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Abstract: Single lane changing is one of the typical scenarios in vehicle driving. Planning a suitable
single lane changing trajectory and tracking that trajectory accurately is very important for intelligent
vehicles. The contribution of this study is twofold: (i) to plan lane change trajectories that cater to
different driving styles (including aspects such as safety, efficiency, comfort, and balanced perfor-
mance) by a 7th-degree polynomial; and (ii) to track the predefined trajectory by model predictive
control (MPC) through four-wheel steering. The growing complexity of autonomous driving systems
requires precise and comfortable trajectory planning and tracking. While 5th-degree polynomials
are commonly used for single-lane change maneuvers, they may fail to adequately address lateral
jerk, resulting in less comfortable trajectories. The main challenges are: (i) trajectory planning and
(ii) trajectory tracking. Front-wheel steering MPC, although widely used, struggles to accurately
track trajectories from point mass models, especially when considering vehicle dynamics, leading to
excessive lateral jerk. To address these issues, we propose a novel approach combining: (i) 7th-degree
polynomial trajectory planning, which provides better control over lateral jerk for smoother and more
comfortable maneuvers, and (ii) four-wheel steering MPC, which offers superior maneuverability and
control compared to front-wheel steering, allowing for more precise trajectory tracking. Extensive
MATLAB/Simulink simulations demonstrate the effectiveness of our approach, showing improved
comfort and tracking performance. Key findings include: (i) improved trajectory tracking: Four-wheel
steering MPC outperforms front-wheel steering in accurately following desired trajectories, especially
when considering vehicle dynamics. (ii) better ride comfort: 7th-degree polynomial trajectories, with
improved control over lateral jerk, result in a smoother driving experience. Combining these two
techniques enables safer, more efficient, and more comfortable autonomous driving.

Keywords: intelligent vehicle; single lane change; trajectory planning; model predictive control;
four-wheel steering; 7th-degree polynomial

1. Introduction
1.1. Motivations

Lane change maneuvers, such as overtaking or avoiding obstacles, are common
driving scenarios for intelligent vehicles, typically involving a single lane change. Lane
change trajectories greatly affect safety, efficiency, and comfort. Furthermore, even with
the same lane change trajectory, varying tracking control methods can yield different
control outcomes.
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1.2. State-of-the-Art

There are three primary reasons for a vehicle to change lanes: (i) a breakdown ahead,
(ii) overtaking, and (iii) traffic regulations. Research on single lane changes has concentrated
on both trajectory planning and tracking. Most trajectory planning approaches simplify
the vehicle as a point mass model, neglecting its dynamics. Optimal distance and time
for lane changes can be determined using 5th-degree polynomial trajectory planning
for high initial velocities [1]. In a sudden lane change situation, the clearance curve
derived from the bicycle model is closely related to the point mass model [2]. By means
of Pontryagin’s maximum principle, an appropriate choice of Lagrangian functions can
produce almost time-optimal continuous curvature paths [3]. Arcs, polynomials, sinusoidal
slopes, trapezoids and trapezoidal acceleration curves can be used for emergency lane
change path planning [4]. Neural networks can predict self-vehicle and neighboring vehicle
trajectories to prevent collisions [5]. A framework for generating and displaying 5th-degree
polynomial curves as self-driving car trajectories was proposed in [6]. Overtaking lane
change trajectories have also been investigated [7–10]. Based on the optimal prediction
method, ref. [7] designed a smooth and safe optimal trajectory generation scheme for
overtaking self-driving vehicles, which can be used in various traffic scenarios. Viewing
trajectory planning as an optimization task, a control design method with strong robustness
was presented in [8]. A two-stage path planning strategy has also been introduced [9],
where the first step considered vehicle dynamic behavior and road boundary conditions
for offline optimization, and the second stage considered dynamic obstacles to generate
continuous paths in real time. By combining Bessel curves with model predictive control
(MPC), ref. [10] proposed a hybrid planning method to solve the collision avoidance and
overtaking problems. Model predictive control algorithms have been used to plan vehicle
trajectories [11–13]. Using 5th-degree polynomials, a lane changing trajectory considering
comfort and efficiency was proposed [14]. Cooperative collision avoidance trajectories were
investigated by Telematics [15,16]. Deep learning [17], scene understanding and motion
prediction [18] have all been used to plan vehicle motion trajectories. A trajectory planning
method considering feasibility, safety and passenger acceptance was proposed in [19,20]
and presented new motion primitives for autonomous racing to efficiently approximate
minimum-time trajectories. Ref. [21] introduced a high-speed, two-stage, multi-layer
graph-based trajectory planner capable of reaching speeds of up to 212 km/h.

