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Abstract: A main circuit ground fault (MCGF) is a typical system fault in an electrical traction drive
system (ETDS). When two or more MCGFs occur, it will cause serious accidents. Therefore, it is
particularly important to detect and handle MCGFs in a timely manner. To improve the efficiency of
train operation and ensure driving safety, this paper proposes a hybrid data-driven MCGF diagnosis
method. First, the voltage signals related to the fault are selected according to the mechanism
analysis of the MCGF, and then the initial feature variables are constructed according to these voltage
signals. Secondly, the initial feature variables of different types of MCGF are analyzed in the time
and frequency domains by wavelet transform, and four feature indicators are calculated. Finally, the
fault feature indicators are trained by random forest to obtain a model for subsequent fault diagnosis.
After comparative experiments using various machine learning methods, it was found that the RF
used in the proposed method has a better diagnostic effect, and the correct isolation rate exceeds 99%.

Keywords: electrical traction drive system (ETDS); main circuit ground fault (MCGF); fault diagnosis;
wavelet transform; random forest (RF)

1. Introduction

Due to the rapid growth of the modern transportation field, high-speed trains have
become an indispensable mode of transportation [1]. As the core of the train, the electrical
traction drive system (ETDS) can provide power for the train through the AC-DC-AC
circuit [2]. Since the train operates in various complex outdoor environments for a long
time, various faults may potentially arise [3], especially the failure of the ETDS, which can
significantly affect the train’s normal operation and even cause safety accidents [4]. Hence,
to guarantee the train’s operating efficiency and safety, when a fault occurs in the ETDS,
it is very important research content to diagnose the occurrence and type of the fault in
time [5].

Among all the fault studies on ETDSs, component-level fault diagnosis results are
the most prevalent, including open-circuit faults of the rectifier IGBT, sensor faults, open-
circuit faults of the inverter, etc. Ref. [6] proposed a parallel direct fault diagnosis method
for open-circuit faults of the IGBT, using an improved Kalman filter (KF) to evaluate the
voltage of the capacitor by comparing the measured value and the estimated value. Ref. [7]
proposed a comprehensive diagnosis technique for grid-side current sensor failures and DC
bus voltage sensor failures based on reduced-order observers. Ref. [8] proposed a coupled
inductor-based open-circuit fault diagnosis method for the power switch of the Aalborg
inverter, which does not require additional sensors or diagnostic circuits.

However, the component-level fault diagnosis methods mentioned above all focus
on a specific module fault. An ETDS includes modules such as the traction transformer,
four-quadrant rectifier, inverter, traction motor, etc. [9], as shown in Figure 1, which is an
electro-mechanical system with a complex coupling relationship between multiple modules.
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Therefore, a fault diagnosis method that begins with a particular module does not fully
consider the coupling interactions of an ETDS, which will lead to some faults, such as
system-level faults, not being accurately diagnosed and protected. Throughout the train’s
actual operation, the traction control unit (TCU) will continue to collect various signals
from the ETDS [10], but in the traditional diagnosis method, the TCU only uses one signal
to see whether it exceeds the fault warning threshold and does not make full use of other
signals [11], which leads to inaccurate diagnosis of the fault type. Therefore, it is an urgent
problem to study the system-level fault diagnosis methods of ETDSs by combining the
multiple signals collected by the TCU, which can accurately diagnose the fault type and
take differentiated protection measures.
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A main circuit ground fault (MCGF) is a classic system-level fault in ETDSs, which
can be divided into single-point ground faults and multi-point ground faults. Generally
speaking, a single-point ground fault will not have a significant effect on the normal
operation of the system, but once a multi-point ground fault arises in the system, it will
cause a large overcurrent in the main circuit, which will have a destructive effect on
the entire system [12]. To avoid this situation, it is essential to explore the ground fault
diagnosis method, so that when a single-point ground fault arises, it can be diagnosed, and
protection measures can be taken to prevent the occurrence of multi-point ground faults.

