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Abstract: This research focused on the rubber bushings of the rear sub-frame in an electric vehicle.
A dynamic model was developed to represent the bushing, incorporating an elastic element, a
frictional element, and a viscoelastic element arranged in series using a fractional-order Maxwell and
a Kelvin–Voigt model. To identify the parameters of the bushing model, an improved adaptive chaotic
particle swarm optimization algorithm was employed, in conjunction with dynamic stiffness test data
obtained at an amplitude of 0.2 mm. The test data obtained at different amplitudes (0.2 mm, 0.3 mm,
0.5 mm, and 1 mm) were fitted to the model, resulting in fitting errors of 1.13%, 4.07%, 4.42%, and
28.82%, respectively, when compared to the corresponding test data in order to enhance the accuracy
of the model fitting; the Sobol sensitivity analysis method was utilized to analyze the parameter
sensitivity of the model. Following the analysis, the parameters α, β, and k2, which exhibited high
sensitivity, were re-identified. This re-identification process led to a reduction in the fitting error at the
1 mm amplitude to 7.45%. The improved accuracy of the model plays a crucial role in enhancing the
simulation accuracy of design of experiments (DOE) analysis and verifying the vehicle’s performance
under various conditions, taking into account the influence of the bushing.

Keywords: sub-frame bushing; FVMS model; dynamic stiffness; adaptive chaotic particle swarm
optimization; parameter identification

1. Introduction

The suspension and body of the pure electric vehicle are connected through rubber
bushings on the subframe, which play a role in bearing multi-directional loads [1]. This can
reduce the forces and impacts transmitted to the body from the road surface, improving the
overall NVH performance of the vehicle [2]. The rubber in the subframe bushings exhibits
strong nonlinear viscoelastic properties, which are greatly influenced by factors such as
load amplitude, load frequency, and operating cycle. The accuracy of the rubber bushing
model is one of the key factors affecting the precision of suspension and vehicle dynamic
simulation, especially when considering the impact on suspension KC characteristics,
vehicle handling stability, ride comfort, and other performance indicators.

Many scholars from both domestic and international backgrounds have proposed
numerous dynamic models for bushings, with early models mainly based on linear vis-
coelastic models, such as the Kelvin–Voigt model, Zener model, and linear characteristic
bushing model in ADAMS [3]. However, these traditional linear models fail to accu-
rately describe the nonlinear hysteresis characteristics of rubber bushings. Therefore, it is
necessary to consider establishing models that accurately reflect the dynamic nonlinear
characteristics of the bushings. Domestic scholar Sun Beibei utilized a parallel combination
of the Maxwell model, spring elements, and friction elements to simulate the dynamic
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behavior of rubber bushings [4]. Professor Stawomir Dzierzek from Cracow University of
Technology proposed the Dzierzek model [5].

To describe the dynamic characteristics of rubber bushings more accurately, some
scholars have found that fractional derivative models can be used to describe viscoelastic
properties with few parameters; both domestic and international scholars, such as Metzler,
Bagley, and Lin Song [6,7], have, respectively, employed fractional derivative models
to study the viscoelastic properties of rubber bushings [8–10]. Some scholars have also
combined fractional-order Maxwell and fractional-order Kelvin–Voigt models in series or
parallel to obtain high-order fractional derivative models [11,12] and improved the overall
prediction accuracy through related algorithms for parameter identification. They have
identified model parameters using appropriate algorithms to improve overall prediction
accuracy. Particle swarm and genetic algorithms are commonly employed for parameter
identification when dealing with a large number of parameters [13].

In this paper, a rubber bushing in the rear sub-frame of a specific electric vehicle
was taken as the object of study, and the test and modeling are mainly conducted in the
radial solid direction, as shown in Figure 1a,b. The rubber bushing model is illustrated in
Figure 2a,b.
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Figure 2. (a) Bushing CATIA model. (b) Bushing side view and top view of bushing.

