cities. The EU has set ambitious targets for 2020-2030, aiming for a
reduction of 40% of GHGs relative to 1990 levels and a share of 35% of zero- or low-emission
new cars and vans by 2030 [1]. A 100% zero-emission fleet is envisioned in cities by 2050,
and several countries are set to ban internal combustion engines in urban areas by 2032 [2].
In another context, rapid consumer behavioral changes have led to a significant increase
in online shopping and at-home and at-work deliveries. Delivery services rely heavily on
conventional vehicles running on fossil fuels, such as delivery trucks or vans, and this is
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especially true for last-mile deliveries, which could account for up to 20%—-30% of a city’s
CO; emissions [3].

The use of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, and
other automated systems, like ground-level robots, is a novel concept that has already
attracted the interest of tech and logistics companies; their involvement in transportation
services is expected to have significant effects on various sectors, with their impact on the
economy, the environment, employment, and infrastructure being a matter of ongoing
research [4]. UAVs are commonly battery-powered, so if electricity can be generated from
environmentally friendly sources (e.g., renewables), an overall reduction in emissions is
expected [3]. Several UAV applications in transportation are identified in the literature,
such as the automation of intralogistics, first/last-mile parcel delivery, supply of medical
goods, or even transportation of air freight, when UAV specs allow [5]. Flytrex is using
UAVs for deliveries in Iceland, and Eliport is developing small ground-level autonomous
robots for the same purpose [3]. Blood samples are transported by Zipline in Rwanda,
and medical goods are distributed by DHL's “Parcelcopter” in Tanzania [5]. UAV-based
transport, however, still faces challenges, ranging from societal acceptance concerning
safety and privacy to regulatory hurdles and the mix with the rest of airborne traffic. More
than 40% of respondents in various regions worldwide cite safety as their primary issue,
while privacy (13-29%) and noise (9-21%) follow [6].

Despite active cases of tandem CV-UAV operations in parcel delivery, there is still
some way to go in setting up reliable, scalable systems that can easily adapt to infrastructure
and demand and be optimized for performance, assisting the strategic decision-making
process. In the literature, the problem is commonly categorized in the wider Vehicle
Routing Problem (VRP) family. It is essentially a concurrent mode assignment and vehicle
routing problem where ground vehicles (usually trucks) are combined with drones to
serve last-mile goods transport. The problem is more specifically named Vehicle Routing
Problem with Drone (VRP-D), Truck and Drone Routing Problem (TDRP), or Two-Echelon
Vehicle Routing Problem with Drone (2E VRP-D). The special actions concerning drone
deployment are also commonly referred to as Launch and Recovery Operations (LAROs).
Murray and Chu [7] introduced the “Flying Sidekick Traveling Salesman Problem” (FSTSP),
where customers can be served either by a truck or a UAV (working in tandem), the latter
being able to launch from the truck or the depot to customers and return to the same or a
different location. Customer locations are also UAV deployment sites, and flight paths are
straight, albeit restricted by the UAV’s range. Ferrandez et al. [8] used multiple UAVs and
a truck, with the latter moving along a TSP route, and k-means clustering [9] was used to
find optimal stop and launch locations. Moshref-Javadi et al. [10] assumed a single truck
and multiple UAVs, considering routes only involving the depot and customer locations
with identical take-off and landing points. Simulated annealing and tabu search were used
to obtain efficient routing solutions, and there was also an application on a real-world
network. Non-customer locations were included as potential UAV deployment sites by
Salama and Srinivas (2022) [11], but all items lying on the truck’s route must be served by
the truck, leading to a route-first, cluster-second solution approach, and using simulated
annealing and variable neighborhood search for optimization. En-route deployment of
UAVs was proposed by Marinelli et al. [12]; in this case, the truck can deploy UAVs by
stopping at points along arcs and not only at nodes of the road network. Initially formed k-
means clusters and then centers movement to determine the truck’s route via weight shifts
were applied by Chand and Lee [13]. A route-first, cluster-second solution approach was
also adopted by Agatz et al. [14], who employed local search and dynamic programming
heuristics to solve a problem where launch sites only appeared at delivery locations and
take-off and landing points for UAVs did not necessarily coincide.

With regards to more recent developments in research, Gonzélez-Rodriguez et al. [15]
considered the case of rechargeable drones that can meet with the truck for battery changes
only at customer locations. They proposed using an iterated greedy heuristic based on
the iterative process of destruction and reconstruction of solutions, assisted by a global
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optimization scheme through a simulated annealing (SA) algorithm. Jeong et al. [16]
considered a model of different take-off and landing points, considering the effect of
parcel weight on drone energy consumption and restricted flying areas of circular shape.
They built a two-phase constructive and search heuristic algorithm to obtain optimal
solutions. Salama and Srinivas [11] propose “flexible” sites for drone launch and recovery
operations (LAROs), instead of only using customer locations for this purpose. They
formulate a mixed integer linear programming model and solve it through an optimization-
enabled two-phase search algorithm by hybridizing simulated annealing and variable
neighborhood search. Their comparative experiments showed the improvements made by
removing the “customer locations only” constraint for LARO. Zhou et al. [17] developed
an exact algorithm for the solution of the two-echelon truck and drone problem. They
consider multiple vehicles and drones and formulate the problem in a mixed-integer linear
programming model that is also solvable with commercial software. Their own solution
process comes through an exact branch-and-price algorithm, applied after an initial tabu
search application. Momeni et al. [18] assumed different altitudes for package deliveries
and calculated the drones’ energy consumption as affected by wind and weight. Deliveries
are only made by drones, and a two-phase algorithm based on the nearest neighborhood
and local search was used to solve the problem. Li et al. [19] moved from fixed locations to
moving meeting points along the truck arcs (TDRP-SA), without the need for parking areas.
An adaptive large neighborhood heuristic was used for obtaining optimal solutions, taking
advantage of previously developed boundary models to locate moving launch and recovery
locations (LRLs). Leon-Blanco et al. [20] developed an agent-based method to solve the
Truck-Multi-Drone Team Logistics Problem (TmDTL), where the truck route begins at a
certain point and ends at a different one. Li and Wang [21] assumed customer locations as
LARO points and time windows for deliveries and used a branch-and-cut algorithm for
solving the truck-drone routing problem with time windows (TDRP-TW). Boysen et al. [22]
used the trucks as mobile platforms for drone LARO, introducing fixed routes and stops
for the truck and trying to synchronize the drones accordingly.

A comprehensive review on drone-aided routing was elaborated by Macrina et al. [23],
who also highlight future fields of research, such as considering more realistic parameters
for the drones and the environment in which they operate, dynamic conditions, uncertainty,
and safety.

Despite the specificity of such newly introduced problems, a common base reference
for this family is the well-studied Traveling Salesman Problem (TSP) and its variants. A
comprehensive guide on the TSP, real applications, and solution methodologies is presented
by Rardin [24]. TSP itself is a known NP-hard problem [25-29] and [30]. Its solution is
approached by several methods, including dynamic programming by Held and Karp [31]
for sequencing, scheduling, and assembly-line balancing problems. K-means clustering [9],
simulated annealing [32], genetic algorithms [33], and tabu search [34-36] are commonly
employed in the literature. Finding the shortest paths between locations is an integral
process in this family of problems. Known examples are the original Dijkstra algorithm for
source-to-all path calculations [37], the A* algorithm for finding the shortest path between
any pair of nodes [38], and its future variants, such as the Iterative Deepening Algorithm
(or IDA*) [39] and the Lifelong Planning A* (or LPA*) [40].