In the existing train main circuit ground fault diagnosis methods, the traditional
method is to only detect the grounding voltage and use a simple upper- and lower-limit
alarm method to achieve fault diagnosis, but this method cannot distinguish ground faults
on the rectifier side from those of the inverter side well, and staff are required to check one
by one. This not only increases the parking time but also affects the maintenance efficiency.
Ref. [12] proposed a ground fault diagnosis method based on typical correlation analysis,
but when the measured signal is mostly an AC signal containing high-frequency noise,
its diagnostic performance needs to be improved. Therefore, the limitations of existing
methods require us to study more comprehensive and effective diagnostic methods.

Current fault diagnosis research can generally be categorized into three methods:
model-based, data-driven [13], and signal analysis-based [14]. Ref. [15] developed a model
of the pulse rectifier grounded in the structural analysis of the traction system and proposed
a method to diagnose the faults of the pulse rectifier sensor and IGBT. Ref. [16] established a
predictive current model and a hybrid logic dynamic (MLD) model, which were hybridized
to diagnose the open-circuit switch failure of a permanent magnet synchronous motor drive.
The efficacy of the model-based diagnostic method depends largely on the accuracy of the
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established mathematical model. However, as mentioned earlier, the ETDS is a complex
coupled system. The complex coupling relationship and changes in operating conditions
make it very difficult to accurately model ETDSs. For data-driven methods, there is no
need to accurately model the system. Ref. [17] developed a new data-driven sensor fault
detection and classification method founded on improved slow feature analysis (SFA).
Ref. [18] proposed a data-driven high-speed train running-gear fault diagnosis method,
which added a belief rule base in view of deep slow feature analysis. In contrast to
the traditional method, the approach suggested by [18] is more effective in lowering the
likelihood of fault alarms. It can be seen from [17,18] that data-driven diagnosis methods
map relationships and acquire knowledge from extensive historical data, which are the
effective solution for ETDS fault diagnosis. However, in engineering practice, ground faults
do not occur often, and because the damage caused by a multi-point ground fault is very
large, the TCU will also take protection measures very quickly, resulting in a very short
time to collect fault signals when a fault occurs. Hence, it is very difficult to attain a large
quantity of ground fault historical data.

In the fault detection and diagnosis (FDD) method grounded in signal analysis, the
measured signal already contains rich fault information, which can be derived from time,
frequency, and time–frequency domain joint analysis to identify different fault types [19].
Among the many time–frequency domain analysis methods, the traditional fast Fourier
transform (FFT) can evaluate the frequency characteristics of the signal but cannot pro-
vide information about how these components change over time. The short-time Fourier
transform (STFT) uses a fixed window, but the choice of window size affects the accu-
racy of frequency and time [20]. To resolve this challenge, the wavelet transform changes
the window size according to the signal frequency, shifts the wavelet basis on the time
axis, and performs convolution operations so as to better balance the accurate analysis
of time and frequency. However, because of the complex and variable operating condi-
tions of high-speed trains, the application of FDD methods based on signal analysis on
trains is limited. Although the above three methods are not suitable for the diagnosis of
MCGFs alone, there are still many things that can be learned from signal analysis-based and
data-driven methods.

Driven by the lack of existing research, this article introduces a hybrid data-driven
diagnostic method for MCGFs in ETDSs. This approach leverages the benefits of signal
analysis, data-driven techniques, and the mechanisms of MCGFs. The key innovations and
contributions of this article can be summarized as follows:

• Based on the mechanism analysis of MCGFs, initial feature variables are constructed
by obtaining data of three voltage signals.

• Wavelet transform is used to analyze different MCGF types in the time and frequency
domains, and the corresponding feature indicators are calculated.

• A diagnosis framework for MCGFs is proposed, incorporating fault detection and
identification using random forest (RF), with its effectiveness validated through field
experiments.

The structure of this article is organized as follows: Section 2 examines the mech-
anisms of MCGFs and establishes the initial feature variables. Section 3 introduces the
diagnostic method and framework based on wavelet transform and RF. Section 4 outlines
the experimental process and compares the results obtained. Finally, Section 5 concludes
this article.

