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Abstract: Vehicular Ad Hoc Networks (VANETs) have gained significant attention due to their po-
tential to enhance road safety, traffic efficiency, and passenger comfort through vehicle-to-vehicle
and vehicle-to-infrastructure communication. However, VANETs face resource management chal-
lenges due to the dynamic and resource constrained nature of vehicular environments. Integrating
cloud-fog-edge computing and Software-Defined Networking (SDN) with VANETs can harness
the computational capabilities and resources available at different tiers to efficiently process and
manage vehicular data. In this work, we used this paradigm and proposed an intelligent approach
based on Fuzzy Logic (FL) to evaluate the processing and storage capability of vehicles for helping
other vehicles in need of additional resources. The effectiveness of the proposed system is evaluated
through extensive simulations and a testbed. Performance analysis between the simulation results
and the testbed offers a comprehensive understanding of the proposed system and its performance
and feasibility.

Keywords: connected vehicles; fuzzy logic; resource management; edge computing; VANETs

1. Introduction

Large cities currently face a significant obstacle in the form of congestion and traffic
jams. The European Commission’s report highlights that road congestion in Europe can
result in up to 1% of the GDP being impacted [1]. Some countries, such as the United King-
dom, experience more pronounced issues, with traffic congestion costing them 24.5 billion
EUR, equivalent to 1.6% of their GDP, one of the highest rates in the region. Metropolitan
areas in Japan with over one million residents also bear the burden of congestion costs,
amounting to approximately 463.8 billion JPY, which represents over 61% of the total cost
of vehicular transport [2]. Likewise, the United States annually incurs a substantial expense
of around 190 billion USD due to traffic congestion [3]. This issue not only carries financial
implications, but also leads to wasted time, environmental pollution, noise, and, most
importantly, traffic accidents.

The statistics surrounding traffic accidents are even more alarming, with approxi-
mately 1.3 million people worldwide losing their lives each year in such incidents [4].
To address these concerns and improve safety and efficiency during travel, Vehicular
Ad Hoc Networks (VANETs) have emerged [5]. VANETs assist drivers in avoiding col-
lisions by providing real-time information about routes, thereby enhancing travel safety,
efficiency, and convenience. While popular vehicular navigation systems such as Google
Maps recommend alternative routes to avoid traffic congestion based on factors such as
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driving distance, time, and cost, their primary focus remains on serving individual drivers.
In contrast, VANETs aim for more comprehensive goals by benefiting all road users through
content awareness and inter-vehicle communication. Inter-vehicle communication allows
for a broader understanding of the state of other vehicles in the network and the surround-
ing environment, including details about traffic lights, weather conditions, and public
safety. Moreover, VANETs significantly reduce response time by promptly notifying ve-
hicles about potential situations, even predicting accidents based on route capacity and
expected traffic.

Although VANETs offers numerous possibilities, there are still various challenges that
need to be addressed. Some of these challenges include the absence of a centralized man-
agement and coordination entity, meeting strict delay constraints and ensuring quality of
service (QoS), addressing security and privacy concerns, accommodating various commu-
nication environments, such as urban, inter-urban, and highways, ensuring interoperability
among heterogeneous wireless technologies, and effectively managing the abundant in-
formation and resources within VANETs. The increasing number of vehicles generating
substantial data further complicates network management, while the emergence of new
resource-intensive applications adds to the complexity [6,7]. To tackle these challenges,
an intelligent architecture based on Fuzzy Logic (FL) and Software-Defined Networking
(SDN) approaches is proposed. This architecture aims to efficiently manage Cloud-Fog-
Edge (CFE) storage, computing, and networking resources in VANETs by leveraging FL for
real-time resource management, while accounting for imprecision and uncertainty. How-
ever, in this work, we focus on the edge layer in an SDN-VANETs environment. The edge
layer in a connected vehicles environment refers to the decentralized computing infrastruc-
ture that leverages the computing capability of vehicles themselves. In this context, vehicles
act as edge computing units with the ability to share their computing resources, such as
processing power, storage, and communication capabilities, with each other. The proposed
system called Fuzzy-based System for Assessing Edge Layer Capability (FSA-ELC), is
designed to evaluate the edge computing capabilities of neighboring vehicles in a vehicular
network. By analyzing factors such as available storage, processing resources, and pre-
dicted contact duration of vehicles within its vicinity, the system aims to identify potential
candidates to optimize data offloading, enhance vehicular services, and improve overall
network performance. The proposed system’s effectiveness is assessed using two main
methods: extensive simulations and the implementation of a testbed. Through simulations,
various scenarios and conditions are emulated in a controlled environment to observe the
system’s behavior. The testbed, on the other hand, involves physically implementing the
system to evaluate its performance in real-world conditions. The main contributions are
briefly summarized as follows:

• Our proposed approach considers a cloud-fog-edge layered architecture consisting of
different capabilities and makes use of an integrated fuzzy-based system implemented
in the SDN controllers.