Trajectory tracking is the second priority for single lane changes, following trajectory
planning. It typically involves either purely lateral control, without accounting for longitu-
dinal velocity changes, or a simultaneous consideration of both longitudinal and lateral
motions. However, few studies focus solely on longitudinal trajectory tracking. A full suite
of performance indicators encompassing precision, robustness, and user experience was
proposed for a comprehensive assessment of lateral control [22]. Data-driven modeling
approaches have also been used for lateral vehicle maneuvering control with uncertain
model parameters [23]. As far as control methods are concerned, trajectory tracking control
broadly consists of pure tracking control by vehicle geometric models [24], Stanley tracking
control by geometric models [25], model predictive control by kinematic models [26], opti-
mal control by vehicle dynamic models [27–30], and model predictive control by dynamic
models [31–34]. In addition to these, sliding mode control [35] and fuzzy control [36] have
also been used for trajectory tracking. A novel state feedback control method considering
real-time changes in model parameters was proposed in [37]. A unified control archi-
tecture for enhancing vehicle stability and path following was developed, that took into
account longitudinal and lateral slip in tire dynamics [38]. Based on the consideration of
longitudinal–lateral coupling effects in vehicle dynamics, ref. [39] used a backward-looking
strategy to track the trajectory. A trajectory tracking control method combining deep learn-
ing and a rapidly-exploring random tree (RRT) was proposed in [40]. Classical, geometric
and predictive control trajectory tracking control methods have been compared, and three
different types of trajectory tracking tests were realized on an experimental prototype [41].
A nonlinear adaptive fractional-order terminal sliding mode control scheme was proposed
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to ensure robust path tracking performance of self-driving vehicles with uncertain dy-
namics [42]. A novel pole-seeking controller for trajectory tracking of all-wheel-drive
quadricycles was presented in [43]. Currently, research on four-wheel steering systems
mainly focuses on the following three areas: (1) Control algorithms, including research on
model-based [44] and model-free control approaches [45]; (2) Integrated control, including
integration with braking and suspension systems to enhance vehicle performance at the
limit [46], as well as integration with surrounding environmental information to improve
collision avoidance and active safety in autonomous vehicles [47]; (3) Fully independent
four-wheel steering, aimed at enhancing vehicle maneuverability and active safety [48,49].
However, research on using four-wheel steering to track different reference trajectories is
relatively limited. To summarize, the use of 5th-degree polynomials for trajectory planning
may lead to less comfortable driving experiences, as they may not effectively address
lateral jerk constraints. Furthermore, despite the widespread application of front-wheel
steering MPC, it can struggle to accurately follow trajectories derived from simplified point
mass vehicle models, especially when actual vehicle dynamics are taken into account. This
discrepancy can manifest as excessive lateral acceleration changes, compromising ride
comfort and vehicle stability.

1.3. Contributions

This study makes a novel contribution by proposing a lane-changing trajectory that
satisfies various driving styles. This trajectory ensures that the vehicle achieves optimal
performance in a specific aspect or the best overall performance during the lane-changing
process, depending on different driving styles. Furthermore, a model predictive control
approach is utilized to achieve accurate path tracking with both front- and rear-wheel
steering actuators. Compared to front-wheel steering MPC, four-wheel steering MPC
provides better overall tracking performance.

1.4. Structure Overview

The organizational structure of this study is as follows: Section 1 serves as the intro-
duction. Section 2 explains the control objectives. Section 3 provides a detailed description
of the proposed control method, encompassing trajectory planning and tracking control
algorithms. Section 4 is a comparison of the simulation results. Section 5 concludes
this study.

