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Abstract: The increasing interest in environmental protection has propelled reverse logistics as
a challenging field in supply chain optimization. This paper addresses the vehicle routing problem
with simultaneous pick-up and delivery (VRPSDP) while considering fuzzy payloads, with the
primary objective of minimizing fuzzy fuel consumption. The VRPSDP with fuzzy payloads poses
a computationally intractable challenge, as it involves a fleet of vehicles departing from a central
depot to both deliver and collect goods from a dispersed group of customers. To effectively tackle
this problem, a genetic algorithm is applied that incorporates the concept of fuzziness. This problem
diverges from the traditional VRPSDP by explicitly considering fuel consumption reduction towards
environmental sustainability. To validate and assess the feasibility of the proposed approach, a series
of test instances are utilized. The numerical results exhibit the efficiency of the proposed method and
place emphasis on the influence of uncertainty in the quantities of goods collected and delivered by
customers on the resulting solution.

Keywords: reverse logistics; vehicle routing problem; pick-up and delivery; fuzzy payloads; fuel
consumption; genetic algorithm

1. Introduction

As energy overuse and caused pollution pose a potential threat to our environmental
and ecological conditions, many researchers have turned their research studies and efforts
towards environmental protection. Reducing the amount of energy consumption is of
major importance. Environmentally sensitive logistics require a sustainable distribution
network with fewer negative impacts on the environment and ecology, since transportation
comprises the major part of logistics. Sustainable transportation is a global goal in the
field of logistics, and the incorporation of electric vehicles emerges as a pivotal strategy
for attaining this objective [1]. Through the strategic emphasis on sustainability, logistics
companies can actively mitigate the adverse environmental consequences of transportation
and advance in enduring economic and social sustainability [2].

Towards this direction, businesses employ the practice of reverse logistics to facilitate
the movement of merchandise from its intended endpoint to any location within the supply
chain in the opposite direction. Reverse logistics is the process of moving goods from their
final destination back to the manufacturer or point of origin for purposes such as returns,
recycling, or disposal. Reverse logistics constitutes a category within the realm of supply
chain management, encompassing all activities associated with the reversionary flow of
products and materials. As a result, reverse logistics is strongly related to many planning
problems, which can be considered variants of the vehicle routing problem (VRP).

The traditional VRP is a challenging combinatorial optimization issue, initially intro-
duced in 1959, known to be NP-hard in nature [3]. The VRP involves the task of finding
the most efficient routes for a group of vehicles that commence and conclude their tours
at a central depot. The primary goal is to provide services to a group of customers while
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minimizing the overall cost subject to specific constraints. Typically, this cost is measured
as a function of the total distance covered. Several variations in the classical VRP have been
investigated and classified in the relevant literature [4–8].

In numerous practical scenarios occurring within transportation and distribution
systems, customers present dual requirements encompassing both the pick-up and delivery
of goods. To this end, researchers have shifted their attention towards an extension of the
fundamental VRP, denoted as the vehicle routing problem with simultaneous delivery and
pick-up (VRPSDP). The VRPSDP was firstly proposed in [9] and addresses the challenge of
dispatching vehicles from a central depot to deliver goods to customers while concurrently
retrieving goods from customers back to the central depot.

Due to the NP-hard nature of the VRPSDP, its inherent complexity grows exponentially
with an increase in the number of customers; thus, metaheuristics are used to detect
optimal solutions into reasonable computing. The authors in [10] proposed a generalized
formulation of VRPSPD by applying a solution method based on the PSO algorithm. The
primary objective of this model is to minimize the routing costs that encompass both fixed
transportation costs and variable costs per unit of distance. The computational result
exhibits the effectiveness of the proposed PSO method in addressing the VRPSDP.

In [11], the authors study the VRPSPD time windows considering service quality,
which is strongly linked with customer satisfaction. Their proposed model seeks to mini-
mize the cumulative distance covered by vehicles, thereby reducing costs, while simultane-
ously maximizing the customers’ satisfaction, thus enhancing service quality. The nearest
neighbor method provides an initial solution that is improved by the tabu search algorithm.
Several group problems are designed to assess the performance of the proposed algorithm.

The researchers in [12] investigate the fuzzy green VRPSDP with time windows, with
the primary objective being to minimize fuel consumption and vehicle emission-related
costs. Accordingly, they formulate a mixed-integer nonlinear programming model. Con-
sidering fuzziness in both pick-up and delivery demands, a fuzzy approach incorporating
credibility measures is adopted. The optimization model is based on an adaptive large
neighborhood search heuristic. The experimental outcomes validate the effectiveness and
superior performance of the proposed algorithm.

