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Abstract: Quantum optics is regarded as the acknowledged method to provide network quantum
keys distribution and in the future secure distributed quantum computing, but it should also provide
cryptography protection for mobile robots and the Internet of Things (IoT). This task requires the
design of new secret coding schemes, which can be also based on multiple-valued logic (MVL).
However, this very specific logic model reveals new possibilities for the hierarchical data clustering
of arbitrary data sets. The minimization of multiple-valued logic functions is proposed for the
analysis of aggregated objects, which is possible for an arbitrary number of variables. In order to
use all the useful properties of the multiple-valued logic, the heterogeneous network architecture
is proposed, which includes three allocated levels of artificial intelligence (AI) logic modeling for
discrete multiple-valued logic, Boolean logic, and fuzzy logic. Multiple-valued logic is regarded as
the possible platform for additional secret coding, data aggregation, and communications, which
are provided by the united high dimensional space for network addressing and the targeted control
of robotic devices. Models of Boolean and fuzzy logic are regarded as separate logic levels in order
to simplify the integration of various algorithms and provide control of additional data protection
means for robotic agents.

Keywords: multiple valued logic; Allen–Givone algebra; quantum network; multiagent system
learning; fuzzy logic; heterogeneous architecture

1. Introduction

1.1. Actual Problems for Communication Networks

The design of new generations of Internet [1–6] and quantum networks [7–9] can be regarded
as the new step in the long history of communication networks (CN) [10,11]. CN are sets of nodes,
see Figure 1, where any pair of nodes A,B,... can exchange useful data via a set of communication lines,
connecting some of the nodes. The goal is to realize the data transfer for an arbitrary pair of nodes
and to provide the optimal choice of the route for the data transmission. The most known types of
CN are shown in Table 1, and demonstrate the wide spectrum of possible schemes. Note that in elder
generations of CN, the term “node” mainly means the combination of a signal procession device and a
qualified person, who makes a decision and uses the delivered message. However, modern people
want robots to make decisions even in critical tasks, preferring to exploit CN for education, social
activity and entertainment. Thus, the term “computer network” now defines the network of computing
devices, which can include robots [12–14] and sensor networks [15–18]. In any way, the desire to
achieve the new level of artificial intelligence (AI) for future CN and global 5G and 6G Internet is
partially motivated by the need to provide high throughput and reliable content delivery both for
traditional network nodes [19–21] and unmanned robotic systems [22–26].
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Figure 1. A communication network is regarded as a system of transmitting nodes (A, B,...) 
connected by data transmission lines. 

Table 1. The prehistory of modern communication networks (dates are compiled from [10,11]). 
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concentrated on computer vision and speech procession [36–39]. Fuzzy logic has proved to be the 
effective method to work with uncertain and approximate data, substantially reducing the volume 
of calculations for autonomous vehicles, industrial systems, and medicine images processing [40–
43]. Fuzzy systems can also be integrated with neural networks in neuro-fuzzy systems [43]. Such 
interesting and actual items of AI research, as reasoning, planning, and data representation methods 
[27] are out of the frame of the given paper, but in Table 2, they can be associated not only with 
industrial robots [33,34] and unmanned transport [23–25], but also with data leakage protection [9] 
in computer security systems, where the task is to monitor the illegal activity of the staff. Quantum 
key distribution (QKD) is here the method of confidential generation of cryptographic keys for CN 
[8,9], as quantum computing is the prospective way to raise the computing performance for some 
classes of network tasks and for quantum schemes of MAS learning and neural networks [44–46]. 

Thus, all these trends of CN are mainly not competitors, but rather the complementary AI 
toolkit for producing intellectual tasks at distant network nodes. That is why it is necessary to 
provide synergy and to design new ways for their efficient joint applications. 
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Actual application fields for AI methods are given in Table 2. As a whole, they are aimed at the
imitation of facilities of qualified people in software and hardware agents. Within the framework of
the given paper, the actual AI methods [27] can be mainly subdivided into multiagent systems (MAS),
neural networks, and fuzzy logic systems. MAS are primarily applied for the modeling of software
and hardware agents in the tasks of interaction with the environment and other agents, as well as for
space positioning [28–35]. Modern versions of deep learning neural networks are concentrated on
computer vision and speech procession [36–39]. Fuzzy logic has proved to be the effective method
to work with uncertain and approximate data, substantially reducing the volume of calculations for
autonomous vehicles, industrial systems, and medicine images processing [40–43]. Fuzzy systems
can also be integrated with neural networks in neuro-fuzzy systems [43]. Such interesting and actual
items of AI research, as reasoning, planning, and data representation methods [27] are out of the frame
of the given paper, but in Table 2, they can be associated not only with industrial robots [33,34] and
unmanned transport [23–25], but also with data leakage protection [9] in computer security systems,
where the task is to monitor the illegal activity of the staff. Quantum key distribution (QKD) is here
the method of confidential generation of cryptographic keys for CN [8,9], as quantum computing is
the prospective way to raise the computing performance for some classes of network tasks and for
quantum schemes of MAS learning and neural networks [44–46].