• We implement and show the performance evaluation of a resource management
system, named FSA-ELC, which assesses the edge layer’s processing and storage
capacity, and is composed of all the nearby vehicles within the communication range.

• Implementation of the proposed resource management system in a testbed.
• Comparison of simulation results with experimental results.

The subsequent sections of this article are structured as follows. In Section 2, we
provide a comprehensive background overview of key concepts, namely the Internet of
Things (IoT), VANETs, and cloud-fog-edge computing, focusing on their integration in
the context of SDN-VANETs. We also provide an overview of related works in the field,
exploring research and studies that contribute to the utilization of edge computing in
vehicular networks for enhancing communication efficiency and addressing challenges.
Section 3 presents the detailed explanation of the proposed fuzzy-based system and testbed
design. In Section 4, the article highlights simulation results and testbed findings, providing
a detailed comparison between the two to validate the effectiveness of the proposed system.
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Finally, in Section 5, we draw insightful conclusions based on their study’s findings and
outline potential future work to further improve and advance the integration of these
technologies in SDN-VANETs for even greater impact in smart transportation systems.

2. Background Overview

IoT and VANETs represent transformative paradigms that are reshaping the way we
interact with the world around us. IoT involves connecting everyday objects and devices
to the internet, enabling data exchange, automation, and intelligent decision making across
various domains. VANETs, on the other hand, focus on creating an interconnected ecosys-
tem where vehicles, infrastructure, and pedestrians communicate to enhance transportation
efficiency, safety, and sustainability. Both IoT and VANETs heavily rely on other technolo-
gies to realize their full potential, such as network virtualization with SDN and cloud, fog,
and edge computing.

2.1. Internet of Things

IoT refers to the vast network of interconnected devices and the technology facilitating
communication between these devices and the cloud, as well as among the devices them-
selves. This interconnectedness has been made possible by the proliferation of affordable
computer chips and high-bandwidth telecommunication, resulting in billions of devices
now connected to the internet. Everyday objects are now equipped with sensors that collect
data and enable intelligent responses to user interactions.

Numerous examples of IoT applications are in use today. Connected cars leverage
internet connectivity for various purposes, such as monitoring driver performance, vehicle
health, and optimizing fuel efficiency in rental car fleets. This is due to IoT technology,
which has enabled cars to be equipped with an array of sensors, processors, and communi-
cation modules, transforming them into intelligent and interconnected devices.

Additionally, IoT applications have extended to smart cities, where governments
use IoT technology for urban planning, infrastructure maintenance, and environmental
monitoring, leading to more efficient and sustainable city management. The Internet of
Things has transformed the way we interact with the world around us, enhancing various
aspects of daily life, business operations, and urban development through the seamless
integration of smart devices and the vast connectivity they offer.

2.2. VANETs

VANETs are a transformative concept that leverage the power of connectivity and data
exchange to create an interconnected ecosystem of vehicles, infrastructure, and pedestrians.
In VANETs, vehicles are equipped with advanced sensors, communication technologies,
and onboard computing systems, enabling them to collect and share real-time data with
each other and the surrounding environment. This seamless flow of information facilitates
intelligent decision making, optimizing traffic flow, enhancing road safety, and improv-
ing overall transportation efficiency. Connected vehicles are at the heart of the VANETs,
equipped with embedded communication modules that enable Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I) communication [8]. Through V2V and V2I communica-
tion, connected vehicles can exchange critical information, such as speed, location, and road
conditions, enabling features such as collision avoidance, adaptive cruise control, and real-
time traffic management [9]. Additionally, connected vehicles can benefit from cloud-based
services, leveraging the IoT to access data, perform complex analytics, and enable various
personalized in-car services [10]. Connected vehicles offer numerous advantages to the IoT
ecosystem, contributing to safer, more efficient, and intelligent transportation. Some key
advantages of connected vehicles to IoT are as follows.

Enhanced Safety: Connected vehicles can communicate with each other and with
roadside infrastructure, exchanging real-time data on traffic conditions, road hazards,
and potential collisions. This communication enables advanced driver assistance systems
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(ADAS) and cooperative collision avoidance, significantly reducing the risk of accidents
and enhancing overall road safety.

Improved Traffic Management: By sharing data with smart traffic management sys-
tems, connected vehicles contribute to more efficient traffic flow. These vehicles can receive
real-time traffic updates and suggested alternative routes, reducing congestion and allevi-
ating bottlenecks on the road.

Remote Diagnostics and Maintenance: IoT-enabled sensors in connected vehicles can
monitor various vehicle parameters, such as engine health, tire pressure, and battery status.
These data can be transmitted to manufacturers and service centers for remote diagnostics
and predictive maintenance, enabling timely repairs and reducing downtime.