2. Issues to Be Addressed

In this study, we mainly address the trajectory planning and trajectory tracking prob-
lems during single lane maneuvering of intelligent vehicles, as depicted in Figure 1. When
the subject vehicle encounters a fixed vehicle or a vehicle moving slowly in the same lane,
there are three key factors involved in how to avoid the front vehicle: (i) when to change
lanes, i.e., how far away from the front vehicle to start the steering maneuver; (ii) how
to change lanes, i.e., how to design the vehicle’s trajectory during a lane change; and
(iii) what kind of control strategy is employed to follow the desired trajectory. Different
trajectory planning algorithms produce different lane changing trajectories. Even for the
same planning algorithm, under different constraints, there are significant differences in
the planned trajectories. For example, when the maximum lateral acceleration constraint is
given during the lane change, the planned trajectories are different from the trajectories
under the maximum jerk constraint. In addition, even for the same lane-changing trajectory,
if different tracking control methods are used, the resulting tracking control effects are also
different. In order to simplify the study, it assumes that the vehicle longitudinal speed
remains constant at both the start and end of the lane change.
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Figure 1. Single lane change maneuver.

3. Control System Synthesis

The test diagram of proposed method in this study is shown in Figure 2, which
is composed of four main components: (i) environment perception module; (ii) path
planning module; (iii) trajectory tracking control module; and (iv) vehicle modeling module.
Among these, the environment perception information is obtained from the vehicle sensors
and fusion algorithm, which is assumed in this study to be known beforehand. Vehicle
routing can use either a 5th degree polynomial or a 7th-degree polynomial. The 7th-
degree polynomial plans a smoother path than the 5th-degree polynomial, due to the
consideration of the jerk (the derivative of the acceleration) constraint. Trajectory tracking
is performed using a model predictive control method to track the preplanned trajectory by
two control strategies, i.e., front-wheel steering or four-wheel steering. The performance
of the proposed control algorithm is verified using a two degree of freedom (DOF) single
track model of the vehicle dynamics.
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Figure 2. Test diagram of the proposed method.

3.1. Path Planning

Research on lane change trajectory often adopts quintic polynomials. In general, cubic
polynomials are suitable for determining the vehicle’s velocity and position, whereas quintic
polynomials can additionally determine acceleration. To ensure smooth lane changes, this
study conducts trajectory planning using a 7th-degree polynomial, which can determine
the vehicle’s displacement, speed, acceleration, and jerk.

The expressions for quintic polynomial and 7th-degree polynomial are shown
as follows: {

x(t) = p5t5 + p4t4 + p3t3 + p2t2 + p1t + p0
y(t) = q5t5 + q4t4 + q3t3 + q2t2 + q1t + q0

(1)
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{
x(t) = m7t7 + m6t6 + m5t5 + m4t4 + m3t3 + m2t2 + m1t + m0

y(t) = n7t7+n6t6 + n5t5 + n4t4 + n3t3 + n2t2 + n1t + n0
(2)

Here, t represents time, x denotes longitudinal displacement, y stands for lateral
displacement, and a0–a3, b0–b3, p0–p5, q0–q5, m0–m7, and n0–n7 are the polynomial fitting
coefficients. The boundary conditions for the quintic polynomial that must be satisfied for
vehicle lane changing are as follows:x(ts) = 0,

.
x(ts) = v1,

..
x(ts) = 0, x

(
t f

)
= L,

.
x
(

t f

)
= v2,

..
x
(

t f

)
= 0

y(ts) = 0,
.
y(ts) = 0,

..
y(ts) = 0, y

(
t f

)
= W,

.
y
(

t f

)
= 0,

..
y
(

t f

)
= 0

(3)

where ts is the starting time of the lane change, tf is the ending time of the lane change, v1 is
the starting forward speed when changing lanes, v2 is the final longitudinal velocity of after
the lane change, and L and W are the longitudinal displacement and lateral displacement
of the vehicle at the starting and ending of the lane change, respectively.

When v1 = v2 = V, that is, when the vehicle speed at the starting and ending of the lane
change remains constant, the vehicle trajectory by a 5th-degree polynomial can be obtained
as follows: x(t) = VT + (L − VT)

(
10

( t
T
)3 − 15

( t
T
)4

+ 6
( t

T
)5
)

y(t) = W
(
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T
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T
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( t

T
)5
) (4)

where T indicates the length of time for the lane change, i.e., T = tf − ts. The corresponding
boundary conditions that must be satisfied for vehicle lane changing are as (3), without
considering jerk constraints, which can be referred to [1,50]. The boundary conditions for
7th-degree polynomial that must be satisfied for vehicle lane changing are as follows:x(ts) = 0,