The FVMS (fractional Voigt and Maxwell model in series) viscoelastic model was con-
sidered for establishing the dynamic model of the rubber bushing. The ACMPSO (adaptive
chaos improved particle swarm optimization) algorithm was employed in conjunction
with experimental data to fit the parameters of the rubber bushing model. Furthermore, to
enhance the model accuracy, sensitivity analysis of the model parameters was conducted,
and the parameters with high correlation coefficients were identified by incorporating test
data under different amplitudes, aiming to reduce errors and improve the model precision.
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2. Establishment of the Rubber Bushing Dynamic Model

The dynamic model of the rubber bushing comprises three components: the elastic
elements, friction hysteresis elements, and viscoelastic elements. These components are
arranged in parallel, allowing for the expression of the overall force and moment character-
istics by combining the forces from each element. The dynamic model of the bushing is
visually represented in Figure 3.
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The dynamic model of the rubber bushing was constructed with three elements in
parallel: an elastic, a frictional, and a viscoelastic element. The forces of these three elements
were superimposed to express the force and torque characteristics of the entire bushing
model, as shown in Figure 3.

F = Fe + Ff + Fv (1)

Equation (1) was used to calculate the response force of the whole parameterized
model; Fe represents the elastic force, Ff represents the force of frictional hysteresis, and Fv
represents the force of viscoelastic (Units in Appendix A). F denotes the response force of
the entire parameterized model.

2.1. Elastic Element of the Rubber Bushing Model

The static characteristics of the bushing are caused by its elastic deformation. Con-
stitutive models commonly used to describe the static mechanical behavior include the
Mooney–Rivlin model [14], neo-Hookean model [15], Yeoh model [16], Ogden model [17],
etc. The parameters in these models represent the physical meaning of the rubber bushing
material properties and describe the relationship between stress and strain. Since this
article considers the relationship between force and displacement, a nonlinear spring is
used to represent the elastic element. The mechanical expression of this element can be
described as [18]:

Fe = a0 + a1x + a2 x2 + . . . . . . + anxn (2)

The amplitude of the elastic module, denoted as Fe0, under the sinusoidal excitation
with an amplitude of x0 can be expressed as:

Fe0 = a0 + a1x0 + a2 x0
2 + . . . . . . + anx0

n (3)

The elastic module does not consider friction, so there is no energy loss.

2.2. Frictional Element of the Rubber Bushing Model

Regarding the friction hysteresis module of the rubber bushing model, the hysteresis
effect of the rubber bushing becomes more pronounced as the deformation from loading
increases. A smooth friction force model is used to express this behavior, and the expression
is as follows [19]:

Ff =

Ff s +
(x−xs)(Ff max+Ff s)

x2(1+u)−(x−xs)
(x < xs)

Ff s (x = xs)

Ff s +
(x−xs)(Ff max+Ff s)

x2(1+u)+(x−xs)
(x > xs)

(4)
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In Equation (4), Ff represents the friction force, x represents the displacement unit
of the loading, Ff max is the maximum friction force, x2 is the displacement of the friction
force from 0 to Ff max/2, and (xs, Ff s) is a reference point on the force–displacement curve
obtained from static loading tests. Under sinusoidal excitation with amplitude x0, the
amplitude of the friction hysteresis module is given by:

Ff 0 =
Ff max

2x2

(√
x02 + x22 + 6x0x2 − x0 − x2

)
(5)

E f = 2Ff max

[
2x0 − x2(1 + u)2ln

x2(1 + u) + 2x0

x2(1 + u)

]
(6)

In the Equation (6), u =Ff 0/Ff max, E f represents the energy loss per cycle.

2.3. Viscoelastic Element of the Bushing Model

In the parameterized model of the bushing, the most common standard mechanical
models for the viscoelastic module are the Kelvin–Voigt model and the Maxwell model.
However, the standard mechanical models cannot accurately describe the viscoelasticity of
the bushing. In order to better represent the viscoelastic characteristics of the bushing, the
fraction Voigt model (FVM) and fraction Maxwell model (FMM) were proposed based on
the Kelvin–Voigt model and Maxwell model, respectively. Furthermore, a FVMS model
was developed by combining a Kelvin–Voigt fractional derivative model and a Maxwell
fractional derivative model in series, creating a high–order fractional derivative model for
describing the viscoelasticity of the rubber bushing. When the coefficients of fractional
derivatives in the FVMS model are all 1, it is the Burgers model [20], so the FVMS model
has stronger generalization ability than the Burgers model.