Enhanced Fuel Efficiency: Connected vehicles can receive information about traffic
patterns, road conditions, and fuel prices, allowing drivers to optimize their routes and
driving behavior for better fuel efficiency. This leads to cost savings for vehicle owners and
reduced greenhouse gas emissions.

Personalized Services: IoT connectivity enables personalized services for drivers and
passengers. Connected vehicles can provide in-car infotainment, personalized navigation,
and even access to smart home controls, making the driving experience more enjoyable
and convenient.

Autonomous Driving: Connected vehicles play a vital role in the development of
autonomous driving technology. The exchange of real-time data between vehicles and the
surrounding environment is crucial for autonomous vehicles to make informed decisions
and navigate safely without human intervention.

Fleet Management and Optimization: IoT-enabled connected vehicles are valuable
for fleet operators as they can monitor the location, performance, and fuel efficiency of
each vehicle in the fleet. These data allow for better fleet management, route optimization,
and resource allocation, leading to cost reductions and improved operational efficiency.

Integration with Smart Cities: Connected vehicles can seamlessly integrate with smart
city initiatives. They can provide data on traffic patterns, parking availability, and air quality,
supporting urban planners in making data-driven decisions to create more sustainable and
livable cities.

Real-time Updates and Software Upgrades: With IoT connectivity, vehicle manu-
facturers can remotely deliver software updates and new features to connected vehicles.
This ensures that vehicles stay up to date with the latest technologies and improvements,
enhancing their performance and safety over time.

2.3. Cloud, Fog, and Edge Computing integrated in VANETs

At the core of this concept is cloud computing, which provides a centralized repository
for storing vast amounts of vehicle-related data, including telemetry, sensor readings, map-
ping information, and historical performance data [11–14]. Cloud-based services enable
connected vehicles to access a wide array of data and applications from remote servers, fa-
cilitating services such as over-the-air software updates, navigation, multimedia streaming,
and personalized user settings. Cloud resources also enable the integration of Artificial
Intelligence (AI) and Machine Learning (ML) algorithms for advanced analytics, predic-
tive maintenance, and behavior analysis, enabling vehicles to become more autonomous
and efficient.

Fog computing is used to bridge the gap between cloud-based services and the vehicle
itself. It involves the deployment of computing and storage resources at the network’s
edge, closer to the vehicles. This approach reduces latency and bandwidth consumption,
enabling real-time data processing and decision making at the edge of the network [15–17].
Fog nodes placed at roadside infrastructure, such as traffic lights and smart intersections,
can provide localized data processing and traffic management, ensuring quicker response
times and improved safety for connected vehicles in urban environments.

Edge computing further enhances the real-time capabilities of connected vehicles by
enabling processing and data analysis directly within the vehicles themselves. Edge nodes
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embedded within the vehicles process data from onboard sensors, cameras, and other con-
nected devices, allowing instant response to critical situations and reducing dependency on
cloud connectivity. Edge-based SDN enables dynamic reconfiguration of network policies
within the vehicle, ensuring efficient utilization of resources and bandwidth allocation for
diverse applications.

Figure 1 illustrates the logical architecture of cloud-fog-edge SDN-VANETs featuring
content distribution.
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Figure 1. The logical framework of cloud-fog-edge SDN-VANET with content distribution.

2.4. SDN-VANETs Paradigm

In traditional networks, the network nodes (routers/switches) are equipped with
the control plane and forwarding plane and have applications loaded onto it. The data
packets are directed from each network node individually, based on their local logic,
and application changes must be programmed systematically into each device individually,
whereas in SDN, the applications and intelligence do not reside in network nodes but in the
SDN controller, which makes the network programmable. SDN consists of the decoupling
of control plane and forward plane, which pulls out the network intelligence from the
individual nodes of the network and places it in the hands of a central authority, the SDN
controller. The network acts like one big router controlling the network. SDN provides
programmability and a scalable solution for network growth, as adding new devices or
expanding the network can be done with ease through software-based configurations. This
scalability is particularly valuable in cloud computing environments, IoT, and large-scale
data centers. Moreover, SDN’s intelligent traffic management capabilities optimize network
traffic flow, leading to reduced congestion and better utilization of network resources.

The integration of SDN technology in cloud-fog-edge VANETs facilitates intelligent
network management. SDN allows for centralized control and orchestration of network
resources, enabling seamless handovers between different connectivity options, such as
cellular networks, Wi-Fi, and V2X (Vehicle-to-Everything) communications [18,19]. This
dynamic allocation optimizes resource utilization and ensures efficient data processing
and delivery. In the cloud-fog-edge VANETs environment, resources are spread across
different layers, such as cloud data centers, fog nodes at the network edge, and on-board
edge devices within vehicles. SDN orchestration ensures that resources are allocated
dynamically based on the specific requirements of each application, service, or connected
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vehicle [20–24]. SDN-based controllers can optimize network paths and allocate bandwidth
based on real-time data demands, prioritizing critical applications such as safety-related
messages and emergency alerts.