In [13], an optimization approach is proposed in the context of minimizing carbon
emissions costs. To address the simultaneous pick-up and delivery vehicle routing problem,
an adaptive genetic hill-climbing algorithm is devised and subsequently validated through
numerical experimentation. The authors focus on the environmental issues in the VRPSDP
by discussing and analyzing the effects of the carbon tax as well as the effect of vehicle
speed on total cost and carbon emissions.

The researchers in [14] investigate the VRPSDP and developed a vehicle routing
model with two optimization criteria: the minimization of the total travel time and the
maximization of the total number of goods to be collected. A polynomial time approxima-
tion algorithm based on the ε-constraint method is designed to address the problem. The
effectiveness of this newly devised approach is assessed using multiple test cases, yielding
valuable managerial insights via sensitivity analysis.

The authors in [15] consider the fuzzy capacitated location-routing problem with si-
multaneous pick-up and delivery demands. The optimization objective is the minimization
of routing costs and fixed costs of establishing depot(s), and the employment of vehicles.
A greedy clustering method (GCM) is developed together with the fuzzy credibility theory,
which deals with fuzziness. In [16], the existing pick-up and delivery problems are consid-
ered in the context of time windows considering the passenger travel time and toll cost due
to the vehicle load considering traffic congestion.

From a green perspective, reducing energy consumption poses a significant challenge
within the realm of logistics. Thus, diminishing fuel usage holds considerable promise for
simultaneously lowering costs and mitigating the environmental pollutants that pose signif-
icant risks to human health. Fuel consumption is subject to various factors, encompassing
the distance traveled and the cumulative weight of the vehicle, which encompasses both
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the weight of the empty vehicle and the cargo it transports. This work is an extension of [17]
and intends to identify the potential research gaps in the existing literature concerning
uncertainty in pick-up and delivery loads while optimizing fuel consumption considering
environmental sustainability.

In light of these considerations, this research delves into the challenge of reducing
energy consumption within the context of the VRPSDP. In order to reflect real-world
situations, both pick-up and delivery customers’ quantities are considered to be uncertain
and are represented through triangular fuzzy numbers. To facilitate the handling of fuzzy
calculations and the ranking of fuzzy numbers, the concept of total integral value is adopted.
An optimization strategy is developed based on a genetic algorithm (GA), which integrates
fuzzy principles related to pick-up and delivery quantities. Through experimental tests, the
study demonstrates the efficacy and efficiency of the proposed optimization model, while
also exploring how uncertainties in customer quantities affect the overall fuzzy payloads.

The literature review reveals that it is the first time that the VRP with fuzzy pick-
up and delivery payloads is conducted in the context of fuel consumption minimization.
In this regard, the main innovations and contribution of this work are summarized as
the following:

• The traditional VRPSDP aims at the minimization of the travel cost. In this work, the
optimization criterion is the energy consumption linked with fuel consumption, which
is a critical concern in transportation and distribution logistics.

• In contrast to the VRPSDP, this methodology treats payloads as fuzzy rather than fixed
deterministic, aiming to encapsulate the inherent uncertainty present in real-world
situations. The optimization solution method integrates fuzzy concepts based on the
total integral value. The study investigated the impact of the uncertainty in customers’
quantities on the optimum route.

2. VRPSDP Formulation
2.1. VRPSDP Description

Consider m homogeneous vehicles with a maximum finite capacity, Q0, located at
a central depot, where all vehicles initiate and terminate their routes. A number of n
customers should be served, each associated with uncertain quantities for pick-up and
delivery. Each vehicle needs to complete the simultaneous pick-up and delivery service
when it arrives at the location of each customer. The objective here is to plan travel routes
for each vehicle in such a way that fuzzy fuel consumption is minimized, ensuring that all
specified quantities are collected and delivered. Regarding the fuzzy pick-up and delivery
quantity of the next customer, a decision should be established about sending the vehicle
back to the central depot or sending the vehicle to serve the next customer. The primary
optimization goal for this problem is to minimize overall fuel consumption.

This scenario is built upon the following assumptions:

• Each customer is served by exactly one vehicle;
• Each vehicle starts and returns back to the depot;
• The fuzzy payload for each tour is constrained not to surpass the vehicles’ available

capacity.