0Dβ+γ
t x(t)k2 +0 Dβ

t x(t)λ1k2 =0 Dα+γ
t Fv(t) +0 Dα

t Fv(t)λ1 +0 Dβ
t Fv(t)

k2

c1
+0 Dγ

t Fv(t)λ2 + λ1λ2Fv(t) (7)

In Equation (7), 0Dα
t Fv(t) represents the α–order derivative of Fv(t); k1, k2, c1, c2,

respectively, are the elastic element and the viscosity coefficient of the viscoelastic element;
k1, c1, respectively, are the elastic modulus and viscosity coefficient of FVM in viscoelastic
element; k2, c2, respectively, are the elastic modulus and viscosity coefficient of FMM in
viscoelastic element. λ1 = k1/c1 , λ2 = k2/c2 are defined, respectively. Fv(t) represents the
viscoelastic force, and x(t) is the loading displacement. α, β, γ is the fractional derivative
order, and its value range is (0, 1). To satisfy the thermodynamic stability condition,
α ≤ β [11]; thus, the maximum order is β + γ, with the maximum value being 2. The
Laplace transform of the Equation (7) is as follows:

(k2sβ+γ + λ1sβ)x(s) = [sα+γ + λ1sα +
k2

c1
sβ + λ2sγ + λ1λ2]F(s) (8)

Then, the complex stiffness of the viscoelastic element is Equation (9):

K∗v(s) =
F(s)
x(s)

=
k2sβ+γ + λ1sβ

sα+γ + λ1sα + k2
c1

sβ + λ2sγ + λ1λ2
(9)

k∗v(ω) is the complex stiffness of the viscoelastic element. By transforming Equation (9)
into the frequency domain, we obtain the frequency domain expression of the fractional
derivative model as follows:

K∗v(ω) =
F(ω)

x(ω)
=

k2(iω)β+γ + λ1(iω)β

(iω)α+γ + λ1(iω)α + k2
c1
(iω)β + λ2(iω)γ + λ1λ2

(10)

(iω)α = ωαeiπα/2+2nπα (11)
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Let n = 0, as the taproot, then:

(iω)α = ωαeiπα/2 (12)

It is obtained by Euler’s formula:

(iω)α = ωα(cos(
απ

2
) + isin(

απ

2
)) (13)

Put Equation (13) into Equation (10):
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Based on the above formula, it is further deduced that under the sinusoidal excitation
of the amplitude x0, the amplitudes Fv0Re and Fv0lm of the real and imaginary parts of the
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3. Rubber Bushing Tests

The quasi-static loading tests on the rubber bushing primarily aimed to investigate
its mechanical response characteristics under slow loading conditions, providing essential
raw data for static parameter identification.

During these tests, the rubber bushing was subjected to gradual and controlled loading,
allowing researchers to observe and measure its deformation and corresponding reaction
forces. The loading rate was carefully controlled to ensure a quasi-static condition, avoiding
rapid or dynamic loading.

In addition to the quasi-static loading tests, wideband sinusoidal sweep tests were
also conducted on the subject of this study, which is the rear sub–frame rubber bushing.

The wideband sinusoidal sweep test involves applying a sinusoidal excitation signal
to the bushing over a range of frequencies. The excitation signal varies in frequency
and amplitude, covering a broad frequency spectrum. This type of test is also known as
frequency response analysis.

During the wideband sinusoidal sweep test, the bushing’s dynamic response was
measured, including its frequency-dependent stiffness, damping, and resonance charac-
teristics. This test provides valuable information about how the bushing behaves under
different dynamic loading conditions and how it responds to vibrations across a range of
frequencies.