2.5. Related Works

Recent advancements in VANETs have spurred research on innovative approaches
to process data within the car and share the available computing resources with other
nearby cars in need for free resources. These approaches leverage the distributed nature
of VANETs to enhance data processing efficiency, reduce latency, and improve the overall
performance of various applications.

Researchers have explored the integration of edge computing into vehicular networks
to cater to QoS needs across a spectrum of applications with varying QoS constraints.
Wu et al. in [25] approached the matter by investigating the uplink local delay between
a vehicle and an edge node through a theoretical methodology grounded in stochastic
geometry. Their analysis modeled the distribution of vehicles as an independent one-
dimensional homogeneous Poisson point process, dissecting the primary contributors to
transmission delay. Furthermore, Zhang et al. [26] adopted a network slicing strategy
to establish distinct QoS requisites, thereby facilitating comprehensive QoS support for
the manifold demands of vehicular networks. VANETs have a diverse range of applica-
tions, including the provision of reliable communication services in disaster-stricken areas.
In [27], the authors provided a communications infrastructure in post-disaster scenarios
via vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) collaboration framework.
This involves integrating non-orthogonal multiple access into Air-Base-Station-supported
Internet of Vehicles (IoV), enabling four spectrum reuse modes through successive interfer-
ence cancellation (SIC). A total power consumption minimization problem is formulated,
considering mode selection, power control, and channel state information latency while
meeting reliability and rate requirements. Simulation results indicate that the proposed
approach reduces power consumption significantly compared to existing methods. In [28],
the authors introduced an enhanced vehicle rerouting strategy for VANETs aimed at allevi-
ating urban traffic congestion during peak hours. Unlike prior methods, which focused on
hop count, this strategy incorporates dynamic traffic information such as travel time for
selecting vehicles to be rerouted. Additionally, the approach ensures collaborative rerouting
by updating road capacities to prevent overutilization and future congestion. Through
traffic simulations in various network scenarios, including real-world settings, the pro-
posed strategy showcases superior performance compared to existing strategies, achieving
a minimum 4.39% improvement in average travel time in the Kuala Lumpur network.

Other research works have explored the benefits of processing data at the edge of the
network, such as inside vehicles or in nearby roadside units. A study by Zhang et al. [29]
proposed a dynamic edge computing framework for traffic management in urban VANETs.
The authors demonstrated that by processing traffic data at the edge, traffic signal co-
ordination and congestion control could be significantly improved. Another paper [30]
proposed a novel approach to jointly orchestrate networking and computing resources
based on user requirements. The approach uses Intent-Based Networking (IBN) based
on Software-Defined Networking and provides the ability to automatically handle and
manage the networking requirements. The method takes into consideration the CPU of
vehicles, memory capacities, and location constraints which decide where the service can
be executed, and application requirements such as the bandwidth and latency for the
service to function correctly. The proposed method shows satisfying results; response of
the system is 95% faster, resource utilization is up to 76% and 71% higher acceptance ratio
of computing and networking requests with various priorities. Another work that exploits
the shared unoccupied on-board computing resources of smart vehicles is presented in [31].
The paper explored the concept of collaborative task offloading within decentralized ve-
hicular networks and introduced an innovative collaborative edge computing solution.
The main emphasis of the study was on effectively harnessing the computational resources
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available in other vehicles, while taking into account both task computational time and
communication delays associated with data transmission. The task offloading framework
adopts a dual-phase decision-making strategy. In the initial phase, the selection of edge
nodes able to process tasks is carried out by fuzzy logic based on the vehicle computational
capacity, vehicle mobility, and vehicle distribution in a collective manner. The output is an
efficient network edge topology for task offloading. The subsequent phase handles task
offloading to multi-hop neighbors. The edge node optimizes the request for each vehicle
to find the best candidates for performing task processors for the tasks. The decision is
taken by fuzzy logic system based on the offloading restrictions that encompass computa-
tional time and network resource limitations. The node calculates a capability value for
each candidate, and the candidate with the highest capability value is chosen as the task
processor. In cases where an edge node is unable to identify a suitable vehicle for task
offloading, it reaches out to a neighboring edge node for assistance. Simulation results
demonstrate that through enhanced collaboration among vehicles, the proposed scheme
achieves a better task completion ratio and reduced task response time compared to other
existing baseline methods.

3. Proposed System

Edge computing in connected vehicles involves processing and analyzing data directly
within the vehicles themselves, bringing computational capabilities closer to the data source
rather than relying solely on centralized cloud infrastructure. This paradigm shift offers
several significant benefits that enhance the overall performance, efficiency, and intelligence
of connected vehicles. At the core of edge computing in connected vehicles is the deploy-
ment of onboard computing resources, such as powerful processors, microcontrollers,
and specialized hardware accelerators. Vehicles exploit their own processing, storage, and
network capability to process data from various sensors and connected devices within the
vehicle, including cameras, lidar, radar, GPS, and in-car sensors [32]. By analyzing data
locally, edge computing enables real-time decision making, rapid response to changing
road conditions, and efficient utilization of the available resources.