2.2. Fuzzy Numbers: Definition and Ranking

In this work, fuzzy numbers are used to express the uncertainty embedded in payloads
to better reflect real-life situations. Zadeh [18] firstly introduced the concepts of fuzzy set
theory. Fuzzy sets are characterized by the degree of membership. In this study, triangular
fuzzy numbers (TFNs) are defined to represent fuzzy data. Although there are several
types of fuzzy membership functions, triangular fuzzy numbers are preferable, since they
are defined by only three parameters. This means that they are simple, and that they are
computationally less demanding compared to other fuzzy sets. In addition, they have clear
interpretations: the lower and upper bounds represent the range of uncertainty, while the
modal value indicates the most likely or typical value. This makes it easier for users to
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interpret and apply these fuzzy variables in various applications and for experts to provide
information about the lower and upper bounds, as well as the modal value, based on their
knowledge and experience, making the fuzzy model more reflective of human reasoning.

A TFN Ã (Figure 1) is defined by a triplet (a1, a2, a3), where a2 is the most probable
value, a1 is the smallest likely value and a3 is the largest possible value. Consequently, the
actual demand may be between the optimistic value, a1, and the pessimistic value, a3, with
a grade of membership within the interval [0 1].

Figure 1. A TFN Ã.

Since pick-up and delivery quantities are modeled as TFNs, fuzzy operations for the
TFNs Ã = (α1, α2, α3) and B̃ = (β1, β2, β3) are calculated as follows:

Ã + B̃ = (α1 + β1, α2 + β2, α3 + β3)

Ã − B̃ = (α1 − β3, α2 − β2, α3 − β1)
(1)

In terms of ranking fuzzy numbers, this paper employs a flexible approach based on
the concept of the integral value, as introduced in [19]. The total integral value allows for
the ordering of fuzzy numbers. This is essential in applications where it is necessary to
compare and rank fuzzy quantities, such as in decision-making processes. The ordering of
fuzzy numbers provides a basis for making decisions in situations involving uncertainty.

The total integral value for a TFN Ã = (a1, a2, a3) is a convex combination of the left
integral value, which represents an optimistic perspective, and the right integral value,
symbolizing the pessimistic standpoint of the manager. This is achieved through an index
of optimism denoted as λ, which falls within the range [0,1]. The resultant total integral
value is

Eλ
(

Ã
)
=

1
2
(λa3 + a2 + (1 − λ)a1) (2)

and is used as the ranking metric. Thus, for any pair of fuzzy numbers Ã and B̃, if
Eλ

(
Ã
)
< Eλ

(
B̃
)

, then Ã < B̃, if Eλ
(

Ã
)
= Eλ

(
B̃
)

, Ã = B̃ and if Eλ
(

Ã
)
> Eλ

(
B̃
)

, and
A > B. The index of λ represents the degree of optimism of a decision maker.

2.3. Model Description

In this paper, the VRPSDP considering the minimization of fuel consumption is stud-
ied. Based on the model presented in [20], the energy consumption is directly linked to
the frictional resistance between the vehicle and the road, as well as the distance traveled.
Given that the frictional force is influenced by the vehicle’s payload, the energy consump-
tion is significantly affected by both the payload and the distance covered during travel.
Consequently, the payload varies and is affected by the sequence in which the vehicle visits
the customers.

Consider that each vehicle is supplied with an amount of goods, P0, before it departs
from the depot. Each customer is assigned a fuzzy pick-up quantity, p̃i, and a fuzzy
delivery quantity, q̃i. Assuming that all vehicles share the same maximum available capacity,
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denoted as Q0, the fuzzy capacity available for each vehicle after serving k customers is
given by the following:

Q̃k = Q0 −
k

∑
i=1

( p̃i − q̃i) (3)

If the available fuzzy capacity, Q̃k, when reaching a customer is greater than the fuzzy
load quantity, 𝓁k+1 = ( p̃k+1 − q̃k+1), at the next customer, then the vehicle should serve
the next customer; otherwise, the vehicle is sent back to the depot. The vehicle capacity
constraint is expressed as

p̃k+1 − q̃k+1 ≤ Q̃k (4)

Equation (4) is modeled as Eλ
(
𝓁k+1

)
≤ Eλ(Qk) based on Equation (2).