The tests were performed using the LETRY Dynamic Stiffness Testing Platform, and it
involved applying a sinusoidal signal with a specific amplitude to excite the bushing. The
test setup is depicted in Figure 4.
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To thoroughly investigate the dynamic characteristics of the rubber bushing and obtain
sufficient raw data for parameter identification of the bushing model, dynamic loading tests
were conducted at frequencies ranging from 1 to 41 Hz and with amplitudes of 0.2 mm,
0.3 mm, 0.5 mm, and 1 mm, respectively. The relationship curve between the dynamic
stiffness of the rubber bushing and the loading frequency is shown in Figure 5.
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From Figure 5, it can be observed that, at a certain frequency, the dynamic stiffness
of the bushing decreases as the excitation amplitude increases. In the frequency range
of 1 to 41 Hz with constant excitation amplitude, the dynamic stiffness of the bushing
increases as the frequency increases.

4. Parameter Identification of the Rubber Bushing Dynamic Model

The parameter identification of the rubber bushing dynamic model involves two steps.
Firstly, the identification of the parameters of the elastic element and the friction element,
and then the identification of the parameters of the viscoelastic element.

4.1. Identification of the Parameters of the Elastic and Friction Elements

The parameter identification process involves using the static loading test data, as
shown in Figure 6. The slope of the curve near the limit position of displacement can be
approximated to represent the static elastic stiffness ke of the bushing’s elastic unit. The
maximum friction force Ff max in the friction model is obtained by taking half of the vertical
distance between the upper and lower limits of the hysteresis loop. The maximum slope of
the curve is denoted as kmax, and by using Equation (16), the displacement x2 in the friction
unit can be determined.

x2 = Ff max/(kmax − ke) (16)

The upper and lower boundary curves of the hysteresis curve in Figure 6 were overlaid
by shifting, obtaining the force–displacement test curve of the elastic element. The data of
this curve were fitted using a third–order polynomial spring model, as shown in Figure 7.
Results of parameter identification for the elastic and friction elements are shown in Table 1.
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Table 1. Results of elastic and friction unit parameter identification for the rubber bushing model.

Model Element Parameter Result

Elastic elements

ke/(N ·mm−1) 6663.68
n 3
a3 85.12
a2 −187.2
a1 6782
a0 136.2

Friction elements
kmax/(N ·mm−1) 11,814.9

Ff max/N 647.6625
x2/(mm) 0.1257

4.2. Identification of the Parameters of the Viscoelastic Elements

The identification of parameters for the rubber bushing’s viscoelastic elements was
conducted using dynamic loading test curves. Due to the numerous parameters that need
to be identified and the strong nonlinearity of the viscoelastic unit, the particle swarm
optimization (PSO) algorithm was employed to search for the optimal solution based on
fitness evaluation. The PSO algorithm updates the fitness, velocity, and position of particles
iteratively to find the best parameters. The corresponding Equation (17) is as follows:

vt+1 = wvt + c1r1(pb − xt) + c2r2(gb − xt)
xt+1 = xt + vt+1

(17)

where w is the inertia weight; the velocity and position of the current particle are represented
by vt and xt; r1 and r2 are random numbers ranging between 0 and 1; c1 and c2 are
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learning factors; the range of the velocity and position of the particles are [vmin, vmax] and
[xmin, xmax], respectively; pb is the best position (parameter values) of particle i found so
far in the iterations; gb is the best position among all particles in the swarm at iteration t.

To improve the optimization speed, a modification has been made in the particle
swarm optimization (PSO) algorithm, where a random particle is selected to update the
velocity during the velocity update process. This approach, known as “random particle
updating”, helps accelerate the optimization process and prevents the algorithm from
getting stuck in local optima. The velocity update formula with random particle updating
is given by Equation (18).

vt+1 = wvt + c1r1(pb − xt) + c2r2(gb − xt)
+c3r3(ps − xt)

(18)

c3 is an additional coefficient introduced for the random particle updating, controlling
the influence of the random particle’s position on the velocity update; r3 is a random
number ranging between 0 and 1; ps is the randomly selected particle from the current
particle swarm.