2. Analysis of MCGF Mechanism and Feature Variables
2.1. Analysis of MCGF Mechanism

There are five typical MCGF types in ETDSs, which are as follows: positive side of
the rectifier to ground, negative side of the rectifier to ground, positive side of the DC-link
circuit to ground, negative side of the DC-link circuit to ground, and inverter side to ground,
as shown in Table 1.
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Table 1. Typical MCGF types in ETDS.

Fault Type Fault Location Ground Description

C1 1⃝ Positive side of the rectifier
C2 2⃝ Negative side of the rectifier
C3 3⃝ Positive side of the DC-links
C4 4⃝ Negative side of the DC-links
C5 5⃝ Inverter side

The ground fault detection circuit shown in Figure 1 is composed of two large resistors
R1 and R2 and two voltage sensors VH1 and VH2. The voltage sensor VH1 measures the
DC voltage UD, and VH2 is used to collect the voltage of ground detection circuit UGD.
The values of R1 and R2 are identical, so the connection between UD and UGD in normal
operation condition can be described as

UGD =
1
2
· UD (1)

When an MCGF occurs, the values of UD and UGD will change, and the relationship
between them will change accordingly. Therefore, the discussion of their relationship will
be shown as follows.

• MCGF C1.

When the positive side of the rectifier is grounded, the magnitude of UGD changes
from 0 to UD, and the change frequency is the same as the frequency of the rectifier. The
relationship between UD and UGD is as follows:

UGD = (1 − VA) · UD (2)

where VA indicates the switching condition of the rectifier. When V1 and V4 are turned on,
VA = 1; when V2 and V3 are turned on, VA = 0, as shown in Figure 1.

• MCGF C2.

When the negative side of the rectifier is grounded, the magnitude of UGD changes
from 0 to UD, and the change frequency is the same as the frequency of the rectifier. The
relationship between UD and UGD is as follows:

UGD = (1 − VB) · UD (3)

where VB indicates the switching condition of the rectifier. When V2 and V3 are turned on,
VB = 1; when V1 and V4 are turned on, VB = 0.

• MCGF C3 and C4.

When the DC-link circuit is grounded, the connection between UD and UGD is deter-
mined by the type of MCGF, and it can be represented as

UGD =

{
0, positive grounding

UD, negative grounding
(4)

• MCGF C5.

When the inverter side is grounded, the magnitude of UGD changes from 0 to UD, and
the change frequency is the same as the frequency of the inverter. The inverter output side
is three-phase symmetrical, so we only discuss one phase. The relationship between UD
and UGD is as follows:

UGD = (1 − VU) · UD (5)

where VU indicates the switching condition of the inverter. When T1, T3, or T5 is turned on,
VU = 1; when T2, T4, or T6 is turned on, VU = 0.
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2.2. MCGF Feature Variables Extraction

In this section, the original data are first normalized to be within the range of 0 to
1. According to the above discussion, the DC-link voltage UD can become an important
evaluation criterion for ground faults. Furthermore, the ground detection voltage UGD has
a clear mathematical relationship with UD, so an initial characteristic variable z1 can be
constructed through these two voltages, which can be represented as follows:

z1 = UGD − 1
2
· UD (6)

It is clear from the z1 of different grounding faults in Figure 2 that under normal
operating conditions, the value of z1 is almost 0. From Table 2, the value of z1 can well
distinguish the situation of DC-link grounding, but there is no way to distinguish the other
three types of MCGF because their z1 all vary between −0.5 UD and 0.5 UD.
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Table 2. Change of z1 under different ground faults.

Fault Type Change of z1

C1 The value of z1 will vary between −0.5 UD and 0.5 UD, and the frequency
of change is consistent with the rectifier switching frequency.C2

C3 The value of z1 will remain at −0.5 UD.
C4 The value of z1 will remain at 0.5 UD.