Thus, all these trends of CN are mainly not competitors, but rather the complementary AI toolkit
for producing intellectual tasks at distant network nodes. That is why it is necessary to provide synergy
and to design new ways for their efficient joint applications.
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Table 2. Actual application fields for modern types of communication networks (CN) [1–6,15,16,18,22,23,25,26,43,44]. IoT: Internet of Things.
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1.2. Quantum Data Protection Methods for CN

Modern versions of quantum CN, see e.g., recent reviews [7–9], solve the task of quantum key
distribution (QKD), i.e., the trusted delivery of secret random keys to subscribers, and are expected to
protect distributed quantum computing in the future. The mass implementation of the QKD method
for CN is not as rapid as was expected in the 2000s [8,9]. It faces a number of problems, which are
not solved yet. Modern quantum memory schemes are not ready for practical use, the length and
the data rate for QKD are limited, and the problem of quantum and classical attacks is not solved at
the appropriate level [8,9]. Nevertheless, modern quantum cryptography schemes seem to form very
significant additional barriers for malicious users, as now they should combine classical hacker tools
with the development of specific quantum optics equipment and algorithms, which complicates their
activity and simplifies their detection.

One of the substantial unsolved problems is that quantum cryptography uses many auxilliary
perconal computers (PCs) and field-programmable gate arrays (FPGAs), which should exploit
traditional antiviruses, firewalls, antispam software, means of counteracting false flow attacks,
different means to protect against unauthorized access, and physical hacking [9]. However, the modern
trend for all types of CN is that alongside encryption methods, they should exclude data leakage and
unloyal staff activity, which requires the intensive research of AI methods for the aggregation and
analysis of characteristic features of different documents and events. In a general case, the analysis of
data leakages is supposed to include multi-parametrical processing of rare and not regular events,
which should differ somehow from regular data traffic, which is typical for the legal labor activity of an
eavesdropper. In spite of that fact, that quantum schemes for mobile robotics were firstly designed for
aircrafts and cosmic systems [47,48], and even for these expensive and usually well-protected systems,
the data leakage problem can be substantial. For cheap and simple industrial robots, this problem is
much more difficult to be solved. Thus, on one hand, the understanding of the scene by the robot is the
priority task for the further successful integration of MAS into CN [27], but on the other hand, it is the
component for quantum network security. Here, computer vision should be regarded as one of critical
components that is necessary for the security of both quantum and traditional systems.

Another aspect of quantum network security is the problem of seamless computing [49]. Seamless
computing can be interpreted as the ability to execute individual and joint tasks by means of all types
of computing devices, possessing different resources and software versions. However, artificial or
natural radio or optical interference can be the obstacle for the correct functioning of both quantum and
classical devices, preventing the successful interaction of different types of devices. That is why a high
dimension space is needed in CN not only for global addressing, but also for the targeted description of
various tasks and models of agent′s behavior during their collective work [15,16,18,23,24], supported
by reliable communications channels.

In any way, the project of purely photonic networks [50] has led to the design of the special
multiagent system (MAS) for the total control of all quantum and traditional cryptography keys.
So that CN need AI methods for both quantum and classical subsystems.

1.3. Achievements in the Realization of AI Methods for CN

The concept of agents and multiagent systems (MAS) was formed over several decades, and its
most comprehensive description was done in [27]. The development of many specific aspects of
AI and MAS was disclosed in [37–43]. MAS can be considered as an additional way to organize
parallel computing [51], as it includes the division of a complicated task into several more simple
ones, done by the group of agents. Agents can be realized as software bots [27,52,53] and as hardware
devices [12–14,41,42], for which microprocessor platforms and auxiliary subsystems need specific
software for the support of energy systems, numerous sensors, and actuators. The interaction of
an agent (or a robot) with other ones and with the environment [27] can be characterized by the
set of at least 29 basic features of agents [53], which are necessary for the successful imitation of
human behavior. This set includes autonomy, activity, reactivity, communicativeness, goal setting,
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and many other properties. Although during two last decades the spectrum of basic features did not
changed principally [27,40,51–53], their interpretation can be mixed in different projects. That is why
the traditional problem is to provide all these concepts for different platforms, essentially touching
upon the question of seamless computing.