Since 𝓁k+1 = ( p̃k+1 − q̃k+1) and Q̃k are triangular fuzzy numbers expressed as
𝓁k+1 = (𝓁k+1,1,𝓁k+1,2,𝓁k+1,3) and Q̃k = (Qk,1, Qk,2, Qk,3), Equation (4) is transformed
to

Eλ
(
𝓁k+1

)
≤ Eλ(Qk) (5)

λ𝓁k+1,3 + 𝓁k+1,2 + (1 − λ)𝓁k+1,1 ≤ λQk,3 + Qk,2 + (1 − λ)Qk,1 (6)

The capacity constraint is taken into account for each customer, influencing the deci-
sion on whether the vehicle should proceed to the next customer (when the constraint is
met) or return to the depot where the route ends (when violated). When the constraint is
not satisfied, another vehicle initiates a new route from the depot to the next customer, and
this process continues until all customers are serviced.

The travel distance, TDi, travelled by each vehicle is computed by the following:

TDi = di
01 +

k−1

∑
j=1

(
di

j,j+1

)
+ di

10 (7)

where di
01 is the distance from depot to the 1st customer of the i-route, di

j,j+1 is the distance

from the j customer to the j + 1 customer and di
10 is the distance from the 1st customer of

the i-route to the depot.
The primary optimization objective is to minimize the fuel consumption across all

vehicles, and it is calculated using the following formula:

F̃Ctotal = µW0

r

∑
i=1

TDi + µP0

r

∑
i=1

di
01 + µ

n

∑
j=1

[
P̃j −

(
p̃j − q̃j

)]
Dj (8)

where r is the total number of vehicles (routes) imposed by the capacity constraint, µ is
the coefficient of friction, W0 is the weight of the vehicle departing from the depot, n is the
number of customers and Dj refers to the distance covered by a vehicle while transporting
the load from the j customer and subsequently returning it to the depot, following the
specified travel route.

The fuel consumption, as represented in Equation (8), can be divided into three
components. The first component calculates fuel consumption attributed to the empty
vehicle’s weight, the second component computes fuel consumption related to the weight
of the items transported from the depot to the initial customer, and the third component
calculates fuel consumption associated with the weight of the fuzzy quantities transported
throughout the entire tour.

3. The Developed Genetic Algorithm

The VRPSDP is an NP-hard problem; thus, traditional methods can hardly provide
a solution. Consequently, researchers have shifted their attention towards intelligent al-
gorithms, such as evolutionary algorithms. Genetic algorithms (GAs) [21] are a particular
class of evolutionary algorithms inspired by natural selection and genetic principles, and
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they find extensive utility in addressing diverse real-world problems involving combina-
torial optimization and searching. Genetic algorithms are proven to be effective tools for
finding near-optimal solutions to complex combinatorial optimization problems. Since no
benchmarks are available for comparison in the open literature, the provided results are the
optimal solutions found applying the proposed optimization approach. Nevertheless, there
is no guarantee that they are the optimal ones. In this work, a special GA is developed that
can handle fuzziness and is described in the following paragraphs.

Chromosome encoding: Each potential solution is expressed by a chromosome and
comprises a permutation of n integers. Each integer corresponds to a specific customer, and
the order of these integers reflects the sequence in which the customers are served. An illus-
tration of a potential chromosome for a scenario involving 10 customers is provided below:

2 5 6 10 1 3 8 4 7 9

This represents a possible sequence for serving the customers. Nevertheless, the
ultimate tours, representing the total number of vehicles used, are determined by the
capacity constraint. As a result, the tours are not defined through the construction of the
chromosome, but directly from the constraint. Moreover, the depot (being the starting and
the ending point for each tour) is not included as a separate integer in the chromosome,
but its location is considered for the calculations.

Fitness function: The fitness function evaluates the quality of a potential solution and
assigns a fitness score as follows:

f itness =
1

FCtotal
(9)

Genetic operators: Roulette wheel selection is applied for Reproduction, where each
individual’s fitness value determines their chance of being selected. Thus, chromosomes
with higher fitness scores are more likely to be chosen. Crossover generates new offspring by
exchanging the genetic material of the parents. In this work, the order crossover (OX) [22] is
used considering the crossover rate. Mutation introduces random changes into the genetic
material of the chromosomes, allowing for the exploration of new solutions. In this work,
the inversion ([22]) is applied considering the mutation rate.

4. Simulation Results

The computational results provided by the developed GA are presented and discussed
in this section. The simulations were implemented with MATLAB R2020a using a PC
with a 3.5 GHz processor. Experimental tests were conducted by applying this proposed
optimization approach to some benchmark instances to assess the performance of the
developed optimization algorithm. Since no benchmarks are available for comparison in
the open literature, the benchmark instances proposed by ([23]) are modified to generate
the VRPSDP benchmark instances (for available data, see http://vrp.galgos.inf.puc-rio.br/
index.php/en/ accessed on 5 September 2023).