To evaluate the results of each optimization, this study uses an optimization degree
λ to assess the effectiveness of the search process. The optimization degree, denoted as
“OD”, is a measure of how much the global fitness changes during the search. If the global
fitness changes during the current search, the optimization degree is set to 1. However, if
the global fitness remains unchanged during the current search, the optimization degree is
calculated using the following Equation (19):

λ =

∣∣ fmp(i)− fbest
∣∣+ 1∣∣ fmp(i− 1)− fbest
∣∣+ 1

(19)

where fmp(i) is the average fitness value of the i-th optimization search population, and
fbest(i) is the best fitness value of the current population.

A larger inertia weight w is advantageous for global search, while a smaller inertia
weight is advantageous for local search. By adjusting the inertia weight in a timely manner
based on the optimization degree λ of each optimization search, it is possible to search for
the best particle [21].

w = wmax − (wmax − wmin)×
√

i
G + (∗)

(∗) =
{

λ−1
D , λ 6= 1

0, λ = 1

(20)

Equation (20) is used to update the inertia weight; D represents the population size of
the particles, and G represents the maximum number of iterations.

The parameter identification of the rubber bushing model’s viscoelastic element is es-
sentially an optimal parameter estimation problem. To ensure that the identified parameters
closely match the experimental data, an appropriate fitness function needs to be established.
This is achieved by setting up an optimization function that minimizes the error between
the numerical and experimental values based on the designed parameterized dynamic
model. The objective function, based on the errors in dynamic stiffness, is formulated as
follows in Equation (21):

Fobj =
n

∑
i=1

( ki
dyn − ki

dyn_t

ki
dyn_t

)2 (21)

where n is the number of identification conditions, ki
dyn_t represents the dynamic stiffness

test data, and ki
dyn represents the dynamic stiffness of the i-th condition calculated by the

bushing dynamics model.
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To ensure the accuracy of parameter identification for the rubber bushing model and
improve the fitting precision of the model, it is important to enforce constraints during the
parameter identification process to prevent significant discrepancies between the model’s
fitted data and the experimental data. Therefore, the following constraints are established:∣∣∣∣∣ k

i
dyn − ki

dyn_t

ki
dyn_t

∣∣∣∣∣ ≤ 0.1 (22)

Calculate the bushing dynamic stiffness using Equation (23):

F0 =
√
(Fe0 + Ff 0 + Fv0Re)

2 + (Fv0lm
2)

Kdyn = F0/x0

(23)

The objective function Equation (21) is used as the fitness function for the parameter
identification of the rubber bushing model. Two different optimization algorithms, adaptive
chaotic multi-particle swarm optimization (ACMPSO) and particle swarm optimization
(PSO), are applied to identify the parameters of the viscoelastic element.

After debugging, the following algorithm parameters are selected:
Population size: 50, particle dimension: 7, position vector x = (k1, k2, c1, c2, α, β, γ),

particle search space lower limit xmin = (0, 0, 0, 0, 0, 0, 0), particle search space upper limit
xmin = (500, 500, 500, 500, 1, 1, 1), maximum inertia weight wmax = 1.2, minimum inertia
weight wmin = 0.1, learning factors c1 = 1.5, c2 = 1.5, c3 = 0.5, and maximum number
of iterations of 300. The PSO algorithm uses linearly decreasing inertia weight. The
identification process is carried out using 0.2 mm dynamic stiffness data, as shown in
Figure 8.
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Figure 9 is a comparison of the optimization performance between the two algorithms,
and it is clear that the PSO algorithm has fallen into premature convergence, while the
ACMPSO algorithm has a stronger optimization ability.
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Figure 10 illustrates the results of parameter identification and model fitting based
on the rubber bushing dynamic model using experimental data obtained from a 0.2 mm
amplitude test. The model is then used to fit dynamic stiffness data obtained from tests
with amplitudes of 0.2 mm, 0.3 mm, 0.5 mm, and 1 mm, respectively.
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As shown in Figure 11, the dynamic model’s fitted data for bushing amplitudes of
0.2 mm, 0.3 mm, and 0.5 mm closely match the test data with little deviation. However,
when comparing the fitted data with the experimental data for the large amplitude of
1 mm loading test condition, it is evident that the fitting accuracy has decreased. The
identification parameter results are shown in Table 2.
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Table 2. Identification results of bushing model parameters.