The most significant impetus to the development of network robotics was given in the 1999 by the
global concept of a network-centric system, which was aimed at defense tasks [54]. It has induced the
intensive research of collective multiagent systems for collective mapping and space navigation [12,55],
unmanned logistics [31] and swarm robotics [55]. Up to 2030, the substantial part of transport traffic is
expected to be served by unmanned systems and guided by the network of radiofrequency beacons [56].
All these projects suppose the flexible routing and distant monitoring of robotic vehicles [19].

However, further advances in mobile robotic systems strongly depend on the progress in the
sphere of computer vision. This field of investigations has more than a half a century of history,
but neither the development of traditional methods nor the progress in the design of MAS raised the
computer vision to the needed level [27,57,58]. This field proved to be very complicated, and now,
it is represented mainly by new versions of neural networks and by the large number of fragmented
semi-empirical algorithms [57], which have been collected as an open library within the project Visual
Studio 2015 [58].

Sensor networks [15–18] should be regarded as a separate network component, partially
compensating for the lack of autonomous computer vision systems. Such systems consist of sensor
modules equipped with quick and low power consumption controllers that are adapted for long
autonomous network data transfer.

Since 2015, the new impetus was given to computer vision design, which was caused by advances
in the development of neural network deep learning methods [36–39].

These investigations do not have principal contradictions with concepts of MAS and agents,
as they also (see Chapter 6 of [27]) exploit decision tree methods. The difference here is that traditional
AI learning procedures [27] are often based on formation of lists of solutions, labeled examples,
and reinforcement, which can be interpreted within predicate calculus. However, substantial progress
was recently obtained namely in neural network deep learning methods, whose methodology is much
more close to the so-called threshold logic, presented earlier in the 1960s [59,60], but not to predicate
models. In any way, the concept of agents seems to be flexible and universal enough to integrate all
different types of logic models, including multiple-valued ones.

1.4. Classical Schemes for Secured Robotics

The specific problems of secure communications in modern versions of MAS were discussed in
2010 in the review [61], where the authors has stressed that every agent should analyze the network
parameters with respect to its own machine, but the detection of possible attacks should be processed
in a collaborative regime. Here, the initial level of agent-to-agent interaction includes different levels
of security solutions, regulated by the National Institute of Standards and Technology (NIST) [62].
It supposes agent-to-platform security tasks based on the control of agents by means of the secure
execution of the environment, protecting from malicious agents. The second level of protection
supposes platform-to-agent security means, provided by the some kind of privacy computation in
agents. It should protect an agent from possible manipulations regarding workflow, privacy, and the
integrity of data. The third level of protection includes agent-to-agent security and supposes that an
agent tries to protect itself from denial of service, the pretentious actions of other agents, and spying.
Moreover, special platform-to-platform security means are designated for securing interactions between
different platforms. The authors of [61] have emphasized the role of user-password authentication
for agents and the role of trusted and untrusted software objects, which are created by its own and
by external servers. Special attention was given in [61] to the estimation of trust and vulnerability
factors, which are necessary for authorization and trust management systems. In addition, the role
of peer-to-peer networking was shown, which provides strong authentication service, in which
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authorization, secure transport, and secure execution are provided for the agents. One should envisage
special protection from common computer attacks and infections by malicious software. The review [61]
was concluded by the recommendation to develop two types of solutions: secure MAS for the design
of general purpose applications, and security MAS, which provides a new overlay for distributed
security models of MAS.

Five years later, in [63], the authors have noted that a new paradigm has been created, which was
named agent-oriented programming and was based on concepts of AI in distributed systems. Primarily,
attention was given to models of an agent’s role and communications. For the agent level, new designs
included enhanced identification and authentication steps, which include special codes for the host
name, agent’s name, and permissions, which are used in the header of a robotic message. At the
system level, the gate agent was discussed as responsible for (1) handling all communications between
the main host system and other components, (2) monitoring the communication flows, (3) breaking
the communication channels in case of emergency, and (4) keeping mobile agents out of the main
host system.