.
x(ts) = v1,

..
x(ts) = 0,

...
x (ts) = 0, x
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= L,
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(5)



m0 = 0
m1T + m2T2 + m3T3 + m4T4 + m5T5 + m6T6 + m7T7 = L

m1 = V
m1 + 2m2T + 3m3T2 + 4m4T3 + 5m5T4 + 6m6T5 + 7m7T6 = V

m2 = 0
6m3T + 12m4T2 + 20m5T3 + 30m6T4 + 42m7T5 = 0

m3 = 0
24m4T + 60m5T2 + 120m6T3 + 210m7T4 = 0

(6)



n0 = 0
n1T + n2T2 + n3T3 + n4T4 + n5T5 + n6T6 + n7T7 = W

n1 = 0
n1 + 2n2T + 3n3T2 + 4n4T3 + 5n5T4 + 6n6T5 + 7n7T6 = 0

n2 = 0
6n3T + 12n4T2 + 20n5T3 + 30n6T4 + 42n7T5 = 0

n3 = 0
24n4T + 60n5T2 + 120n6T3 + 210n7T4 = 0

(7)

Let ts = 0 and tf = T, with v1 = v2 = V. Expanding the longitudinal displacement
equation in (5) leads to (6). Similarly, expanding the lateral displacement equation in (5)
results in (7). Finally, the vehicle trajectory by a 7th-degree polynomial can be acquired
as follows: x(t) = VT + (L − VT)
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3.2. Comparison Between Quintic Polynomials and 7th-Degree Polynomials

The vehicle peak lateral acceleration and lateral jerk are closely related to the lane
change trajectory, specifically determined by Equation (5). By solving for the lane change
duration, the peak lateral acceleration and lateral jerk corresponding to that duration can
be derived. The comparison between the 5th polynomial planning trajectories and the 7th
polynomial planning trajectories with different constraints are shown in Table 1. It can be
concluded that in scenario 1⃝, the shortest longitudinal distance of the single lane-changing
trajectory planned by the 5th-polynomial is 35.79 m and the maneuvering time is 2.42 s,
which is basically consistent with [1]. For both 5th polynomial and 7th polynomial lane-
changing trajectories, the shortest longitudinal distances increase with the increase of lane
width and speed, while they decrease with the lateral acceleration. It is also found that the
shortest longitudinal distance is larger for the 7th polynomial than for the 5th polynomial
under the same constraints and the maneuvering time is correspondingly longer. For
example, under scenario 3⃝, when the vehicle longitudinal velocity is 20 m/s, the lane
width is 3.5 m, and the maximum lateral acceleration does not increase beyond 3 m/s2, the
shortest longitudinal distance of the 5th polynomial planning trajectory is 51.67 m, and the
maneuvering time is 2.61 s, while the shortest longitudinal distance of the 7thpolynomial
planning trajectory is 59.0 m, and the maneuvering time is 2.97 s. It is worth noting that, by
solving constrained optimization problems, the maneuvering time T can be determined.
For more details, please refer to reference [1].

Table 1. Longitudinal displacement and maneuvering duration for lane changes under the constraints
of different speeds, lane widths, and maximum lateral accelerations.

Scenarios
V

(m/s)
W
(m)

A
(m/s2)

L (m) T (s)

Quintic Seventh Quintic Seventh

1⃝ 15 3 3 35.79 40.89 2.42 2.76

2⃝ 15 3.5 3 38.61 44.13 2.62 2.98

3⃝ 20 3.5 3 51.67 59.0 2.61 2.97

4⃝ 20 3.5 5 39.90 45.6 2.03 2.31

The results of the 5th and 7th polynomial trajectory planning under the four different
scenarios are depicted in Figures 3 and 4, respectively. It can be derived that the jerk
value of the 7th polynomial trajectory is significantly lower than that of the 5th polynomial
trajectory under the same constraints, so the comfort of the vehicle is significantly improved
by using the 7th polynomial under sufficient longitudinal distance. Under scenario 4⃝,
the maximum jerk value of the 5th polynomial trajectory is 25 m/s3, which occurs at the
starting and ending moments of the lane change, while the maximum jerk value of the 7th
polynomial trajectory is 15 m/s3, which occurs during the intermediate phase of the lane
change. Taking Scene 3⃝ in Table 1 as an example, the comparison results of the 5th-order
and 7th-order polynomial trajectory planning are shown in Figure 5. It can be seen that the
lateral jerk response is significantly improved with the 7th-order polynomial.