For the case of fuzzy pick-up and delivery quantities, we create the VRPSPD instances
as follows. Let the delivery quantity, p̃i, of each customer remain the same as its original
quantity in the CVRP instance, let the pick-up of the first customer be q̃1 = p̃n and let
the pick-up of the any other customer i be q̃i = p̃i−1. Concerning the maximum available
capacity, we considered that it is half of the original one. It is also considered that half of
the maximum available capacity is full of goods.

Moreover, the crisp pick-up and delivery quantities are converted into triangular
fuzzy sets as follows: Each crisp quantity is fuzzified considering that α2 is equal to
this crisp quantity. The two extreme values of the support are computed as follows:
α1 = α2·δ1 and α3 = α2·δ2, setting δ1 equal to 0.85 and δ2 equal to 1.3. Regarding the
GA control parameters, the following values are determined after extensive experimen-
tation: size of population = 100; maximum generations = 1500; crossover rate = 0.8; and

http://vrp.galgos.inf.puc-rio.br/index.php/en/
http://vrp.galgos.inf.puc-rio.br/index.php/en/
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mutation rate = 0.09. Considering a moderate decision maker, the index of λ in Equation (2)
is set to 0.5.

Consequently, 11 distinct benchmark instances in total were evaluated, encompassing
varying numbers of customers ranging from 22 to 101. These instances also featured diverse
fuzzy pick-up and delivery quantities and maximum available capacity specifications. For
each of these test instances, the genetic algorithm (GA) was executed 10 times, and the
obtained solution among these runs was chosen. Table 1 summarizes the outcomes obtained
through the application of the developed genetic algorithm (GA) combined with fuzzy
logic. It is worth noting that although the fuel consumption is a fuzzy variable, a single
value is presented in Table 1 based on the computation through the integral value. Given
that the benchmark solutions are available for the capacitated vehicle routing Problem
(CVRP), which is a deterministic problem featuring a single optimization criterion (traveled
distance), it is important to note that optimal solutions are not readily available for the
VRPSDP incorporating fuzzy pick-up and delivery quantities.

Table 1. Experimental results for the tested benchmark instances.

Instance Number of Routes Fuel Consumption
(Integral Value)

E-n22-k4 4 1,331,704
E-n23-k3 4 1,750,248
E-n30-k3 7 2,850,979
E-n33-k4 5 6,776,371
E-n51-k5 5 173,776
E-n76-k7 4 603,628
E-n76-k8 4 482,751
E-n76-k10 7 340,329
E-n76-k14 10 221,101
E-n101-k8 5 922,964

E-n101-k14 10 477,143

An interesting indication of the problem’s complexity is the variation in the calculation
time versus the number of customers. Several experiments were conducted for different
numbers of customers (22, 23, 30, 33, 51, 76, and 101). As illustrated in Figure 2, the
graphical representation underscores the relationship between computational time and
task point density, revealing an almost linear progression of CPU utilization as the number
of task points increases.

Figure 2. The CPU time versus the number of customers.

With the aim to visualize the results, the experiment for the case of 1 central depot and
21 customers (E-n22-k4) is conducted having a maximum available capacity of Q0 = 3000.
The provided solution for this benchmark instance includes four tours shown in Figure 3;
the tour of vehicle#1 includes four customers (blue line), the tour of vehicle#2 includes four
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customers (magenta line), the tour of vehicle#3 includes five customers (green line) and
the tour of vehicle#4 includes seven customers (cyan line). In particular, the sequence that
follows each vehicle while serving the customers is as follows:

Vehicle#1: depot → 10 → 8 → 1→ 17 → depot
Vehicle#2: depot → 20 → 16 → 15 → 18 → 14 → depot
Vehicle#3: depot → 6 → 5 → 2 → 4 → 3 → depot
Vehicle#4: depot → 21 → 19 → 11 → 13 → 12 → 7 → 9 → depot
This implies that each vehicle starts from the depot, serves a number of customers

with fuzzy pick-up and delivery quantities, and returns to the depot. At the end of each
tour, each vehicle is linked with a total fuzzy pick-up quantity and a total fuzzy delivery
quantity, which are presented in Table 2.