In [63], the threats at the system level were classified as coming from:

- mobile agents to hosts,
- the Internet (denial of service, damage, event triggered, compound, and user attacks),
- altering the logging system and agent code, data, and configuration,
- fake agent and fake service.

For the agent level, the threats were subdivided [63] as coming:

- from hosts to agents,
- from agents to agents,
- from users to agents,
- for communication among agents, including identification and authentication, unauthorized

access, message injection, knowledge injection, and other malicious impacts.

In 2019, the paper [64], which was presented at the Autonomous Agents and Multiagent Systems
(AAMAS) conference, has demonstrated the trend to design trusted AI and trust modeling. These aims
were formulated to obtain fairness, transparency, dangers, and collaboration for MAS systems.
In particular, transparency was associated with learning and deep learning systems. It was interpreted
as human interpretability—an explanation of ontologies and recommendations—as well as clear
interpretability for given advices. Thus, MAS agents should receive new substantial features of
acceptance, which are peculiar to human beings. Another interesting trend is the design of trust models
for computer vision systems, which include the control of training and testing sets as initial data for
the formation of the trust model. In addition, monitoring of the reputation model for an agent has
become an actual task, which differs for stages of training and the performance of the vision system.
Thus, reasoning systems [64] have become now much more actual for trust and reputation control.

Another aspect of MAS reasoning is the design of a special language for robotics communications
in multiagent systems. The most known robotics languages were represented by NesC and Tiny
DB [65,66], which were well adapted for distant control. For future generations of networks, the actual
task is to design autonomous agents that do not need an intensive transfer of instructions. Only if
the robot can not carry out the task based on his own knowledge base should other collaborating
robots or the external monitoring system help and provide him with absent knowledge. That is why
the agent model should envisage a special structure of parameters for collective learning and the
external correction of its rules and data sets [14]. The modern trend for IoT, autonomous transport,
and industrial robotics is oriented to provide the full range description of targeted tasks, beliefs,
and desires [14,16,24–27], which makes the design of the universal language structure for typical AI
tasks quite actual.
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However, the modern level of data protection for transport and logistics agents is based mainly
on traditional cryptography protocols for Internet and mobile communications [56]. The author of the
paper [56] has analyzed communications for levels vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I). An actual problem was formulated as the creation of a flexible structure of cryptography keys,
responding to the growing demands of European transport infrastructure. Main attention was given
to the design of complex structure of long and short-range certificates of authorization, which were
transmitted between vehicles and traffic control stations. The designed in the system of [56] was
widely spread in Europe protocol IEEE 802.11p, which was based on the calculation of elliptic curves
according to standard NIST P-256. However, the authors have mentioned that such a cryptography
system can not protect from specific types of side channels attacks, and new methods are needed here.
Moreover, it was discussed in [9] that elliptic curves-based cryptography was declared by NIST to
have principal vulnerabilities.

1.5. MVL-Based Schemes for Secured Coding of Data

The problem of direct secured communication of agents by means of MVL protocol was discussed
in [67,68], and the proposed MVL version of the one-time pad (OTP) secret coding scheme [67] was
initially oriented on the application of quantum random number generators [69,70] for the protection
of MAS systems. Since then, the development of quantum key distribution networks [8,9] has greatly
escalated the interest in OTP secret coding protocols. As it was discussed in [9], an MVL-based version
of OTP secret coding [67] can be used for adverse environmental conditions, preventing the transfer
of qubits.

This method even for the 8-bit platform allows one to increase the dimensions of the space of
random one-time keys up to 10500 or more. That is why it can be used for the secure logic control of
large-scale robotic and multiagent systems. The increase in the size of the key space is aimed here at
counteracting brute-force attacks [8], which are especially dangerous if an eavesdropper uses a cloud
service or a quantum computer.

The MVL method is based on the k-valued Allen–Givone algebra (AGA) [71], where input and
output variables in multiple-valued logic functions take discrete truth values {0, 1, 2, ... , k − 1} [72].
The detailed basic technology of AGA functions y = F (x1, ... , xn), formation, and calculation is
described in Section 2. Given the values of k and n, the logic function can be calculated by a rigidly
defined algorithm, which is appropriate for parallel processing and for the use of FPGAs.