Current air traffic regulations in the US and the EU prohibit commercial UAV flights
at altitudes below 400 ft (120 m), and certain restricted areas are imposed [41,42]. As such,
the UAVs will not always be allowed to travel in a straight line while at cruising altitude.
Such forbidden areas are commonly distinguished into the following categories: Prohibited
Areas: P (usually military); Restricted Areas: R (monuments, environmental, military flight
areas); Danger Areas: D (usually training flights); Controlled Firing Areas: C (military
exercises) [42-46]. We will refer to all the forbidden areas as Restricted Zones (RZs). UAVs
will have to navigate around the RZs, following an optimal path. Several methods have
been proposed for acquiring the optimal path around obstacles: for instance, Bug 1 and Bug
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2 [47], Tangent Bug [48,49], using a tangent visibility graph and then employing Dijkstra
among possible paths [50], the Artificial Potential Field [51], and others.

Much of the existing research focuses on optimization methodologies and theoretical
system setups for best performance; however, there is little consideration for real-world
constraints and daily transportation challenges and their applicability in a true decision-
making process. We want to design a system where both infrastructure and transport
vehicles play an active role in the delivery process. Also, the variety of options should allow
for adaptation to available infrastructure, equipment, and demand, leading to scalable
operations and informed decision-making strategies. The CV can reach destinations within
the CV network for in-person deliveries but is also equipped with UAVs for aerial ones.
Throughout the network, predefined locations for possible UAV deployment, named
Virtual Hubs (VHs), are introduced; these could be open spaces, parking lots, rest areas, etc.,
implying minimal to moderate infrastructure investments. Some of the Delivery Locations
(DLs) may also serve as pop-up UAV deployment sites if conditions allow. In both cases,
the CV must wait for deployed UAVs to return before leaving for the rest of its route. We
are additionally introducing the concept of Remote Depots (RDs), with in-house available
UAUVs for transshipment. There, the CV can unload items, and the RD personnel assume
payload preparation and UAV deployment, unleashing the CV immediately. This implies
heavier investment in infrastructure, possibly justified at locations where local demand is
often significant, or the CV network is insufficient. The way we structure the problem, the
CV s not required to travel through all network nodes or edges; the assignment and routing
solution will determine the mandatory nodes and then the actual CV route each time. A
deconstructed version of the original CV network is produced, consisting of only mandatory
nodes with action(s) and shell edges resulting from the shortest paths between said nodes.
This approach extends the problem definition and sets a solution methodology for real-
life operations, where the initial physical network is a given and the nodes to visit are
different every time. Also, UAV paths do not follow a straight line but are estimated based
on imposed no-fly zones, infrastructure setup, and demand. Blending the methodology
with GIS allows the integration of common file types in network analysis and airspace
restrictions and the use of modern tools for spatial analysis and optimal path planning.
To obtain an optimal solution, we elaborate a tailored nested genetic algorithm scheme
where each mode assignment iteration (outer GA) is associated with an optimal routing
(inner GA), and then the best assignment option is chosen. The framework requires basic
input, demand, and supply data, and it can address variable network types, conditions,
and infrastructure, unleashing the potential for further adaptations.

Summing up our contribution, several aspects of our method can individually be seen
as novel, but mostly when regarded as a holistic approach that includes all of them:

- We are proposing a mix of variable launch sites for LARO, featuring different charac-
teristics among them. Customer locations can be used for CV-based UAV deployment,
if local conditions allow (space, safety, airspace restrictions, customer approval, etc.).
Virtual Hubs, for example, open spaces, parking lots, etc., can also be used for CV-
based LARO. In both of those cases, the CV must wait for all its UAVs to return. UAVs
can also be deployed from the Central Depot at the start, without any CV involvement,
but also at the end, receiving items from the CV. Remote Depots are another facility
type where the CV can leave items for UAV delivery, and LARO is performed by the
depot personnel. Not all LARO locations are necessarily used.

- Deliveries can be made both by CV and UAV.

- The CV network is available for routing and LARO, but not all nodes and links are
necessarily used. We distinguish the mandatory nodes for actions and routing after the
assignment process, creating the so-called “shell network”. This allows for our model
to be practically implemented with different demands and infrastructure each time.

- The Assignment and Routing Optimization nested GA is developed specifically for
our problem, with its two steps being interconnected and using different methods



Vehicles 2023, 5

1064

for the inner and outer GA (discrete values resulting from the service nodes for the
assignment process and random keys-based ordering of nodes for routing).

- We have considered the presence of Restricted Zones of any shape and size and
adjusted our model to filter out non-reachable locations, either because they are in
such zones or because the resulting UAV paths are longer than the UAV range allows.

- We are adjusting the model, incorporating spatial and optimal path analysis with GIS
as part of the methodology, and opening to modern methods and input norms.

- The formulation is conveniently simplified but unique to its kind since it must address
the specific setup. It creates a modular and open platform that is open to modifica-
tions, and we present all the analytical calculations involved. This also helps with
strategic planning, e.g., deciding where to establish Remote Depots or Virtual Hubs,
by conveniently testing alternative locations.

- The consideration of all the above in a single proposed method, in a comprehensive
and holistic approach.

2. Materials and Methods
2.1. General Problem Description

Several items must be delivered from a Central Depot (CD) to customers at Delivery
Locations (DLs). CVs travel through a fixed network, whereas UAVs are more flexible,
although they are obliged to navigate around potential no-fly zones. The CV is not limited
by its operational range and is expected to be able to complete the entire journey without
refueling or charging. The UAVs are assumed to be electric, with battery capacity and
energy consumption performance defining their maximum range. A battery swap is
executed at the start of operations or during the UAV preparation at each site when the
same UAV is used again. Each item is assigned to a mode for the final stretch or the entirety
of the journey.

In our setup, UAVs can be launched or recovered at allowed locations throughout the
network; these locations are not limited to the DLs or the CD, but additional Virtual Hubs
(VHs) for convenient CV layover and in situ UAV deployment, and Remote Depots (RDs)
with adequate UAVs are also available. When UAVs are deployed from the CD or the RDs,
the CV does not have to wait for the UAVs to return. However, at RDs, a certain service time
for item delivery is implied before the depot’s personnel assume the package mounting
and UAV deployment activities. At any other location where UAVs are mass-deployed
from the CV, the latter must wait for the last UAV to return. Under the given network
and introduced demand and restrictions, the goal is to find the best combination of item
assignment and CV routing in terms of the total time to complete operations. A simplified
illustration of this setup is presented in the following figures (Figures 1-3).

= Item for delivery
Remote Depot
'[:'ﬁ' UAV (equipped with UAVs)
E UAV with payload
. . Central Depot
% Demand for Delivery (location) ﬁ (Start/End point, Items stock, equipped with UAVs)
Y Delivery made
. /
F In-person Delivery (by truck] @ Range of UAV (launch and return)
/
8 Convenfional Vehicle (equipped with UAVs) 5 . .
+ Truck route (with direction)
3 Virtual Hub for UAV deployment (designated areq) e
= < _7 UAV flight (delivery and return)
\ H/\ Potential of UAV deployment at Delivery Location =5
— @ Mandatory Truck Stop with Action(s)
& Allowed UAV deployment Site (based on conditions) (delivery or UAV deployment)

Figure 1. Symbols and notations for general concept.
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Figure 2. Setup Example 1—Infrastructure, demand, and UAV range: (a) infrastructure and demand;
(b) UAV range (indicative, from one of the launch sites).
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Figure 3. Setup Example 1—Possible assignment and routing solutions: (a) solution 1: deliveries
with truck and with UAVs from Remote Depot; (b) solution 2: deliveries only with UAVs from
Remote Depot.