One of the primary advantages of edge computing in connected vehicles is the reduc-
tion in data latency. Time-sensitive applications, such as advanced driver assistance systems
(ADAS), collision avoidance, and emergency braking, demand immediate responses to
ensure safety and prevent accidents. With edge computing, data analysis occurs within
milliseconds, reducing the time between data collection and actionable insights, making
connected vehicles more responsive and safer on the road. Moreover, edge computing de-
creases the dependency on continuous internet connectivity for data exchange. Connected
vehicles can operate effectively even in areas with limited or intermittent network coverage,
since crucial data processing occurs locally. This ensures the uninterrupted functionality of
essential services within the vehicle, such as navigation, entertainment, and safety features,
irrespective of external network conditions.

Edge computing also optimizes the use of network bandwidth and cloud resources.
By processing and filtering data locally, only relevant and essential information is sent
to the cloud, reducing data transmission and avoiding bottleneck occupation and cloud
storage costs. This bandwidth optimization is particularly crucial in scenarios with a large
fleet of connected vehicles, where data traffic can be extensive, and cloud resources can be
better utilized for high-level analytics and long-term data storage. Security and privacy
are strengthened by edge computing in connected vehicles. Critical data can be processed
within the vehicle’s secure environment, reducing the risk of unauthorized access or data
breaches during transit to external servers. Edge computing also fosters autonomy and
decentralization in connected vehicles. Vehicles become capable of making intelligent
decisions independently, without relying solely on cloud services. This increased autonomy
is especially valuable in scenarios where real-time operations are essential, and cloud
connectivity may be temporarily unavailable.
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Moreover, computing process and data analysis through adjacent vehicles in con-
nected vehicles involves leveraging the collective computing power and data resources of
nearby vehicles to enhance the overall intelligence and efficiency of the connected vehicle
ecosystem. This cooperative approach allows vehicles to share and exchange data, process
information, and collaborate with one another, creating a dynamic network of vehicles
that can make more informed decisions and respond better to changing road conditions.
In this scenario, each connected vehicle acts as a node in a distributed network, capable of
communicating with other nearby vehicles within its communication range through V2V
communication links. Not only can they share the collected data with adjacent vehicles,
but they can also share their processing, storage, and network resources with nearby ve-
hicles that are in need of more additional resources (hereinafter referred to as the vehicle).
Therefore, when a vehicle is in need for additional storage and computing resources, the
vehicle can request to utilize those of neighboring vehicles, assuming they can establish
and maintain a connection for a certain period. The proposed method, named FSA-ELC,
evaluates the processing capabilities of each nearby vehicles within the communication
range of the vehicle. FSA-ELC assesses the edge layer’s processing and storage capacity,
which comprises the total number of vehicles capable of communicating and sharing their
storage and processing abilities with each other.

In the following, we provide a detailed composition of the FSA-ELC system, explain
the input and output parameters, and present the design and implementation of the FSA-
ELC testbed. The input parameters of the FSA-ELC system are not interrelated, leading to
an NP-hard problem. FL is employed to address these issues since it excels at handling such
complex problems [33–38]. Additionally, our system requires real-time decision-making
capabilities, and fuzzy systems have proven to deliver excellent results in decision making
and control problems.

3.1. FSA-ELC System

The proposed approach for assessing the computing capability of the edge layer in the
SDN-VANETs environment, named FSA-ELC, is built based on a FL system. This FL system
employs input parameters that are uncorrelated with each other, ensuring a comprehensive
and independent evaluation of the edge computing capability. Based on FSA-ELC output
parameter result, the system can take action corresponding the circumstances. The input
and output parameter, their corresponding term sets and the fuzzy rule base. The structure
of the FSA-ELC system is given in Figure 2.

PCD

ACP

AS

FLC NiPC

Figure 2. Structure of FSA-ELC system.

In the following, we provide a detailed explanation of the input and output parameters
of the proposed system.

Available Storage (AS): In VANETs, vehicles are equipped with storage capability,
which allows vehicles to store and retain data, information, and various types of content
either for onboard use or for later retrieval and analysis. However, the amount of onboard
storage can vary significantly between vehicle models and types. Some vehicles may
have limited storage capacity. The available storage refers to the amount of storage space
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in a vehicle that is currently unused and available for storing data, applications, files,
and other content. It represents the remaining capacity on the device’s internal storage or
external storage media. In VANETs, the vehicles can exchange data and access each other’s
available storage resources. For example, a vehicle might share map data, navigation
updates, or media files with another vehicle, or retrieve specific data it requires for its
own functionality. To do so, vehicles need to initiate virtual machines connections via
V2V communications.