A comparison between the 5th polynomial and the 7th polynomial planning trajec-
tories with different jerk constraints is shown in Table 2. The results under four differ-
ent scenarios with 5th polynomial and 7th polynomial trajectories are demonstrated in
Figures 6 and 7, respectively. It can be noticed that, under the condition of the same lateral
jerk constraint, the shortest longitudinal distance required for lane changing is more fre-
quent at higher speeds and wider lanes. Provided that vehicle speed and lane width are
the same, there is a corresponding decrease in the shortest longitudinal distance required
for lane changing as the maximum lateral jerk value increases. Under the same constraints,
the longitudinal distance of the 7th polynomial planning trajectory is slightly smaller than
that of the 5th polynomial, and there is a corresponding reduction in the maneuver time.
Taking Scene 3⃝ in Table 2 as an example, the comparison results of the 5th-order and
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7th-order polynomial trajectory planning are shown in Figure 8. Under these constraint
conditions, the lateral velocity and lateral acceleration are slightly higher with the 7th-order
polynomial compared to the 5th-order polynomial.
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Table 2. Longitudinal displacement and maneuvering duration for lane changes under the constraints
of different speeds, lane widths, and maximum lateral jerks.

Scenarios V
(m/s)

W
(m)

Jerk_y
(m/s3)

L (m) T (s)

Quintic Seventh Quintic Seventh

1⃝ 15 3 10 38.96 37.23 2.65 2.53

2⃝ 15 3.5 10 40.93 39.10 2.79 2.67

3⃝ 20 3.5 10 54.84 52.42 2.78 2.66

4⃝ 20 3.5 15 47.81 45.69 2.43 2.33

3.3. MPTC by Four-Wheel Steering
3.3.1. Vehicle Dynamics Model

A simplified 2 DOF vehicle dynamics model, depicted in Figure 9, is employed in this
study. The model assumes a ground-level center of gravity and small-angle approximations
for the wheel steering angles. The governing equations for lateral and yaw motion are
presented below [28,51].

mV(
.
β + r) = 2C f (δ f −

l f r
V

− β) + 2Cr(δr −
l f r
V

− β) (9)

Iz
.
r = 2C f l f (δ f −

l f r
V

− β)− 2Crlr(δr −
l f r
V

− β) (10)
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Figure 9. Vehicle 2 DOF model.

The following notation is used throughout this study: V represents the vehicle velocity;
δf, δr are the front and rear wheel steering angles; β is vehicle sideslip angle; r is the yaw
rate; Fyf and Fyr are the front and rear tire lateral forces; lf and lr are the distances from the
center of gravity to the front and rear axles; m is vehicle mass; and Iz is yaw moment of
inertia. Cf, Cr denote the front and rear tire cornering stiffnesses.

3.3.2. Controller Design

A model predictive control method is chosen for designing the 4WS controller. The
MPC controller design of front-wheel steering is similar to the four-wheel steering, but
without rear-wheel steering. It will not be introduced here, and the details can be referred
to [31]. MPC’s ability to handle constraints and predict future behavior makes it well-suited
for accurate lateral tracking control. The state equation for the 2-DOF vehicle model is
expressed as follows:

.
x = Ax + Bu
y = Cx + Du

(11)
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where the system state variable vector x = [Y, ψ, vy, r]T, the feedback controller input u = [δf,
δr]T is given to the vehicle modeling module, the system output y = [ψ, Y]T. ψ is the course
angle of the vehicle, and Y is the lateral displacement in the absolute coordinate system.

A =


0 V 1 0
0 0 0 1

0 0 −C f +Cr
mV

lrCr−l f C f
mV − V

0 0
lrCr−l f C f

IzV − l f
2C f +l2

r Cr
IzV

, B =


0 0
0 0

−C f
m −Cr

m

− l f C f
Iz

lrCr
Iz

, C =

[
0 1 0 0
1 0 0 0

]
, D =

[
0 0
0 0

]
.

The vehicle dynamics model in Equation (11) is linearly discretized by performing a
first-order Taylor expansion around an arbitrary operating point (xr, ur) and subtracting it
from the original state, yielding the following state error equation:

.
e =


.

Y −
.