2.2. Assumptions and Constraints

Apart from the general description, certain assumptions and constraints need to be set
to accurately describe the proposed delivery system:

e Asingle CV is available, departing from the Central Depot and attempting to deliver
the items to their destinations.

e The CVis assumed to have adequate capacity for the items, and any UAVs may be
needed onboard.

e  Vertical Take-off and Landing (VTOL) UAVs are selected.
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Each destination can be visited once for delivery or UAV deployment (or both during
the same stop) but can be accessed more than once for routing purposes.

There is no predefined mode assignment for the items, but there is an option to force
one if needed.

There is no predefined order of visits for the destinations, but there is the option to
force one if needed.

The CD is the start and end node for the conventional vehicle tour.

We also assume the following:

Each item is assigned to one vehicle (CV or UAV) for the final step of delivery.

The CV can be assigned to multiple destinations.

Each UAV has the capacity for one item.

Each UAV can travel to and return from one destination per tour (the same UAV can
be later re-deployed, but we have assumed enough UAVs for all operations anyway).
UAVs can be deployed as a fleet from a single station.

The launch of all UAVs from a launch site is simultaneous, but each one returns at a
different time depending on the length of its tour.

A UAV is recovered at the same location where it was launched.

Remote Depots can deploy UAVs without the CV having to wait for their return. A
certain amount of transshipment time is still required.

The CD, used at the start of operations, can deploy UAVs without the CV having to
wait, and no transshipment time is required.

Only one transfer between vehicles is allowed per item.

We are proposing a framework that extends from inputs to analysis to solution method-

ology. Figure 4 below summarizes said framework and workflow until the final solution.

Preliminary Analysis

Allowed/Potential Launch Sites [LS] and al
Inputs UAV visitable DLs, [UL] (4-stage analysis) |
CV Notve C= (V5 i Max UAV reach for each LS, DL(=UL). a2
etwork, G'= (V; E) [DLES™**,[LSP™] (Level 1)
CV Network Node Types, [CD].[RD].[VH] i2 Shortest Flight Paths around RZs for pairs of a3
CV and UAV specs i3 >
) Updated fiight times (ft’;. tft';) and UAV ad
Items and Delivery Locations, [DL) i4 connections (x§4¥)
Restricted Zones, (RZ) i5 Final UAV reach for each LS, DL(=UL), as
(DL 1.[LSPY] (Level 2)
Potential Service Nodes peritem, [SN;,] | aé
/ Routing Assignment I
- =3 Assignment of items to service nodes |
V M 12
Order of visit of Mandatory Nodes, (S and final delivery mode, (Ix for each item) T
””””””””””” B saSanmilisssls Sl S S e I T
Calculation of waiting times at nodes, (wt;) sl
Performance Calculations [¢ |
Global Operations Time (GOT) s4 Determination of Mandatory Nodes, [Ty] | $2
Individual times ot nodes (¢/? , t{*P, t/*)
Shortest paths for Mandatory Nodes (f-,) s3
op //
Inputs: il -i4 Primary Anglysis: al - a6 Tasks: T1, T2 Solution Anglysis: s1 -s3

Figure 4. General methodology workflow.
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Basic information on the physical network acts as initial input (Conventional Vehicle
Network, CVN), the infrastructure (Central Depot (CD), Remote Depot (RD), Virtual Hub
(VH)), as well as equipment specifications (CV and UAV operational characteristics). Then
certain locations (Delivery Locations (DLs)) represent demand for item deliveries.

Preliminary analysis defines which sites are finally allowed for UAV deployment
(Launch Sites (LSs), among CD, RDs, VHs, and some of the DLs) and which pairs of DLs
and LSs are within the maximum UAV range (straight flight path) of each other (DL;"5™2X,
LS;PLmax) - For the above pairs, actual optimal paths around RZs are estimated, and
UAV-feasible connections are again filtered based on the UAV’s range. Each item is then
associated with potential service nodes (Service Nodes Pool (SNy)). A service node for an
item may be its own DL node (if within the CVN) or any allowed LS that is reachable by
UAV. Analysis “a2” offers an alternative way to perform the assignment later (task T1).
Instead of assigning items based on their Service Nodes Pool, we could inversely use the
DLILS sets of the launch sites. This would be helpful if we were to base our assignment on
clustering strategies.

To obtain the optimal solution, we are setting up a nested two-level optimization
process, seeking the optimal assignment of items to a service node (lx) and optimal CV
routing. Each time an assignment iteration is produced, a set of mandatory nodes (T"yy) for
visit emerges. At each of these nodes, waiting times (wt;) for the CV are calculated based on
the actions required (e.g., in-person delivery, UAV launch and recovery, items delivered to
an RD for UAV deployment by the personnel). The shortest paths (SAZ-]-) between mandatory
nodes are calculated using the given CVN and a new “shell” network is created. The
shell network is constructed by a subset of mandatory nodes and the travel costs between

them. Routing for the CV is then a matter of selecting the best order of visits (S;]}A) across

mandatory nodes. (In our case study experiments, we have opted to use the nested GA
with a custom gene structure for tasks T1, T2, and an A* algorithm for the shortest path
analysis s2.)

The target is to minimize Global Operations Time (GOT), the time needed for all
vehicles (CV and deployed UAVs) to complete their tasks and return to their intended base.

2.3. Mathematical Formulation

We introduce a series of notations and variables, shown in Table 1.

Table 1. Notations and terminology.

Abbreviations

CV: Conventional Vehicle (truck, train, vessel, here: truck)
UAV: Unmanned Aerial Vehicle (aka drone)

VTOL: Vertical Take-Off and Landing (UAV type)

CVN: Physical (fixed) network of CV operation

RZ: Restricted Zone (no-fly)

CD: Central Depot, forming subset T¢,
CD'’: Central Depot Duplicate, forming subset T‘éD.
RD: Remote Depots, forming subset Ty

VH: Virtual Hubs, forming subset T},

DL: Delivery Locations, forming subset T

UL: UAV visitable DLs, forming subset Ti"u

LS: Launch Sites, forming subset T}

SN: Service Nodes for item

CVT: Total time of travel for the CV (since start)

GOT: Global Operations Time, when all vehicles have
completed their tasks and have returned to their intended base
(since start)

Parameters
SCV7: CV mean speed RUAV: UAV range of operation (time)
SUAV: mean UAV speed at cruising altitude HY4V: UAV cruising altitude
SUAV sc: mean UAV speed of ascend tc;: transshipment cost (time to deploy UAV)
SUAV .- mean UAV speed of descend st: service time
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Table 1. Cont.