Available Computing Power (ACP): Computing resources in connected vehicles refer
to the onboard processing capabilities, such as CPUs (Central Processing Units), GPUs
(Graphics Processing Units), and specialized processors, which enable the vehicles to exe-
cute various computational tasks. These computing resources are essential for handling
data processing, real-time decision making, running applications, and supporting advanced
features in connected vehicles. In connected vehicles, the vehicles can share their available
computing resources with the vehicle in need of additional computing resources via V2V
communication. Distributing computing augments connected vehicles’ processing capa-
bilities, enable faster data analysis, and enhance overall performance. This collaborative
approach promotes more efficient use of computing power, reduces individual vehicle
workload, and fosters a cooperative ecosystem that benefits all vehicles in the network.

Predicted Contact Duration (PCD): An estimation of the duration or time interval
during which two or more vehicles can maintain a stable and reliable communication link
with each other. In the context of V2V communication, predicting contact duration becomes
crucial to optimize data exchange, coordinate collaborative tasks, and enable efficient
communication between nearby vehicles. Making an estimation about V2V communication
time and the necessary time for terminating a certain task, vehicles can decide if this
communication can be accomplished successfully; thus, optimizing network resources and
reducing unnecessary communication attempts. Accurate prediction of contact duration
supports advanced safety applications, and enables the exchange of real-time information
critical for autonomous driving and traffic management.

To calculate the PCD between the vehicle and a neighbor vehicle i, we first calculate the
relative speed between these two vehicles using the law of cosines, as given in Equation (1):

RSVi =
√

V2 + V2
i − 2VVi cos θi (1)

where V is the speed of the vehicle, Vi is the speed of neighbor i, and θi is the angle between
their directions. Then, we use the law of cosines once again to calculate the PCD, as given
in Equation (2):

(RSVi · PCD)2 + D2
0 − 2|RSVi| · PCD · D0 cos(γi + βi) = CR2 (2)

where D0 denotes the initial distance between the two vehicles, CR is the communication
range, γi is the angle between the direction of the vehicle, and D0 is the imaginary line,
whereas βi is calculated with Equation (3), which is derived from the law of sines:

βi =


arcsin(Vi sin θi

|RSVi |
), for Vi ≤

√
V2 + RSV2

i

180− arcsin(Vi sin θi
|RSVi |

), for Vi >
√

V2 + RSV2
i , θ ≥ 0

−180− arcsin(Vi sin θi
|RSVi |

), for Vi >
√

V2 + RSV2
i , θ < 0

(3)

We posit that when two vehicles are getting farther from each other from different
directions, their directions form a positive angle, whereas when the vehicles are getting
closer, θ is negative.

Neighbor i Processing Capability (NiPC): The output parameter of FSA-ELC, named
NiPC, represents the ability of a potential neighbor to share its available resources with
other vehicles in the connected vehicles environment. The scale of NiPC results ranges
from 0 to 1. A Neighbor i with a processing capability score of 0 indicates that the vehicle is
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not willing or able to share its available resources with other vehicles. This vehicle may be
heavily loaded with computational tasks, have limited processing power, or might not be
able to engage in cooperative resource sharing for the necessary time. Conversely, NiPC
score of 1 signifies that the vehicle is highly willing and capable of sharing its available
resources with other vehicles. The Neighbor i Processing Capability is a dynamic parameter
that can change as vehicles move and their relative positions shift. As vehicles navigate
through the connected environment, they continually assess the processing capabilities
of neighboring vehicles and adapt their cooperative computing strategies accordingly.
Vehicles can use this scale to make dynamic decisions on which neighboring vehicles
to collaborate with, optimize resource utilization, and achieve efficient cooperative data
processing and decision making.

Table 1 displays the term sets for the input and output parameters of FSA-ELC.
The input parameters are fuzzified using the membership functions illustrated in Figure 3.
The determination of the number of terms for each parameter and the characteristics of
the membership functions is based on experience gained from numerous simulations.
It has been observed that using less than three linguistic terms for an input parameter
may result in inefficient control and poor decision making, while employing more terms
leads to redundancies and increased complexity. Similar considerations apply to the
overlap of membership functions, as less overlap can yield suboptimal decisions, while
more overlap may introduce redundancies. For real-time operation, we employ triangular
and trapezoidal membership functions, which have been found to be the most suitable.
Additionally, Table 2 present the Fuzzy Rule Base (FRB) of FSA-ELC, consisting of IF-
THEN rules.

Table 1. Parameters and term sets for FSA-ELC.

Parameters Term Sets

ACP Small (Sm), Medium (Me), Large (La)
PCD Short (Sh), Medium (Md), Long (Lo)
AS Small (S), Medium (M), Big (B)

NiPC
Extremely Low (El), Very Low (Vl), Low (Lw),
Moderate (Md), High (Hg), Very High (Vh),
Extremely High (Eh)
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Figure 3. Membership functions of FSA-ELC. (a) Available Computing Power, (b) Available Storage,
(c) Predicted Contact Duration, and (d) Neighbor i Processing Capability.
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Table 2. FRB of FSA-ELC.