C5
The value of z1 will vary between −0.5 UD and 0.5 UD, and the frequency

of change is consistent with the inverter switching frequency.

It is also necessary to combine other signals to construct a new feature variable to
better distinguish all ground faults. From the previous mechanism analysis, C1, C2, and
C5 are closely related to the switching change frequency of their respective converters.
Therefore, it also essential for the signals related to the switching state to be combined.
The traction transformer secondary voltage U2 contains the rectifier switching information.
Hence, a new feature variable z2 is constructed to better characterize the ground fault and
distinguish the other three types of MCGF. z2 can be expressed as follows:

z2 = z1 · U2 (7)

In summary, z2 can distinguish various MCGFs well. Next, it is necessary to ana-
lyze z2 in the time–frequency domain to better represent its characteristics. Then, the
corresponding feature indicators are established for subsequent model training.

3. Proposed Method

Due to the interconnected relationships in the ETDS, the entire system is relatively
complicated, and the action changes of some modules are likely to cause some signal
changes. The train will experience various operating states during operation, such as
slowing down and stopping at the station, restarting and accelerating after picking up
passengers, etc. The action changes of the corresponding system modules under different
operating states are also different, resulting in the voltage signals related to the MCGFs
likely being unstable. Therefore, to better obtain the characteristics of MCGFs, this paper
uses wavelet transform to obtain time–frequency domain characteristics.

3.1. Wavelet Transform

In the analysis of the frequency domain, fast Fourier transform (FFT) is frequently used.
Although it is widely used, this method only reflects the overall frequency characteristics
of the signal and cannot be applied to the analysis of unstable signals. For non-stationary
signals like grounding signals, there are short-time Fourier transform (STFT), wavelet
transform, and other methods. STFT divides the non-stationary global signal into stable
local signals; it has certain requirements for the setting of the window size, thus limiting its
application. At present, wavelet transform is a better method for processing non-stationary
signals. The wavelet transform conducts multi-scale refinement analysis on the signal by
utilizing scaling and translation. It serves as a localized transformation in both time and
frequency, enabling effective extraction of signal information.

Figure 3 shows a schematic diagram of multi-scale one-dimensional wavelet decom-
position, where X is the input one-dimensional signal. The first level decomposition
decomposes the X signal of length n into approximate coefficients cA1 and detail coeffi-
cients cD1 of length

(
n−1

2

)
+ M. Here, M is half the length of the high-range and low-range

filters used in wavelet transformation. cA1 denotes the low-frequency component of the
signal, while cD1 signifies the high-frequency component of the signal. The multi-scale
one-dimensional wavelet decomposition functions are as follows:

[C, L] = wavedec
(
X, Y, ‘wname′

)
(8)
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cA3 = appcoe f (C, L, ‘wname′, 3) (9)

[cD1, cD2, cD3] = detcoe f (C, L, [1, 2, 3]) (10)

where X is the original signal, which is z2 here; Y is the decomposition order, which is set
to 3 here; and wname is the wavelet type, which is db2 here.
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After normalizing the original data, this paper uses db2 as the wavelet basis to perform
wavelet 3-level decomposition on the characteristics of different types of grounding faults.
The wavelet transform results of z2 for all types of ground faults are displayed in Figure 4.
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3.2. Construction of Feature Indicators

After the time–frequency domain analysis of wavelet transform, the fault feature
indicators can be constructed by the wavelet transform analysis results. As can be seen
from Figures 2 and 4, generating feature indicators in both the time–frequency and time
areas effectively captures various types of MCGF. Consequently, a second sliding window
is employed to extract information from the time area of z2 and the time–frequency area of
the wavelet transform conclusions of z2, resulting in a time–frequency area matrix (TFM).
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The following definitions pertain to four feature indicators and the combined feature vector
(MFV):

TFM = cA3 + cD1 + cD2 + cD3 (11)

J1(k) =
1
N

N+k−1

∑
i=k

N+k−1

∑
j=k

TFMij (12)

J2(k) = pk_pk{TFM} (13)

J3(k) =
1
N

N+k−1

∑
t=k

z2(t) (14)

J4(k) =
1

N − 1

N+k−1

∑
t=k

[z2(t)− J3(k)]
2 (15)

MFV(k) = [J1(k) J2(k) J3(k) J4(k)] (16)

where N denotes the length of the sliding window, and the value of N in this article is set to
2500; pk_pk indicates the peak-to-peak value of the series; and k signifies each point within
the feature indicators.