Variables

”

xl.CD : Binary variable (0,1) indicating node type “Central Depot
fo : Binary variable (0,1) indicating node type “Remote Depot
x/H: Binary variable (0,1) indicating node type “Virtual Hub”
xiDL: Binary variable (0,1) indicating node type

“Delivery Location”

xl.LS: Binary variable (0,1) indicating node type “Launch Site”
LSV: Length of CVN edge

ftij: UAV flight time at cruising altitude

LgAV: Length of UAV edge, at cruising altitude

tta: Time to ascend (take-off to cruising altitude)

ttd: Time to descend (cruising altitude to landing)

tft;;: Total UAV airtime from take-off to landing

xl_L]_lAV

”

: binary variable (0,1) for the existence of direct UAV
connection (in range),j € V,i # j
xdl-CV: binary variable (0,1) indicating final delivery with CV

|L;|: number of items assigned to launch site

dth;j: time for UAV deployment-to-home

wt;: waiting time of CV on node

xl.CRD : binary variable (0,1) indicating whether a node is either
type of depots

ctf}A : cost (time) for shortest path between two mandatory nodes
xa;: binary variable for access of node by CV

uf;: binary variable for edge traveled by UAV

uv;;: binary variable for edge traveled by CV

pa;j: cumulative passes over edge by CV

t;zp P time of CV approach to node

tjlep : time of CV departure from node

t?‘?t: time of return of last UAV, when the launch site is a depot
(since start)
dty: time of delivery of item (since start)

The fixed network that is traversable by the CV (Conventional Vehicle Network, CVN)
is first introduced. Let it be an undirected graph, i.e., G’ = (V/, E’), where each vertex

(“node”) belongs to the set:
V'=10,1,2,...,1] (1)

Edges of the E’ [G] space result from the connection between two nodes i and j, as
e(i,j), belonging to the respective set:

E ={ij):ije V', i#j) ()
A binary variable, x%
the CV.

V shows whether a connection exists between two nodes for

ijev €)

£V _ 0, no direct connection with CV
i 71 1, direct connection available with CV

A cost, ctij, is awarded to each edge; we will be using time since it is of primary concern
in logistics operations and is also a common parameter between edges (travel times) and
nodes (service and waiting times). The vehicle can travel an edge in both directions (an
undirected graph).

ctij =L§"/s<, ij€ 14 4)
qCV .

y
15CVI.

: length of road link between points i and j
CV mean speed

Information on the types of CVN nodes follows. Several types are identified and
can be passed on to the nodes: a Central Depot (CD), which is the starting point for the
operations; Remote Depots (RDs), which can provide additional UAVs for delivery; and
Virtual Hubs (VHs), which are designated safe areas for UAV deployment (e.g., parking
lots, open spaces, organized launch/land bases). All others are considered generic nodes.
Also, there is demand for deliveries at certain locations (Delivery Locations, DLs).

A list, “K”, of “m” items (each element: “k”) is given, along with their geographic posi-
tion:

K=1[1,2,...,m] (set of items) 5)

A DL may not be reachable by CV at all, i.e., it may not belong to the CVN. A vertex
set, “V”, is created, combining CVN and DL nodes (V = V' U [DL]). The DL of each item
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is matched with a vertex of the “V” space and is then represented by it. The set of the
respective nodes is defined as

Ck:[dl,dz,...,dm]:[DL] k€K, CkQV (6)

For computational convenience, we introduce an expansion of the initial CVN graph
including any DLs outside the CVN: G = (V, E), with E = {(i,j): i, j € V, i # j}. Nodes outside
the initial set V/ (resulting from DLs) would have no edge connection with any other node
inV.

UAVs may launch and land at certain locations based on prevailing restrictions. Such
locations are called Launch Sites (LSs), and they are potential points for launching and
collecting UAVs. We also introduce a definition for DLs that are visitable by UAV, “UL”.

Based on the above, available special node types in the vertex set (V) may be:

e  Central Depots (CDs), forming a subset of vertices, T¢,, where xlCD = 1. This subset
here only contains one vertex, always named “0”.

e Remote Depots (RDs), forming a subset of vertices, T3, xRP = 1. An RD may be a
designated location with available UAVs to deploy. As such, a Conventional Vehicle
will not have to carry UAVs onboard or wait for any deployed UAVs to return.

e  Virtual Hubs (VHs), forming a subset of vertices, T}, leH = 1. A Virtual Hub is an
initially designated location throughout the conventional network where conventional
vehicles are allowed to deploy UAVs (e.g., parking lots, special bases for take-off
and landing).

e  Delivery Locations (DLs), forming a subset of vertices Tp; (T}, = Ck), xiD L=1 A
Customer Location is a point of demand for a specific item delivery, item collection,
or service. UAV-visitable locations (UL) form an additional subset among DLs, T}};,
xHL = 1.

) Llaunch Sites (LSs), forming a subset of vertices T}, xl.LS = 1. A Launch Site is
ultimately a location where a UAV can be launched or collected, depending on cir-
cumstances (UAV range and DL location, flight restrictions, weather, other temporary
technical issues). CD, RDs, VHs, and DLs may be Launch Sites or not. A Launch Site
is an “allowed” site for launch or collection.

Launching and collecting a UAV is possible in other locations than just the CD and
DLs. Additionally, not all DLs are potential LSs. This is different from the assumption
commonly made in the literature about cooperative truck—drone systems, where drones
can only fly from or to customer locations or the CD. A schematic representation of node
sets is shown in Figure 5.

p Nodes g
)// \\\
y, . o\
/ == // Delivery. - \‘\j\
/ /’/ 77(*1\'\\/ ‘ .f-}.\-fi\';-.--.!-QC.OﬂQUS ::"\:'
{ £ FEN Launch |- & \ oL
i 2 ' N b (- e aah
1/ Virtual \ Sites .} o 2 00 A\
Foohubs v st < s) (i |
i &0 ] | N \\ /
| \ f ] \\.:, ,// ‘
\o : _ 37 4 y \‘ftd =
% PP A
\ \\\ y/ / \
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‘-\ Depot /‘I
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Figure 5. Venn diagram; schematic representation of node sets.
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For computational reasons, a duplicate node of the CD (CD’), forming a set Tg D/ 18
created, along with its associated edges, only this time it is characterized as an RD. This
serves to cater to a generalized case of using the CD for UAV deployment at the end of the
CV route rather than at the start of operations.

For UAV operations, we define an undirected graph, F = (V, A). Edges of the A[F]
space result from the connection between two nodes i and j, as a(i,j), belonging to the set:

A={(ij):i,jEV,i#]) 7)

We assume typical UAV VTOL behavior, which implies an initial vertical ascent to the
cruising altitude and finally a vertical descent to the landing position. Figure 6 illustrates
the flight pattern suggested.

cruising altitude cruising altitude

(start) (end)

‘ ft (cruising) ‘
ﬁ tta (ascent) ttd (descent) &

| |

Figure 6. Simplified illustration of VTOL-type flight and associated variables.

The UAV can operate within a certain range, defined by its specs and battery, which is
usually expressed in time. The following parameters regarding the UAV are defined: mean
cruise speed (SUAY), mean speed of ascend (SUAY ), mean speed of descend (SUAV ),
range of operation (time) (RUAY), and cruising altitude (H UAVy,

Flight time “ft;;” is the time needed for a UAV to fly from location “i” to location “j” at
cruising altitude. This is essentially the weight (in time) of an edge if traveled by UAV. We
assume a symmetric problem for the UAV operations, i.e., ft;; = ft;;.

"y
1

[ty = L /s"v, Qi jeV 8)
’LUAVZ-]-’: distance between points i and j
‘SUAV’: UAV mean flight speed

“Time to ascend” (tta) and “time to descend” (ttd) values are considered. Considering
only direct flights between nodes (no stops at other nodes), the total flight time “#ft;;”
between two points is calculated as

tta; = HYAY /SUAV ttd; = HYAY /v )

2.4. Preliminary Analysis
2.4.1. UAV Range and Connections

One of the most important processes within the proposed workflow is the identi-
fication of the allowed LSs and UAV-visitable DLs. This is executed in stages as new
information emerges.