Yr.
ψ −

.
ψr.

vy −
.
vyr.

r − .
rr

 = A(t)


Y − Yr
ψ − ψr

vy − vyr
r − rr

+ B(t)
[

δ f − δ f r
δr − δrr

]
(12)

where A(t) = A, B(t) = B. By applying the first-order finite difference method to discretize
the above equation, we obtain:{

e(k + 1) = A(k)e(k) + B(k)∆u(k)
∆y(k) = C(k)e(k) + D(k)∆u(k)

(13)

where A(k) = I + τA(t), B(k) = τB(t), C(k) = C, D(k) = D. τ is the sampling time. By combining
the discrete state variable and control variable into a new state variable, we obtain:

ξ(k) =
[

e(k)
u(k − 1)

]
(14)

We further obtain the new discrete state–space representation as follows:{
ξ(k + 1) = Ã(k)ξ(k) + B̃(k)∆u(k)

y(k) = C̃(k)ξ(k) + D̃(k)∆u(k)
(15)

where Ã(k) =
[

A(k) B(k)
O2×4 I2

]
, B̃(k) =

[
B(k)

I2

]
, C̃(k) =

[
C(k) O2×2

]
, D̃(k) = [D(k)].

By utilizing the predictive model and constraints, the system state deviations and
control inputs are optimized, leading to the following objective function:

J(k) =
Np

∑
i=1

∥y(k + i|t)− yr(k + i|t)∥
2

Q

+
Nc−1

∑
i=0

∥∆u(k + i|t)∥
2

R

+ ρε2 (16)

Np, Nc denotes the time horizon for prediction and the time horizon for control,
respectively; Q is the state regulation matrix; R is the control input regulation matrix; ε
is the relaxation factor; and ρ denotes the relaxation factor regulation coefficient. For the
four-wheel steering system, the weighting matrices are denoted as Q4ws and R4ws.

By solving the objective function, the control increment sequence at time step k can be
obtained as follows:

∆U(k) = [∆u(k), ∆u(k + 1), · · · , ∆u(k + Nc − 1)]T (17)
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The control variable at time step k can be expressed as the control variable at time step
k − 1 plus the control increment at time step k, as follows:

u(k) = u(k − 1) + ∆u(k) (18)

The expression above represents the feedback correction part of the model predictive
control. By performing rolling optimization using the objective function and constraints,
the control input sequence is obtained. The first value of the output sequence is then used
as the input for the system at the next time step, and the process repeats for the subsequent
sampling period. In each control step of the MPC, constraints can be added for the system
control variables and control increments. In path tracking control, the MPC can handle the
vehicle system physical constraints and provide future references from the predefined path.
Constraint conditions must be satisfied as follows:

min
∆U(k)

[J(k), ∆u(k)]

umin ≤ u(k + i|k ) ≤ umax
∆umin ≤ ∆u(k + i|k ) ≤ ∆umax

ε > 0

(19)

where umax and umin are the maximum and minimum allowable values for the control
inputs, respectively, corresponding to the boundary values of the front-wheel steering
angle. ∆umax and ∆umin are the maximum and minimum values of the control increment,
respectively. The constraints are as follows: the maximum steering angles for both the front
and rear wheels are set to 0.78 radians, with a maximum rate of 0.19 radians per second.

4. Simulation and Analysis

To verify the proposed control algorithm, we simulate and analyze tracking control
results in four scenarios using Matlab/Simulink R2022a. The equations are integrated
and solved using the Runge–Kutta method with a 0.001s time step. The four scenarios
are shown in Table 3. The lane width for all three scenarios is 3.5 m. In scenario I, it is
assumed that the vehicle is operating on a low-friction surface, characterized by friction of
µ = 0.3. The vehicle’s initial velocity is 15 m/s, and the lateral acceleration that the ground
can provide is limited to 3 m/s2. In scenario II, given that the vehicle runs on a moderate
adhesion surface (µ = 0.5), the vehicle lateral acceleration that the ground can provide is
limited to 5 m/s2, and the initial velocity is 17 m/s. In the third scenario, assuming that
the vehicle is traveling on a high adhesion surface (µ = 1.0) at the speed of 20 m/s, the
maximum lateral jerk does not exceed 10 m/s3, in order to ensure that the passengers have
better comfort during the lane change maneuver. In the scenario IV, it is assumed that the
vehicle is traveling on a high adhesion surface (µ = 1.0) at the speed of 30 m/s, and the
maximum lateral jerk does not exceed 15 m/s3. Table 4 presents a comprehensive list of the
vehicle model and controller parameters.