3.3. Random Forest

RF is an outstanding ensemble learning algorithm that combines multiple decision
trees for classification [21], which has excellent performance in the presence of noisy and
weakly discriminative data. In RF, each dataset is randomly replaced, while some features
are randomly chosen as input. Multiple decision trees are then combined to build the
entire model. Finally, in the classification problem, the majority of classification results are
selected as the final result.

The specific procedures of the RF algorithm are outlined as follows:

• RF uses Bootstrap sampling to randomly extract Nd samples from the training dataset
with replacement to generate multiple sub-datasets, where Nd refers to the number of
samples in the training dataset. The size of each sub-dataset is the same as the original
dataset. The process is expressed in the following formula:

D = {(x1, y1) , (x2, y2), · · · ,
(
xNd , yNd

)}
(17)

D′ = {(xi, yi)} , i = {1, 2, . . . , Nd} (18)

where D is the training dataset and D′ is the new dataset after sampling.
• For each sub-dataset, when building a decision tree, a feature subset is randomly

selected from all features, and then a decision tree is trained using each sub-dataset
and the corresponding feature subset.

• Multiple decision trees are combined into one model.
• The results of multiple decision trees are integrated for classification, and the final

classification result is the category that receives the most votes.

Random forest has excellent capabilities, but it also has certain limitations. First, it
performs poorly on unbalanced data and tends to be biased towards the majority class.
Second, it takes a long time to train in the case of large datasets. However, in this article,
the number of samples for each fault type is 10,000, and there will be no unbalanced data.
In addition, as mentioned previously in this article, the probability of ground faults is
relatively low, and it is very difficult to obtain a large amount of data. The overall data
volume in this article is relatively moderate, and it will not lead to excessive training time
while ensuring good results. Furthermore, the model complexity of random forest causes
a lack of interpretability and internal operability, which makes it difficult to reflect the
influence of a single feature or the interaction between multiple features, but these issues
do not affect the final diagnostic results of this article. The topic of feature influence and
interaction needs further research.
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3.4. MCGF Diagnosis Framework

The entire MCGF diagnosis framework includes an offline part and an online part, as
illustrated in Figure 5.
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In the offline phase, historical data undergo preprocessing to derive the initial fea-
ture variable z2 for all MCGFs and normal conditions. Subsequently, the time–frequency
amplitude matrices that specifically characterize the MCGFs are developed using wavelet
transform. After that, four feature indicators are calculated from the results of the wavelet
transform and combined into a feature matrix. Finally, a diagnostic model that can accu-
rately map different types of MCGF is trained based on RF. Specifically, the preprocessing
stage involves normalizing the initial data to an interval between 0 and 1 and calculating
two initial feature variables z1 and z2. In the RF training process, the data in this article
come from the actual train model. When a ground fault occurs during operation, the data
before and after the failure are recorded through wave recording technology, allowing us to
collect multiple fault samples of different fault types. There are 10,000 samples of normal
condition and of each fault type, for a total of 60,000 samples. A total of 60% of them are
used for training, 20% for verification, and 20% for testing.

In the online part, the live sampled data are stored in the buffer by the TCU. The
TCU preprocesses and performs wavelet transform on the real-time sampled data and
then calculates the feature indicators. When the feature indicator J2 is greater than
the threshold Jth (Jth = 0.01), the fault identification program will be enabled, and the
four feature indicators will be synthesized into a feature matrix for use in the offline
training model, thereby diagnosing the specific type of MCGF.