Stage 0: Initial Infrastructure (CD, RDs, VHs);

Stage 1: Physical constraints on emerging DLs (e.g., area characteristics, obstacles, safe
room for take-off and landing);

Stage 2: Operational constraints (e.g., maintenance, time of day, customer choices)
Stage 3: RZ constraints (an LS or DL falls within an RZ).
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un
1

Stage 3 analysis assumes that any location
UL; thus, xiLS = xZUL =0.

To reduce the computational burden, pre-processing for feasible UAV connections
may be performed only for nodes of interest, that is, the Launch Sites (T7) and eligible

Delivery Locations (T}, ). As with the CV, we define a binary variable, xiLjIAV, representing

falling within an RZ cannot be an LS or

a direct connection between two nodes, for the case of the UAV.

The existence of a direct UAV connection between two nodes is determined by the
range, “RY4V”, of the UAV and/or extraordinary conditions (e.g., takeoff and landing
restrictions, air traffic rules, weather).

UAV
UAV_{ 0, tfty+tft; >R

Yij 1, 0 < tft; +tft, < RUAV

LiEV,i#tj (11)

Based on the above analysis, for each Launch Site and Delivery Location, a set of
reachable nodes is formed. The analysis is performed at two levels. First, the maximum
reachable DLs and LSs are identified, assuming no air space restrictions and straight-line
paths between node pairs.

DLIS™% — [A C V|xUAV =1, i € UL,1 € LS]

12
(Delivery Locations, visitable by UAV, within range of the Launch Site) (12)

LSZDL,max — [B - V|x}{AV =1, ie UL, € LS] (13)
Launch Sites within range of the Delivery Location that are visitable by UAV
g y y

2.4.2. Obstacle Routing and Flight Time Updates

The actual flight paths around RZs are calculated only for the pairs resulting from the
first level of filtering for DLs and LSs (DL/*"™*, LSP%%), since there is no possibility for
other pairs to have feasible UAV connections. Acquiring optimal paths around obstacles
is an intensive process. By first applying the Level 1 filter, which is simple and quick,
the overall computational effort is significantly reduced. Figure 7 explains the proposed
two-level process for finalizing the UAV edge weights and the reachable LSs for each DL.

Level 1

Max UAV reach for each LS, DL(=UL),
[DLLS,max] [LSDL,max]
1 4 i

Optimal Flight Paths around RZs for

Obstacle Routing

pairs of [DIXS™M],[LsPL™Max]
I
UAYV feasible |
connections N
Updated flight times (ft';, tft';;)
and UAV connections (x{")
Level 2

Final UAV reach for each LS, DL(=UL),
[DLFLILSP]

Figure 7. Two-level identification process of UAV feasible connections between LSs and DLs.

We employ a suitable algorithm for obtaining optimal paths around the RZs. Source
and target nodes are feasible LS and DL pairs that have resulted from the first-level
Level analysis.
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New values for flight time and total flight time (f#/ ij and tft’ i respectively) emerge
based on the length of the new flight paths. The edges a(i,j) of graph F = (V, A) are updated,
responding to tf+ ij- The values xl.L]-[AV are also updated based on the new flight times
between nodes:

ijeV,i#] (14)

UAV
av _ [0 Lttt > R
if 1 0 <tft';+tft'; <RUAV

The final lists of reachable LSs and DLs are calculated:

DL = [AC V|x{J4V =1, ic ULl € LS|

(Delivery locations, visitable by UAV, within range of launch site) (15

LSPL = [BC V|xUAV =1, i e UL,1 € LS] (16)

(Launch sites within range of the delivery location that are visitable by UAV)
Since all UAV-related calculations will be based on the actual flight paths around

obstacles, we can substitute respective values as follows: f tj = ft i tf tij =t ft jj- Bach

time a package is delivered to a location, a certain service time on the spot is considered.
We assume a similar service time for both delivery via conventional vehicle and UAV, “st”.

A delivery request can be served by CV (at the node of said request) or by UAV
(launching from another node among eligible launch sites). A pool of eligible service
nodes can be defined for each item, containing the launch sites within range of the delivery
location and the node of the delivery location itself. If the DL is not part of the original
CVN, its own node cannot be part of this pool, SNi.

SNy = LSPtUdy, ke K dp eV’ (17)

A DL may be non-serviceable. This happens when it is located outside the CVN, i.e,,
no CV can reach this destination, and at the same time, no allowed LS is located within the
UAV range. In our algorithm, this state is plainly described by an empty SNi pool. In this
case, the DL is removed from demand.

2.4.3. Mode Assignment and Vehicle Routing

Having determined the potential LSs for all delivery locations, the assignment of each
item to a UAV or CV follows. If the item is assigned to a node (let it be “I;”") other than its
own (dy), the request is executed via UAV. If an item is assigned to its own node (I}, = d),
the delivery is made by the CV.

We use the binary variable “xd{"” to define whether a delivery is made by a conven-
tional vehicle at a node or not.

These nodes form a subset of “delivery with CV”:

TS, cy = [DLCV C V|xd; = 1,i € DL] (18)

We also introduce another binary variable, “xl;”, to define whether a node is ultimately
used for UAV launch or not. These nodes must belong to the CVN.
Nodes form a subset of “assigned launch sites”:
T g =[aLS C V|xl; =1,i € LS] (19)
Nodes finally assigned as service nodes for either action (UAV launch or CV delivery)
are Mandatory Nodes with Action(s) (item delivery or UAV launch), named “TMa”. The
CV must visit them at some point along the route and perform an action other than just
passing by.
Tva= Tprev Y Tars (20)
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In our method, this distinction between generic and mandatory nodes is crucial. This
is because the full network is given, but not all nodes must be visited, and the problem
changes depending on infrastructure, conditions, equipment constraints, and demand.
The full set of mandatory nodes results from the union of the two sets: T, -, (delivery
locations served by conventional vehicle) and T} ¢ (assigned launch sites), and the CD
(which must be the first and last node to be visited, hence the inclusion of its duplicate):

TS = TepUTS, UTS 21)

There is a possibility of the CD or its duplicate being nodes with action (belonging to
the Ty,,). We define a “clean” set, T}, excluding the CD and CD’, as

Tie = Ty — (Tep + T¢py) (22)

We keep track of the items assigned to the same launch site for UAV delivery. As such,
each node belonging to the T, o will feature a list of the assigned items. A respective list is
formed for each of the assigned launch sites:

L CKll=11€TyskeK (23)

The number of assigned items per launch site is the length of the list: |L;|.

The use of a node as an LS implies a certain time cost (transshipment cost). This is
because of the necessary preparations for UAV deployment. We include this transshipment
cost in a variable called “fc;”. UAVs are assumed to launch simultaneously, but they
naturally return at a different time.