Model Parameter Identification Results

k1/(N·sβ−γ) 1.2766
k2/(N·sβ−α) 243.8196

c1/(N·sγ) 49.2227
c2/(N·sβ) 15.2644

α 0.8913
β 0.9863
γ 0.937

5. Parameter Sensitivity Analysis of Viscoelastic Element of the Rubber
Bushing Model
5.1. Choice of Parameter Sensitivity Analysis Method

Parameter sensitivity analysis is an empirical analysis method used to evaluate the
sensitivity of a model’s output results to variations in its input parameters. Commonly
used methods for parameter sensitivity analysis include one-factor-at-a-time analysis, the
Morris method, and the Sobol method, among others.

Compared to other parameter sensitivity analysis methods, the Sobol method does
not require individually varying each parameter. Instead, it estimates sensitivity indices
using a set of randomly sampled parameter values, which significantly reduces the number
of model simulations required. This advantage makes the Sobol method more widely
applicable in cases with multiple parameters, especially in high-dimensional parameter
spaces that involve extensive computations.

In this study, the parameter sensitivity analysis of the rubber bushing in the vehicle’s
subframe is conducted using the Sobol method.

5.2. Sensitivity Analysis of Rubber Bushing Model Parameters Based on the Sobol Method

The Sobol method is a variance-based sensitivity analysis method that decomposes the
variance of the target model output to quantify the influence of individual input parameters
or combinations of parameters and their interactions. The method separates the effects of
single parameters from the effects of combinations of parameters in multi-parameter set
functions [22].

Any model can be regarded as Y = f (x), where f (x) can be decomposed according to
Equation (24).

Y = f0 +
d

∑
i=1

fi(Xi) +
d

∑
i<j

fij(Xi, Xj) + · · ·+ f1,2,···d(X1, X2 · · ·Xd) (24)

k = i1, i2 · · · is. All terms in the decomposition are orthogonal. The definition of the
conditional expectation of the function decomposition is given by Equation (25).

f0 = E(Y)
fi(Xi) = E(Y

∣∣Xj)− f0
fij(Xi, Xj) = E(V

∣∣Xi, Xj)− f0 − fi − f j

(25)

Assuming further that f (x) is square-integrable, the function can be squared and
integrated after decomposition and expressed in the form of variance as:

Var(Y) =
d

∑
i=1

Vi+
d

∑
i<j

Vij + · · ·+ V1,2···d (26)

{
Vi = VarXi (Ex−i (Y

∣∣Xi))

Vij = VarXij(Ex−ij(Y
∣∣∣Xi, Xj))−Vi −Vj

(27)
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The sensitivity of each input is usually represented by a numerical value, called a
sensitivity index.

The expression for the first-order Sobol’s index is given by Equation (28).

Si =
Vi

Var(Y)
(28)

The expression for the total-order Sobol’s index is given by Equation (29).

STi =
EX∼i (VarXi (Y

∣∣X∼i))

Var(Y)
= 1− Varx∼i (Exi (Y|X∼i))

Var(Y)
(29)

Using Monte Carlo estimation to calculate the above two indices, the expressions are
as follows, where A and B are sample matrices.