Table 3. Scenarios for simulation.

Scenarios V (m/s) W (m)
Constraint Conditions

A (m/s2) Jerk_y (m/s3)

I 15 3.5 3 —

II 17 3.5 5 —

III 20 3.5 — 10

IV 30 3.5 — 15
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Table 4. Main parameters of vehicle model and controller.

Symbol Parameter Specification Value/Unit

m Vehicle mass 1500/kg

lf
Distance between the center of

gravity and the front axle 1.2/m

lr
Distance between the center of

gravity and the rear axle 1.3/m

Iz Yaw inertia moment 3000/(kg·m2)

Cf Front axle cornering stiffness 50,000/(N·m−1)

Cr Rear axle cornering stiffness 70,000/(N·m−1)

Np Time domain for prediction 12

Nc Time domain for control 3

τ Sampling time 0.02/s

Q2ws State weighting matrix for 2WS diag ([100,10,10,1])

R2ws Control weighting matrix for 2WS diag ([1])

Q4ws State weighting matrix for 4WS diag ([100,10,10,1])

R4ws Control weighting matrix for 4WS diag ([1,1])

ρ Relaxation scaling factor 1000

4.1. Scenario I

The results of the vehicle’s response under Scenario I are illustrated in Figure 10.
Figure 10a–g show the responses of vehicle lateral displacement, lateral displacement
tracking error, sideslip angle, yaw rate, lateral acceleration, lateral jerk, and steering
angles of both front and rear wheels, respectively. It can be observed that both the
4WS and 2WS systems demonstrate effective tracking of the pre-planned trajectories.
However, the 2WS system exhibits marginally superior lateral displacement tracking
performance. The sideslip angle response of 4WS is significantly better than that of
2WS, with a maximum value of about 0.012 rad for 4WS and 0.018 rad for 2WS. The
yaw rate for 4WS is closer to the reference than that for 2WS. Although the peak value
of vehicle lateral acceleration is 3 m/s2 for both control systems, which coincides with
the given constraints, the 2WS system shows significant fluctuations, resulting in sharp
fluctuations in its lateral jerk, while the 4WS has a maximum lateral jerk of 8 m/s3, which
provides a significant improvement in comfort. The peak values of front and rear wheel
steering angles for the 4WS are 0.07 rad and 0.03 rad, respectively. The 2WS system
exhibits a maximum front wheel steering angle of 0.07 rad, but the fluctuations are more
drastic compared to the 4WS.

Figure 11 shows a comparison of the computation times for the 2WS and 4WS systems
on the specific hardware configuration as follows: Intel(R) Core (TM) i9-9900K CPU @
3.60 GHz processor and 64 GB RAM. It can be observed that the computation time for the
4WS system is slightly longer than that for the 2WS system. Figure 12 presents the stability
analysis results for the 2WS system. It can be seen that, when the initial sideslip angles
are −0.1 rad, −0.05 rad, 0 rad, 0.05 rad, and 0.1 rad, the vehicle’s yaw rate remains stable
throughout the trajectory tracking process.
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4.2. Scenario II

The results of the vehicle’s response under Scenario II are presented in Figure 13.
Figure 13a–g show the responses of vehicle lateral displacement, lateral displacement
tracking error, sideslip angle, yaw rate, lateral acceleration, lateral jerk, and front and rear
wheel steering angles, respectively. It can be noticed that the 4WS and 2WS also track the
preplanned trajectory well in this scenario, with maximum lateral displacement tracking
errors of 0.23 m and 0.28 m for the 4WS and 2WS, respectively. The sideslip angle of the
4WS is significantly improved compared to the 2WS, with peak values of 0.05 rad and
0.016 rad respectively. The yaw rate of the 4WS is also better than that of the 2WS, which
shows a larger amount of overshoot and significant fluctuations. The lateral acceleration of
the 4WS system is kept within the constraints, with a maximum value of 5 m/s2. The 2WS
lateral acceleration, on the other hand, shows significant oscillations, with a maximum
value of 7.48 m/s2, leading to sharp fluctuations in its lateral jerk as well, with a peak value
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of 80 m/s3. The maximum value of lateral jerk for 4WS is 20 m/s3. The maximum steering
angles of the front and rear wheels of the 4WS vehicle are 0.1 rad and 0.05 rad, respectively.
The maximum front wheel steering angle of the 2WS vehicle is 0.25 rad and fluctuates
drastically during the maneuver.
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4.3. Scenario III