When a UAV is deployed, a certain amount of time is required for it to return to its

base. This travel time, from deployment at node “i”, delivery at node “j”, and back to home
“1”,“dth;;”, is calculated as

ij s

175
1

dthi]' = tfti]- + St]' + tft]-l- (24)

1217
1

At every node, a certain waiting time, “wt;”, for the CV is considered. Each node
inherits the “burden” of assigned delivery locations. If item delivery is its only duty at
the node, this time is essentially the service time. If the spot is used for UAV deployment,
the waiting time is also a result of the transshipment time for each item and the time from
deployment to the home of the last UAV to return. If the aLS is an RD, the node is only
weighted by the delivery of an item via CV (if any) and the time to unload the rest of the
items for UAV transport. The typical service time, st;, is used for unloading, as if it were a
case of normal deliveries. However, we assume that service times here are affected by the
number of unloaded items, as they would be for multiple deliveries on the spot. At depots,
the transshipment cost does not affect the CV.

wt; = xdl(-:V - St; + (1 — xiCRD) -xl; - [‘Li‘ -tc; + max(dthi]-)] + XIRD -xl; - |Li‘ -st;  (25)

xR0 = 7 42D e V!, je I (26)

For the special case of the CD, since there is no CV delivery and there is no unloading
time for any UAV-assigned item, the CV does not have to wait, and everything is processed
independently. Any UAV deployment from the CD would normally happen at the start of
the operations, but we will also be allowing the CD to host actions as the last node of the
tour. The CD duplicate (used as the last node of the tour) carries the characteristics of an
RD to emulate the expected procedure of item unloading and UAV deployment.

Sub-Paths between Mandatory Nodes

In our case, where most network types should be addressed, typical TSP constraints
restricting multiple node/edge passes and forcing the use of all nodes do not apply since



Vehicles 2023, 5

1074

not all nodes are mandatory and both butterfly routes and multiple node/edge passes are
allowed (e.g., because of network dead ends or reaching a node for delivery or launch and
immediately returning from the same road). We structure our method in such a way that it
is not hampered by infeasible solutions: All mandatory nodes are always included in the
solution (at least once for completing an action), and path continuity is ensured.

For assessing the performance of each solution, a certain route must be constructed,
passing through the mandatory nodes and any other nodes necessary to form a con-
tinuous path. We will base this two-step method on the principle of optimality, stat-
ing that “in a graph with no negative dicycles, optimal paths must have optimal sub-
paths” [24]. We define a subgraph of the original G graph, Gy = (T3, Em). Mandatory
nodes (resulting from the assignment process) form the node set Ty,. Each edge, ey, is
a “shell” edge, representing the shortest path between two nodes through the original
network. For eachi,j € T}, i,j € V', there is a path of nodes S}j = [i,...,j] and edges
S(;,]-) = [(i,i+1),...,(j —1,j)], and the cost of the shell edge is

ctM Z Z ctyp (27)

=iv=u+1

The shortest path can be calculated via an appropriate algorithm each time (e.g.,
Dijkstra [37], A* [38], IDA* [39], LPA* [40]), depending on the complexity and size of
the network.

Now, a certain sequence of visits must be defined through the mandatory nodes. The
path always features the CD as the first and last node of visitation. As explained before, the
CD’s duplicate visited at the end is considered an RD.

After decomposing the solution route to the nodes forming its shell edges, we have
the order of visit of all nodes. The selected nodes constitute a subset, TXCCV' with each one
characterized by the binary variable xa;.

The nodes are appended in the order of visits within the subset. This subset ultimately
describes the problem’s possible solution each time. A node may be traversed more than
once and may be repeated in the sequential order of visits. However, actions of delivery
and/or launch only happen once.

If an edge is ultimately used by the conventional vehicle or the UAV, there is a binary
variable to keep track of (uv;; and uf;;, respectively).

Since in our accepted spectrum of network types and based on our problem definition,
itis possible that a CV edge is traversed more than once, we keep a record of the cumulative
passes over each edge along the tour under the variable pa;; € Z.

2.4.4. Objective Function and Solution Performance Calculations

For each node, there is a time of approach “t, PP since the start of delivery. Travel times

along the selected edges of the conventional Vehicle network are added, as are waiting
times at preceding nodes.
Additionally, depending on which actions are taken (delivery at the node, deployment

.4 dep,,

of UAVs), there is a time of departure, , at each node visited by the CV. In this case,

the nodes of visitation are ordered.

j-1
app Z Z ct + ) wt; (28)
i=0

i=0j=0

HP = (PP wt, or (7 = t”’e” 4 ct

] ] ]1]'lj€TIZ\)/I (29)
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In case of a depot, the UAVs will be returning to their base independently from CV
operations. We still need to know when the last one returns to the depot. The time of return
should be

=1

+|Lk

-tc_+max(dth;;), | € Tép UTgp U T, j € Ly (30)
1

Two values regarding the entire operation are of importance: the amount of time spent
out for the CV and the entire time spent until any operation (CV or UAV) has finished. CV
total time (CVT) is

n n n
CVT = a;; - ct wt; 31
ongp” j T (31)

This value should be identical to the time of approach, t?pp , at the last node.

If we were to optimize based on the CVT only, the routing of each assignment iteration
would essentially be a form of TSP problem among mandatory nodes with weights. It
is possible, however, that UAVs are still operating even after the CV has completed its
own route. All operations are finished when the CV has returned to the depot and the

last remaining UAV has been retrieved at the intended location. This is defined as Global
Operations Time (GOT):

GOT = max(max(t]"'),CVT),l € [CD]U[RD)] (32)

We use the GOT as the objective function, and the goal is to find a solution that
minimizes its value.

Minimize max (max ('), CVT), or alternatively :
. ety OO 1 (33)
Minimize : max max(tl ), Y ¥ paj; - ctij + Y wt;
i=0j=0 i=0

The description of the solution output includes the following minimum information:

The assignment of items to their respective service node (I for each k);
The order of visit of mandatory nodes (ordered set of Tj).

2.5. Proposed Solution Optimization Methodology
2.5.1. Assignment and Routing Optimization Nested Genetic Algorithm

We propose a nested Genetic Algorithm (GA) scheme where a routing optimization
algorithm (inner GA) is executed for each assignment suggestion and the resulting GOT
value is used to select the best assignment (shell GA). It is essentially a cluster-first, routing-
second approach, where each clustering iteration is tied to its own optimal routing. GA-
based methods are commonly used in this family of problems [52], mainly because of
their NP-hardness and complexity [53]. In our case, preliminary processing produces
discrete alternatives (Service Nodes Pool) for the assignment of items and a subset of nodes
that need to be ordered. Both are conveniently translated to genes and chromosomes.
Additionally, one process essentially depends on the other (routing is applied to mandatory
nodes that result from assignment); thus, a nested scheme makes sense.

Outer GA (Mode and Service Node Assignment of Items)

For the outer GA, the chromosome consists of genes, whose total number equals the
number of items, m = |K|, (delivery locations). Each gene can take the discrete values of
the available service nodes (SN) for the respective DL. Random mutation and single-point
crossover are employed to produce new offspring and a ranking parent selection is used to
qualify the best parents for mating. An example of the above gene structure for the outer
GA (mode assignment) is shown in Figure 8.
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[7,0,1, [10, 8, [7,0,1, [10,8,
Gene Pool [SN,] - [5,2] [6,2] 8, 10] [9, 8] 12] [5,2] [6,2] 8, 10] [9, 8] 12]
DL Node (d,) 5 6 7 9 10 5 6 7 9 10
, , —— , , , — |
Chromosome | Assigned Service ] |
i Node (1,) 5 2 7 : 9 8 2 6 0 : 9 8
I I
I I
Chromosome | Assigned Service ] |
) Node (1) 2 6 0 ! 8 12 5 2 7 ! 8 12
I I
Figure 8. Example of assignment GA chromosomes and offspring through single-point crossover.
Random mutations are introduced to genes to keep diversity in the population and
escape local optima.
Inner GA (Conventional Vehicle Routing)
For the inner GA, we need to find the optimal order of visits to the mandatory nodes.
Since the CD and its duplicate will always be the first and last nodes, respectively, the
chromosome features genes, one for each of the mandatory nodes, without the start and end
nodes, T};.. We employ a random-keys GA [24], where each node is ordered in ascending
order based on its respective gene value. The gene values are randomly produced within a
set range (e.g., 0-100). Single-point crossover and ranking parent selection are used. The
final path begins and ends with the CD (its duplicate at the end), and in between there
are the ordered nodes resulting from the previous process. The GOT value resulting from
routing is passed to the respective outer GA iteration and used for its own optimization
process. An example of the above gene structure for the inner GA (CV routing) is shown in
Figure 9.
lgen“gz [0 - 100] [0 - 100] [0 - 100] [0 - 100] [0 - 100] [0 - 100] [0 - 100] [0 - 100] [0 - 100] [0 - 100]
. 5 2 7 8 12 5 2 7 8 12 .
T mc ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Ordered T'yc
‘ — ‘ ‘ —
| |
Chm“i"s"me Keys | 532 8563 5126 | 7421 462 9563 2756 163 | 900 800 |7-10-9-2-5
| |
I I
| |
| |
Ch“’“;"some Keys | 9563 2756 163 | 896  98.99 532 8563 5126 | 800 1200 [5-9-10-7-2
| |
I I