No ACP PCD AS NiPC No ACP PCD AS NiPC No ACP PCD AS NiPC

1 Sm Sh S ELPC 10 Me Sh S VLPC 19 La Sh S LPC
2 Sm Sh M ELPC 11 Me Sh M LPC 20 La Sh M HPC
3 Sm Sh B ELPC 12 Me Sh B LPC 21 La Sh B HPC
4 Sm Md S VLPC 13 Me Md S LPC 22 La Md S MPC
5 Sm Md M VLPC 14 Me Md M MPC 23 La Md M VHPC
6 Sm Md B LPC 15 Me Md B MPC 24 La Md B VHPC
7 Sm Lo S LPC 16 Me Lo S MPC 25 La Lo S VHPC
8 Sm Lo M LPC 17 Me Lo M HPC 26 La Lo M EHPC
9 Sm Lo B MPC 18 Me Lo B HPC 27 La Lo B EHPC

3.2. FSA-ELC Testbed Design

To assess the simulation results of the FSA-ELC system, we conducted corresponding
experiments using a small-scale testbed implemented with Raspberry Pis (RPi). The testbed
comprises five RPis, representing vehicles moving through an urban area for approximately
25 min, encompassing several apartment blocks. Among these vehicles, one acts as the
resource-needy vehicle, while the remaining four serve as potential neighbors capable of
providing assistance if they possess sufficient processing capability. In that case, the system
will decide to deploy the application at the edge layer; thus, bringing computational capabil-
ities closer to the data source rather than relying solely on centralized cloud infrastructure.
The testbed area measures 200 m × 200 m, and each vehicle has a communication range of
50 m. The vehicle movements are simulated using the sumo simulator, and the layout is
illustrated in Figure 4. The components of FSA-ELC testbed are given in Figure 5, whereas
the setup of the testbed is summarized in Table 3.

The mobility trace is used to obtain the locations of all the vehicles at each time step
of the experiment since the deployment of a large-scale testbed in a real environment
(e.g., the RPi moving around in the neighborhood) was impossible due to various factors
(i.e., increased costs, lack of human resources, and time constraints).

Figure 4. A screenshot of vehicles moving around the area in the sumo simulator.



Vehicles 2023, 5 1098

Figure 5. The components of the FSA-ELC testbed.

Table 3. Testbed setup.

Vehicles 5 RPi Model 3B+
Mobility trace generator sumo
Area size 200 m × 200 m
Communication range 50 m
TS [0.1, 0.5, 0.9]
DC [0.1, 0.5, 0.9]
Experimental time 1500 s

The vehicle and its neighbors in the testbed communicate with one another, as given in
Figure 6. The vehicle broadcasts every second a help beacon containing information about
the vehicle id, speed, direction, timestep, and current and previous location. The vehicles
within the communication range, also known as neighbors, receive the beacon and extract
the information it contains so they can calculate the relative speed and the predicted contact
duration. A RPi is considered a neighbor vehicle only if the distance, which is calculated
using the coordinates obtained from the mobility trace, is shorter than their communication
range. After calculating the predicted contact duration, each neighbor calculates its current
available CPU and storage, which are the data they need to determine their processing
capability. The processing capability is determined by running FSA-ELC and the result is
sent back to the vehicle alongside its id in the form of a response message. Based on the
result value, the system can then take action corresponding to the circumstances.
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Figure 6. A scheme of the communication between the vehicle and its neighbors.

4. Evaluation Results

In this section, we discuss the simulation and the experimental results for FSA-ELC
system. The experiments were conducted by the communication of five RPis moving
randomly, with one of them representing the vehicle in need of resources.

4.1. Results of FSA-ELC

Three scenarios are considered for FSA-ELC, each with different available storage (AS)
values: small, medium, and large. The results of these scenarios are depicted in Figure 7.
In Figure 7a, when the available storage is small, no vehicles are considered as prospective
helpers if the predicted contact duration is short, even if they have large ACP. However, we
can see that when PCD increases, the neighbors can be considered as helpful depending
on the available ACP. Figure 7b demonstrates that a neighbor with a medium AS can
offer help in more scenarios, given that they have more than the minimum amount of
computing resources available for other vehicles. If these neighbors have a medium amount
of ACP, they should be in contact with the vehicle for a considerable amount of time to
be considered as helpful. Similarly, in Figure 7c, when a neighbor is willing to provide a
large amount of computing power, even vehicles with a short PCD are considered helpful.
Different from the case with medium AS, here, we see that if PCD is long, the vehicles
with small ACP are also included. In such cases, the neighbors can be used for processing
applications that do not require large computing power but need vast storage sizes. These
findings show the potential collaboration and resource-sharing dynamics among vehicles
in the FSA-ELC framework.
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Figure 7. Simulation results for FSA-ELC. (a) AS = 0.1, (b) AS = 0.5, and (c) AS = 0.9.