4. Experiment Verification
4.1. Experimental Data

Figure 6 shows the ETDS in an actual electric locomotive. To fully verify the feasibility
of the diagnosis method proposed in this paper, a fault diagnosis experiment was carried
out on-site. The experimental data include normal data and five types of MCGF data under
different operating conditions.

In practice, as shown in Figure 5, the fault diagnosis board of the TCU needs to detect
whether an abnormality occurs every 10 ms. After an abnormality occurs, the offline trained
model is called to identify the fault type.
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4.2. Result Analysis

In this subsection, the correct isolation rate (CIR) is utilized to intuitively illustrate the
diagnostic performance of the proposed method, comparing it with two other machine
learning methods to highlight its superiority. A high correct isolation rate (CIR) means that
the cause of the fault can be found quicker, the maintenance efficiency can be improved,
and the train stop time can be reduced. The expressions of the evaluation indicators are
provided as follows:

CIR =
The number o f f aults correctly located

Nt
(19)

where Nt represents the number of fault data.
Figure 7 shows the feature indicators of different types of MCGF. As shown in

Figure 7b, when the ETDS is in normal operation, the value of J2 is always 0, but when a
ground fault occurs, J2 will change differently depending on the type of ground fault and
exceed the Jth threshold, thereby starting the fault identification function.

In the process of model training and fault identification, three machine learning
methods, extreme learning machine (ELM), gradient boosting machine (GBM), and random
forest (RF), were used. It can be seen from Table 3 that, on the one hand, the CIR of ELM is
low when diagnosing C3 and C5 ground faults; on the other hand, the accuracy of GBM
in diagnosing C1 and C5 ground faults is not high enough. Among the different types of
grounding fault diagnosis, only the CIR of RF reaches more than 99%, which proves that
RF has a better diagnostic effect.

Table 3. Results of different machine learning methods in CIR.

Fault Type ELM GBM RF (Proposed)

C1 98.68% 95.45% 100%
C2 100% 100% 100%
C3 92.23% 99.85% 99.92%
C4 99.97% 99.98% 99.4%
C5 93.17% 97.68% 99.77%
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During the entire diagnostic process, the sampled data are first preprocessed. In the
sampled data shown in Figure 8a, when the ground fault C5 occurs, UD and U2 do not
change, and only UGD fluctuates, which fully demonstrates that a single-point ground
fault will not disrupt the overall functioning of the system. Subsequently, the data are
transformed by wavelet and then calculated to obtain four feature indicators. As presented
in Figure 8b, following the occurrence of ground fault C5, J2 has obviously exceeded the
threshold, and fault identification is enabled. Finally, the ground fault type is determined,
as shown in Figure 8c, completing the entire MCGF diagnosis process.

Compared with the previous work performed in [22], first, after preprocessing the
data, the time–frequency feature analysis method adopted in this paper is wavelet analysis.
Compared with the STFT in [22], there is no need to consider the setting of the window
size so as to better balance the accurate analysis of time and frequency. In terms of model
prediction, we compared our model not only with the ELM algorithm in the literature but
also with the GBM algorithm, and the RF algorithm with better diagnostic performance was
obtained, thereby improving the entire diagnostic system, which has certain significance
for the diagnosis of train main circuit grounding faults.
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5. Conclusions

In this article, a hybrid data-driven ground fault diagnosis method for an ETDS is
proposed. Two initial feature variables are proposed by combining three original voltage
signals, and then the fault features are analyzed in the time–frequency domain by wavelet
transform. After that, four feature indicators are calculated and fused into a characteristic
vector. Finally, machine learning methods are used for offline training and online fault
identification, and the framework of the entire diagnosis process is proposed. In terms
of machine learning methods, by comparing the results of field experiments with three
different machine learning methods, we find that RF is the most effective method. The
proposed method can well distinguish various types of ground faults and reduce the
interference of high-frequency noise in the diagnosis results, which can further ensure the
operation efficiency and safety of the train.
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