Figure 9. Example of routing GA chromosomes and offspring.

Again, random mutations are introduced to genes to keep diversity in the population
and escape local optima.

3. Application and Results
3.1. Base Network
3.1.1. Input Data

We devise a test CV network with all types of facilities (CD, RD, VH) and demand
data, carrying benchmark characteristics, to perform a solid stress test on our algorithm.
The said network should offer certain features:

e The geographical size of the network should resemble that of a large city or the
distances between neighboring cities.

e  There must be dead-end edges, i.e., edges that are connected to a single node at one
end (to resemble last-mile cases with limited connections).

e A node is not necessarily connected to all its closest ones (to emulate missing links).
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e  Atsome point, there must be a series of consecutive edges with a single node connec-
tion in between (to resemble possible stops along a single corridor).
As far as node types and delivery locations,
There must be a CD and at least one RD (apart from the CD duplicate) away from it.
There must be a few Virtual Hubs, distributed evenly throughout the network (not all

Virtual Hubs will necessarily serve as allowed Launch Sites).
e  There must be at least one Delivery Location outside the given CV network where

only a UAV can be of service.
The following figures (Figures 10 and 11) describe the case study network and its

node types.
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Figure 10. (a) Original input CV network, with node numbers and road links, (b) graph representation,

with nodes and edges.
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Figure 11. CV network and node types.

Certain specs for the CV and the UAV are selected. The specifications for the UAV
resemble today’s advanced commercial UAVs and are naturally expected to improve in the
future (see indicative enterprise-grade UAV specs at [54-56]).
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SV =40 km/h, HHV =120 m, SUAV = 14.45 m/s
SUAV . =425m/s (tta = 28.2 s, for HYAV = 120 m)
SUAV . =3.4m/s (td = 35.3 s, for HHAV =120 m)
RYAY = 60 min (2400 s)
Service and transshipment times are assumed: st = 60 s (1 min), fc = 300 s (5 min).
Input data regarding the base network are presented in Appendix A, Tables A1 and A2.

3.1.2. Application and Solution

A 60 min UAV range and a 40 km/h CV speed are selected, and RDs are placed at
critical locations, based on the experience gained by previous experimentation.

The network is transformed into GIS format, and Restricted Zones (RZs) of various
types and shapes are introduced. RZ sizes and shapes resemble common cases met in
airspace no-fly zones (e.g., ATZs usually cover a range of 3000-8000 m around the airport).
Such zones are commonly archived and updated in GIS databases; thus, we believe it makes
sense to include such an approach in our framework. The RZs are shown in Figure 12 (as
they would normally exist in relevant flight information maps), and Figure 13 depicts the
final solid “obstacles” resulting from analysis in GIS.
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Figure 12. Illustration of introduced Restricted Zones.

DLs and potential LSs that fall within the RZs are removed from UAV operations. For
each DL and its maximum potential LSs, optimal UAV paths around the RZs are calculated.
The calculations are carried out through a flow direction algorithm [57], using D8 [58],
Multiple Flow Direction (MFD) [59], or D-Infinity (DINF) [60] methods and accumulated
cost surface and slope line [61]. An example of such analysis for our case study is shown
in Figure 14, while Figure 15 includes all optimal paths created for initially reachable
node pairs.
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Figure 13. Dissolving Restricted Zones into integrated no-fly areas. Orange shapes indicate final RZs.

(a) (b)

Figure 14. Example of optimal paths between a DL and LSs: (a) LSs in maximum UAYV range of DL
(UAV range from Node 10, indicated by red circle); (b) optimal paths for initially feasible LSs (paths
shown as green lines around purple RZs).
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°

Figure 15. All UAV optimal paths between DLs and potential LSs within maximum UAV range.
Lines around purple RZs show respective paths between node pairs.

After establishing the shortest paths around the RZs, a further filter is applied, ex-
cluding paths that now exceed the UAV range, and the Service Nodes Pool is updated for
each DL.

After running the algorithm and the optimization workflow, we have obtained the
following results: GOT =16,340.8 s, CVT = 16,340.8 s.

Figures 16 and 17 below show the gene and solution evolution process through our
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Figure 16. Nested GA mode assignment solutions (outer GA genes).
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Figure 17. Nested GA results evolution: (a) generation vs. new solution rate; (b) generation vs. fitness.

The Service Nodes Pool, the assigned service node, and the final mode for each item
are included in Table 2. Table 3 describes how the CV routing is performed, while Table 4
shows the actions taken at each mandatory node and how time accumulates until the end

of operations.

Table 2. Potential Launch Sites and final Service Nodes Pool for items.

Item (k) Node (dy) Service Nodes Pool (SNy) Assigned Service Node (1) Mode
1 4 4 0 2 3 0 UAV
2 5 5 2 3 2 UAV
3 6 6 2 3 2 UAV
4 7 7 7 Ccv
5 9 9 8 8 UAV
6 10 10 0 8 12 14 0 UAV
7 11 11 10 12 14 12 UAV
8 13 13 13 Ccv
9 14 14 10 12 12 UAV
10 15 15 12 14 12 UAV
11 17 17 0 18 0 UAV
12 20 20 2 3 2 UAV
13 21 8 10 8 UAV

Table 3. Routing information.

[/0/, /2/, /7/, 18,, /12/, /13/]
[/O/, 11/’ /2/’ /7/’ 18’, 112/’ 113/]
[/O/’ /2/’ /13/’ /121’ /8/’ /7/’ /1/]

(07, 2), (2,13, (13, "12)), (12, °8"), ('8, '7'), (7', "1')]
[[10!’ 12r]/ [12r, /O/’ /19r, 112,/ 1131], [/13/, /12r], [/12r, 1101/ /8,],
(8, 71,17, 11|
[(10!, 121)’ (121, /0/)’ (IOII /191)’ (119/, 112/)’ (/12’/ /131)’ (113/, 112/)’
(12,10, (10, '8), (8,7, (7, ‘1]

Mandatory nodes with action

Mandatory nodes

Path of mandatory nodes

Sequence of shell edges, through mandatory nodes

Full path of nodes

Full sequence of edges
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Table 4. Path, actions, and time evolution (s).
ORDER 1 (CD) 2 3 4 6 7 (CD/RD)
MANDATORY NODE 0 2 13 12 7 1
PASS THROUGH 0,9,12 10
Delivery Delivery
ACTION Launch Launch Launch Launch (end)
TAFPP 0.0 2150.9 7787.7 8625.5 2736.0 15,325.8 16,340.8
ct{.‘; 0.0 2150.9 5456.8 777.7 2736.0 1112.3 955.0
Wi 0.0 180.0 60.0 180.0 2672.1 60.0 0.0
TDEP 0.0 2330.9 7847.7 8805.5 14,213.6 15,385.8 16,340.8
TRET 4530.3 5248.7 0.0 13,281.0 0.0 0.0 0.0
GOT (S) 16,340.8

A graphical representation of the solution is shown in Figure 18.