4.2. Experimental Results of FSA-ELC

The experimental results of FSA-ELC are given in Figures 8 and 9. Let us compare them
with the simulation results of FSA-ELC, given in Figure 7. The comparison between Figure 8
and the simulations reveals that both sets of results follow the same trend. However, in the
testbed results, more oscillations can be observed, especially for small and medium ACP
values. This variation is attributed to the fluctuations in the ACP of the Raspberry Pi
(RPi) when running multiple applications simultaneously, emulating a scenario similar
to a vehicle running its own applications alongside those requiring additional resources.
For small AS (Figure 8a), vehicles with large ACP and long PCD are considered helpful.
On the other hand, for medium and big AS (Figure 8b,c), vehicles with large ACP are
deemed helpful, regardless of the PCD value. The range of output values (NiPC) varies
from [0.069–0.680] for AS = 0.1 and slightly increases to [0.069–0.787] for AS = 0.5 and for
AS = 0.9. These findings demonstrate the performance of FSA-ELC in both experimental
and simulated environments, exhibiting its effectiveness in assessing computing capability
in SDN-VANETs environments with various resource availability scenarios.

In Figure 9, we show the relation between the decisions FSA-ELC in respect to time.
As we can see, the minimum (NiPC = 0.069) and maximum (NiPC = 0.787) values are the
same as those in Figure 8 for the respective scenario. On the other hand, here, the variations
are bigger due to the impact of both ACP and PCD, differently from the previous figure
where only ACP was influencing the output value. Despite the variations, we can see that
for the most part of the experimental time, the variation remains either over or below 0.5,
especially in Figure 9b,c, indicating a stability in the decision of the system to determine
potential neighbors. For medium and especially for big AS, the results indicate that in most
of the cases the vehicles are determined as helpful (NiPC values are over 0.5), with only a
few situations when NiPC is below 0.5. The same holds true for results in Figures 7 and 8.
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Figure 8. Testbed results for FSA-ELC. (a) AS = Small, (b) AS = Medium, and (c) AS = Big.
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Figure 9. Experimental results for FSA-ELC in terms of time. (a) AS = Small, (b) AS = Medium,
and (c) AS = Big.

5. Conclusions

This article introduces a fuzzy-based system and a testbed implementation aimed
at assessing the available edge computing resources within a layered cloud-fog-edge
architecture for SDN-VANETs. The proposed FSA-ELC system evaluates neighboring
vehicles’ capacity to assist those lacking sufficient resources for specific tasks, taking into
account ACP, AS, and PCD values. Both simulation and experimental results demonstrate
the influence of these parameters on the system’s performance and feasibility. The findings
from the simulations and experiments lead to the following conclusions:

• Neighboring vehicles with small ACP and small AS are unable to offer assistance to
other vehicles in need.

• For medium and large AS values, vehicles with substantial ACP are considered helpful,
irrespective of the PCD value.

• The highest NiPC value is attained when the neighboring vehicle has significant ACP,
large AS, and an extended PCD.

• Notably, the simulation and experimental results exhibit a consistent trend, validating
the system’s effectiveness and reliability.

Despite the positive results, to take full advantage of the proposed system, it is
noteworthy to determine the accuracy of the system as it can show which parameters lead
mostly to false positives and what should be improved to reduce the false-negative outputs.
In the following, we show some future aspects regarding improvements that we aim to
make in the proposed system.

• In our testbed, we used the sumo simulator to generate the movement of vehicles.
In the future, we aim to improve the testbed by implementing mobile RPis moving
randomly in designated roads, equipped with GPS which enable real-time localization
of vehicles (RPis).

• Second, in our testbed, we use only five RPis which represent the moving vehicles. We
get an understanding of how the proposed system and the testbed performs, but we
would like to implement a large size network with many more vehicles, making it
more like a real-life scenario. A large size network will show how the proposed system
responds to data congestion, interference, and many other problems that might arise
which could have a profound effect on the network performance.

• Third, during the vehicle communication sessions in the experiment, no application
is running, and only small data size packets are exchanged. In the future, we intend
to evaluate the performance by running a real application in the vehicle. In this way,
we can prove whether the application in the end is performed successfully via the
decision taken by the proposed system. For example, the fuzzy-based system decides
that edge layer is capable to execute the application, when in fact the application might
not be successfully accomplished in the edge layer. Such false positives/negatives
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determine the accuracy of the system; therefore, it is important to investigate which
parameters lead to these false results, in order to improve the system.

• Lastly, we mean to compare our system with existing systems in terms of the achieved
accuracy and applications that can be covered.
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