The results of the vehicle’s response under Scenario III are shown in Figure 14.
Figure 14a–g show the responses of vehicle lateral displacement, lateral displacement
tracking error, sideslip angle, yaw rate, lateral acceleration, lateral jerk, and front and rear
wheel steering angles, respectively. It can be noticed that the 4WS and 2WS can track
the preplanned trajectory well in this scenario, and their maximum lateral displacement
tracking errors are about 0.17 m and 0.19 m, respectively. The peak values of sideslip
angle for both systems are 0.015 rad and 0.03 rad, respectively, and the latter shows sharp
fluctuations. The yaw rate response is similar to the sideslip angle, with large oscillations
for the 2WS system. Although both lateral acceleration peaks are around 4 m/s2, the 2WS
system shows dramatic fluctuations, resulting in a lateral jerk peak of 25 m/s3. The lateral
jerk maximum of 4WS is at 10 m/s3, which matches the given constraints with better
comfort. In addition, the maximum front and rear wheel steering angles of the 4WS system
are 0.08 rad and 0.04 rad, respectively, under this working condition. Although the peak
value of the front wheel steering angle of the 2WS system is slightly smaller than that of
the 4WS, it shows severe fluctuations during the lane change maneuver.
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The simulation comparison of the above three scenarios indicates that, for the same
preplanned trajectory, the 4WS has better overall performance than the 2WS. Although the
2WS can also track the planned trajectory, due to the impact of vehicle dynamics, the yaw
rate and lateral acceleration will fluctuate during the maneuver, resulting in a larger lateral
jerk and less comfort than the 4WS.

Figure 15 compares the responses of the nominal 4WS system and the 4WS system,
of which both the vehicle mass and yaw moment of inertia are increased by 20%. Here,
“4WS” refers to the nominal system response, while “4WS2” represents the system response
after the change in vehicle mass and yaw moment of inertia. It can be observed that,
even with an increase in vehicle mass and yaw moment of inertia, the 4WS system is still
able to effectively track the desired trajectory. Compared to the nominal system, after
the vehicle mass increases, the magnitude of the sideslip angle shows a slight increase,
and the wheel steering angles also increase accordingly. The responses of other indicators
remain consistent.
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4.4. Scenario IV

The results of the vehicle’s response under Scenario IV are shown in Figure 16.
Figure 16a–g show the responses of vehicle lateral displacement, lateral displacement
tracking error, sideslip angle, yaw rate, lateral acceleration, lateral jerk, and front and rear
wheel steering angles, respectively. It can be noticed that the 4WS system can track the
preplanned trajectory well in this scenario, and its maximum lateral displacement tracking
error is about 0.15 m. The peak value of sideslip angle is about 0.025 rad. The lateral
jerk maximum is at 15 m/s3, which matches the given constraints with better comfort. In
addition, the maximum front and rear wheel steering angles of the 4WS system are 0.1 rad
and 0.06 rad, respectively.
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5. Conclusions

In this study, planning and tracking control of single lane change trajectories are
carried out, with trajectory planning using 5th-order polynomial and 7th-order polynomials,
and tracking control using four-wheel steering MPC and front-wheel steering MPC. The
following conclusions are drawn:

(1) With sufficient longitudinal distance for lane changing, the 7th polynomial trajec-
tory provides better comfort compared to the 5th polynomial trajectory.

(2) For the same planned trajectory, there is a substantial difference in the vehicle
response when different control methods are used for tracking. In comparison with the
front-wheel steering MPC system, the overall performance of the four-wheel steering MPC
system is greatly improved, with significant improvements in the sideslip angle and lateral
jerk under different constraints.

It is worth noting that the algorithm presented in this study has only been validated
through simulations under ideal constraint conditions and it purely explores, from a
theoretical perspective, the control method that combines 7th-order polynomials with MPC
for four-wheel steering. The proposed control algorithm will be further validated by field
test in the future. For static and dynamic obstacles, information about the obstacles (such
as displacement, velocity, and acceleration) needs to be determined based on sensor data.
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This information can then be translated into constraint conditions, which are subsequently
used for trajectory planning. Other factors, such as the impact of nominal parameters, the
real-time system performance, and the design of fail-safe mechanisms, will be taken into
account during the real-world validation process.
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