To examine the impact of uncertainty in customers’ pick-up and delivery quantities on
the solution yielded by the GA, we modify the support width of the fuzzy pick-up and de-
livery quantities. Two test cases are conducted: (δ1, δ2) = (0.7, 1.6) and (δ1, δ2) = (0.9, 1.2),
corresponding to a wider and a narrower support, respectively. Obviously, a wider support
(e.g., (δ1, δ2) = (0.7, 1.6)) encompasses more uncertainty in the customers’ quantities, while
a narrower support (e.g., (δ1, δ2) = (0.9, 1.2)) decreases the uncertainty and leads towards
the most plausible quantities.
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Figure 3. The solution yielded by the GA for the benchmark instance E-n22-k4.

Table 2. Fuzzy pick-up and delivery quantities for the vehicles.

Vehicle# Fuzzy Pick-Up Quantities Fuzzy Delivery Quantities

1 (3485, 4100, 5330) (2380, 2800, 3640)
2 (5100, 6000, 7800) (5100, 6000, 7800)
3 (5185, 6100, 7930) (4590, 5400, 7020)
4 (5355, 6300, 8190) (7055, 8300, 10,790)

The impact of uncertainty modifications is examined using the previously mentioned
test instance, which involves 21 customers and 1 central depot. The outcomes pertaining to
the total fuzzy pick-up and delivery payloads for each of the four vehicles are presented
in Figure 4a–d and Figure 5a–d, respectively. As one can see from these figures, more
uncertainty in customers’ pick-up quantities yields a wider support of the total fuzzy pick-
up and delivery payload. On the contrary, reduced uncertainty in the quantities collected
from customers (i.e., when δ1 = 0.9 and δ2 = 1.2) leads to a more confined range (i.e., closer
to the most likely value) for the total fuzzy payload.
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Figure 4. The total fuzzy pick-up payload for (a) vehicle#1, (b) vehicle#2, (c) vehicle#3, and (d) vehi-
cle#4 for the test case of 21 customers.

Figure 5. The total fuzzy delivery payload for (a) vehicle#1, (b) vehicle#2, (c) vehicle#3, and (d) vehi-
cle#4 for the test case of 21 customers.
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Based on the outcomes of our experiments, we can deduce that the enlargement of
the ranges associated with the fuzzy payloads is notably influenced by the increase in
uncertainty in both pick-up and delivery quantities. On the contrary, when the uncertainty
of pick-up and delivery quantities is decreased, the supports of the fuzzy payloads become
narrower. As a general remark, as much as ambiguity in payloads is increased, uncertainty
in solutions yielded is also increased; in other words, as much as solutions diverge from
real situations, we are driven to more costly solutions.

5. Conclusions

This paper examines the VRPSPD involving fuzzy payloads, with a primary focus on
minimizing fuel consumption. Fuel consumption is mainly affected by the load carried
by the vehicles as they traverse their routes. To better represent real-world scenarios, the
proposed model takes into account uncertain pick-up and delivery quantities for customers,
expressed using TFNs. To address the computational complexity of this problem and arrive
at a near-optimal solution, an optimization strategy based on genetic algorithms (GAs) is
developed. This approach incorporates the concept of fuzziness using the integral value
concept, enhancing its ability to handle fuzzy parameters effectively.

The effectiveness of the developed optimization model is validated through test
instances from the existing literature, which have been adapted for use in the VRPSDP
involving fuzzy pick-up and delivery quantities. To explore how uncertainties in the
quantities collected and delivered by customers impact the solution yielded by the GA, we
manipulate the level of uncertainty by adjusting the supports. The outcomes concerning the
overall fuzzy pick-up and delivery payloads demonstrate that as the uncertainty regarding
customer quantities increases, there is a corresponding increase in the uncertainty of the
total fuzzy pick-up and delivery payloads.

This work makes a dual contribution. Firstly, the model developed here focuses on
minimizing fuel consumption, acknowledging the critical need to reduce energy consump-
tion, given the adverse environmental consequences of fuel use and the rising operational
expenses. Secondly, the incorporation of fuzzy concepts to manage uncertainties in pick-up
and delivery quantities enhances the representation of real-world scenarios

Further research will also be devoted to the real-world factors influencing fuel con-
sumption, such as weather conditions, road slopes as well as traffic conditions on the roads.
Another challenging issue is the study of the multi-objective VRPSDP with fuzzy pick-up
and delivery quantities considering both the travelled distance and fuel consumption.
Another great challenge is extending our model in order to address additional realistic
issues such as traffic congestion on roads in real-life urban scenarios based on the work
presented in [24–27]. In this context, the impact of road traffic conditions will be evaluated
regarding fuel consumption.
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