Vi ≈
1
N

j=1

∑
N

f (B)j

(
f (Ai

B)j − f (A)j

)
(30)

EX∼i (VarXi (Y|X∼i)) ≈
1

2N

j=1

∑
N

(
f (Ai

B)j − f (A)j

)2
(31)

The Sobol method involves several steps, including the use of Monte Carlo estimation.
Here are the main steps of the Sobol method:

• Set parameter ranges: Define the ranges of the input parameters for the model.
• Set the number of sampling points: In this study, the number of sampling points N

ranges from 4 to 4000, increasing by 50 at each step.
• Monte Carlo sampling: Use the Monte Carlo method to randomly sample the input

parameters within their specified ranges.
• Form the sample matrices A and B: Based on the Monte Carlo sampling, form the

sample matrices A and B, which represent the input parameter values.
• Calculate the model output: Use the sample matrices A and B to calculate the model

output for each set of input parameter values.
• Compute the first-order and total sensitivity indices: Utilize the model output to

calculate the first-order sensitivity indices and total sensitivity indices for each input
parameter. These indices measure the contribution of each parameter to the output
variance and the total effect of each parameter, respectively.

By following these steps and gradually increasing the number of sampling points, the
Sobol method allows for the evaluation of the sensitivity of the model to variations in the
input parameters and helps to understand the relative importance of each parameter in
influencing the model output.

Using the initial value range of the bushing model parameters in Table 3, the first-
order Sobol sensitivity index and total effect index are calculated according to the analysis
steps 1–6. The results are shown in Figures 12 and 13 and Table 4.

Table 3. The initial value range of the bushing model parameters.

Model Parameter Identification Results

k1/(N·sβ−γ) [0, 10]
k2/(N·sβ−α) [125, 400]

c1/(N·sγ) [25, 75]
c2/(N·sβ) [10, 20]

α [0.5, 1]
β [0.5, 1]
γ [0.5, 1]
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Table 4. First–order and total–order Sobol’s index of input parameters of bushing model.

Model Parameter First–Order Sobol’s Index Total–Order Sobol’s Index

k1/(N·sβ−γ) 0.0007 0.0005
k2/(N·sβ−α) 0.0593 0.1044

c1/(N·sγ) 0.0042 0.0145
c2/(N·sβ) 0.0066 0.0220

α 0.1807 0.2670
β 0.6180 0.7209
γ 0.0144 0.0388

As shown in Table 4, it was evident that the parameters α, β, and k2 had a signifi-
cant impact on the dynamic stiffness prediction of the rubber bushing model. Therefore,
these three parameters were subjected to parameter recalibration. Specifically, the dy-
namic characterization of the rubber bushing model’s parameters was re−identified using
experimental data at 0.3 mm, 0.5 mm, and 1 mm amplitudes.

By comparing Figure 14 with Figure 15, it is found that the bushing model after
parameter correction can better fit the test data. The error comparison before and after
parameter correction is shown in Table 5.

Table 5. Error comparison before and after the bushing model parameter correction.

Amplitude (mm) Error before Correction (%) Error before Correction (%)

0.3 4.07 2.43
0.5 4.42 4.38
1 28.82 7.45
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6. Conclusions

This paper focuses on the dynamic analysis of the rubber bushing in the rear sub-
frame of an electric vehicle. Based on dynamic loading frequency and amplitude-related
experimental results, a rubber bushing dynamic model is established, comprising elastic,
frictional, and viscoelastic elements. The following conclusions are drawn after conducting
parameter identification and sensitivity analysis for the viscoelastic element of the bushing
model:

1. The proposed combination of the Maxwell and Kelvin–Voigt models for the vis-
coelastic element in the rear sub-frame rubber bushing dynamic model significantly
improves the fitting accuracy to the experimental data after parameter identification
using an adaptive chaotic improved particle swarm optimization algorithm.

2. The sensitivity analysis of the bushing model parameters reveals that recalibrating
the α, β, and k2 parameters further enhances the fitting accuracy of the model after
re-identification.
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Appendix A

Parameters Units

Fe, Ff , Fv, Ff max, Ff s N
x, xs, x0, x2 mm

E f N·mm
k∗v(s), ke, kmax, ki

dyn, ki
dyn_t N·mm−1
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