.s
o
.M
.20
18
¥
o o
16 —  CVnetworklink
* Central Depot
A Launchsite
@ Remote Depot
= Used link
@ Delivery Location Used flight path
®  Node Q  Delivery with cv

Figure 18. GIS-based illustration of the best solution under constrained airspace.

We have recalculated the optimal solution, excluding the RZs, to compare the results.
A GOT of 14,756.5 s has been obtained. In the presence of RZs, the GOT (16,340.8 s) was
significantly higher (9.7%) and different assignment and routing options were selected. In
Figure 19, the two solutions are depicted side by side in a similar simplistic manner for
easier direct comparison.

o ® o.

YN e MY \ e

. .
NG . ®
‘o -
(a) (b)
A Assigned Launch Site Q Central Depot —>  Edgeuscdby CV (amow shows dircction)
@ Delivery with CV @ Remote Depot Edge used by UAV (amrow shows direction)
@ Delivery with CV and UAV deployment . Delivery Location
(Taunch Site) i

Figure 19. Simplified illustration of assignment and routing solutions: (a) without RZs; (b) with RZs.
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4. Conclusions

We have developed a modular framework and a solution optimization methodology
for integrated UAV and CV operations. Our entire platform offers flexibility in adaptation
to infrastructure (links, nodes, types of facilities) and equipment (vehicle specs), network
characteristics (missing links, dead-ends, butterfly routes), and the response to restricted
airspace. Because of the need for safe UAV deployment sites and the high presence
of restricted airspace zones in urban environments, the intended field of application is
assumed to be the delivery of small packages in rural and under-connected areas, the
execution of inter-city deliveries, and the expansion of a city’s original service range.

Each step, from inputs to final optimization, is part of a modular workflow that
allows for preference-based solutions (e.g., constraints for certain locations, shortages in
equipment, priority in deliveries, routing). Since not all nodes and edges of the physical
network are necessarily visited, a shell network is created resulting from mandatory
nodes and the shortest path total costs between them, deconstructing and simplifying
the problem. Restricted Zones are considered for UAV flights, altering the traditional
straight-line approach, and using obstacle routing instead. A GIS environment is used
for spatial analysis and optimal path planning. We have developed a tailored nested GA
method for obtaining optimal solutions in terms of mode assignment for each item and
routing of the CV.

Our model was implemented in a case study with benchmark characteristics. Substan-
tial gains in performance (total time of operations) can be achieved with wise infrastructure
choices and improved equipment specifications. Experiments have shown the robustness
of the formulation and general methodology from preliminary analysis to final solution
optimization. The presence of Restricted Zones significantly alters the potential solutions
and is worth considering for a more realistic approach. It is a modular workflow with an
easy “front-end” and a solid mathematical background that can be practically used for
decision-making purposes at a strategic level and is open to future adaptations.

The entire model and solution methodology are practical tools for decision making
and strategic planning, but we offer some specific novelties. For example, our variable
Launch Site types for LARO, the tailored Assignment and Routing Optimization nested
GA, the consideration of airspace restrictions of any shape and size, the inclusion of GIS
tools in the process, the modularity of our platform, and, most importantly, the inclusion of
all the above in a single, comprehensive, and holistic approach could be highlighted. In
terms of the transport system setup, further research could be directed toward including
more CVs instead of one, considering altitude and terrain specifics and the stochastic nature
of travel times both for the CVs and UAVs.
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Appendix A

Table Al. Input CV network nodes’ basic information.

Vi X y Vi X y

0 0.000 0.000 11 —35,652.764 15,493.993
1 0.000 0.000 12 —26,081.454 —6588.331
2 22,200.500 —2246.434 13 —30,736.252 —2595.080
3 21,339.640 11,254.890 14 —37,656.441 —6082.275
4 15,305.796 19,590.346 15 —32,594.951 —15,883.915
5 26,209.829 10,341.626 16 —23,794.972 —18,816.222
6 32,795.242 3940.702 17 —9184.639 —14,708.946
7 —6200.316 7871.878 18 —814.285 —10,979.538
8 —11,565.366 18,473.235 19 —7208.515 —2587.391
9 —10,318.214 30,943.160 20 29,121.346 —8156.159
10 —19,235.476 5729.837

Table A2. Actual length (chij, m) of CV network links.

LI]- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 23,899 inf inf inf inf 10,611 inf inf inf inf inf inf inf inf inf inf 11,133 7752 inf
1 0 0 23,899 inf inf inf inf 10,611 inf inf inf inf inf inf inf inf inf inf 11,133 7752 inf
2 23,899 23,899 0 13,880 inf inf inf inf inf inf inf inf inf inf inf inf inf inf 24,885 inf inf
3 inf inf 13,880 0 10,717 5038 inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf
4 inf inf inf 10,717 0 inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf
5 inf inf inf 5038 inf 0 9870 inf inf inf inf inf inf inf inf inf inf inf inf inf inf
6 inf inf inf inf inf 9870 0 inf inf inf inf inf inf inf inf inf inf inf inf inf 16,017
7 10,611 10,611 inf inf inf inf inf 0 12,358 inf inf inf inf inf inf inf inf inf inf 11,020 inf
8 inf inf inf inf inf inf inf 12,358 0 13,583 15,285 inf inf inf inf inf inf inf inf inf inf
9 inf inf inf inf inf inf inf inf 13,583 0 inf inf inf inf inf inf inf inf inf inf inf
10 inf inf inf inf inf inf inf inf 15,285 inf 0 19,703 15,115 15,413 inf inf inf inf inf 16,914 inf
11 inf inf inf inf inf inf inf inf inf inf 19,703 0 inf inf inf inf inf inf inf inf inf
12 inf inf inf inf inf inf inf inf inf inf 15,115 inf 0 8641 12,129 11,621 13,828 21,266 inf 20,338 inf
13 inf inf inf inf inf inf inf inf inf inf 15,413 inf 8641 0 8088 inf inf inf inf inf inf
14 inf inf inf inf inf inf inf inf inf inf inf inf 12,129 8088 0 12,523 inf inf inf inf inf
15 inf inf inf inf inf inf inf inf inf inf inf inf 11,621 inf 12,523 0 9433 inf inf inf inf
16 inf inf inf inf inf inf inf inf inf inf inf inf 13,828 inf inf 9433 0 inf inf inf inf
17 inf inf inf inf inf inf inf inf inf inf inf inf 21,266 inf inf inf inf 0 9629 12,908 inf
18 11,133 11,133 24,885 inf inf inf inf inf inf inf inf inf inf inf inf inf inf 9629 0 10,852 inf
19 7752 7752 inf inf inf inf inf 11,020 inf inf 16,914 inf 20,338 inf inf inf inf 12,908 10,852 0 inf
20 inf inf inf inf inf inf 16,017 inf inf inf inf inf inf inf inf inf inf inf inf inf 0
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