Mass cryptographic techniques usually exploit key-space dimensions up to ~1030, but modern
mathematics provides much larger dimensions [73,74] for addressing and targeted parameters
description. The toolkit of multiple-valued logics [67,68,75] is convenient for implementing high-security
one-time pad techniques, and it potentially provides ~1070 different random one-time keys even for
an 8-bit platform without overwriting the memory of the encoding module, which can be used for
long-term autonomous work. The gain in dimension in the MVL method in comparison with binary
logic is because for a multiple-valued logic function, the number of rows in its truth table is kn instead
of 2n for Boolean logic [72], and the number of different logic functions is kkn

instead of 22n
.

To encrypt messages by MVL, one should install separate quantum random number generator
(QRNGs) in encoders and decoders [69,70]. In addition, it is necessary to generate confidentially one
or several secret multiple-valued logic functions with randomly given parameters with the help of
QRNGs [67,68,75,76] and write it in the memory of both subscribers. In order to construct such a
function, it is sufficient to generate several arrays of randomly assigned k-digit numbers, and then,
according to certain rules, to form a special matrix of randomly chosen parameter pairs

(
ai, b j

)
.

The method of formation and application of random one-time keys in the MVL method is described
in detail in [67,75,76]. At the beginning of the secure communication session, abonent Alice, with the
help of her QRNG, should generate a one-time key-prompt, i.e., a sequence of n − 1 randomly assigned
k-digit numbers. Alice substitutes this data set as input variables x2, . . . , xn into a logic expression
for the secret function. Then, successively substituting the values of x1 from 0 to k − 1, it calculates a
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sequence of k random values of the output variable y = f (x1, . . . , xn). A one-time key R is a random
permutation of a fixed initial sequence R0 = {0, 1, . . . , k − 1} produced in the cells of the memory chip
with the help of a random sequence f (0, 0, ..., 0), ..., f (0, 0, ..., k − 1).

In addition to the original way to realize high dimen sions of random key space [67], the MVL
method provides new versions of position-based cryptography [77], exploiting the protocol, designed by
Unruh [78]. Position-based cryptography concepts [77] suppose that a robotic agent can independently
verify and interpret the space location and other scene parameters of the partner abonent.

The secured transmission of fuzzy rule, linguistic variables, and membership functions was also
adapted for MVL secret coding [79]. This algorithm was proposed for controlled ordering/disordering
of the structure of fuzzy logic knowledge base, providing remote switching off/switching on of robotic
agents. Since the set of fuzzy logic rules ‘if ..., then . . . ’ and associated membership functions, which are
used by the robot’s control system, can represent a valuable knowledge structure, it potentially can be
stolen by eavesdroppers in the off mode of the robot. Thus, it is necessary to encrypt the knowledge
structure for secure storage. Such an MVL algorithm can be implemented in a digital ‘key’ and a digital
‘lock’ installed on the robot. The ‘lock’ regulates the access of its internal subsystems to the recoding
tables stored in the random access memory (RAM). With the help of several multiple-valued logic
functions and auxiliary sequences of random numbers, the ‘key’ allows one to remotely erase and
restore coding sequences.

One more MVL scheme was proposed in [76] for the verification of data integrity in simple
robotic systems. This scheme supposes the coordinated work of two modules in the receiving agent.
The packet, transmitted by the first agent, includes three parts, which contain (a) the standard set of
Transmission Control Protocol/Internet Protocol (TCP/IP) data, (b) informative data, which can be
secretly coded by standard methods, and (c) the repeated informative part of (b), coded by the MVL
method [67]. The first receiving module is to decode and to compare parts (b) and (c) in order to
check the data integrity. After this, the first module should transfer the verified set of bytes to the
second module of the receiving agent, excluding the transfer of any alien data structures. After the
session, the first receiving module should be reloaded from a read-only memory (ROM) device. Thus,
the malware code infection can be minimized [76] by decreasing the uncontrolled traffic transmitted
via traditional network protocols.

The problem of high-dimensional space for seamless addressing in global networks was earlier
discussed in [76,80], which was initiated by the design of the special language for parallel computing
of tree data structures (abreviated as PARSEK in russian language). The network structure of AGA
mapping switching functions [76] was proposed to form high-dimensional tree structures, which are
close to simple variants of graph structures. It was shown that AGA functions can provide exclusively
high dimensions of the multi-parametrical space. The tree structure for seamless addressing and
computing in the global network [76] should use the minimal set of instructions in order to provide an
asynchronous regime of work for a distant mobile agent, which can hardly support distant clocking
and evaluate time delays for received instructions.

The MVL model of an agent was proposed in [68] and based on the known homeostat model [81],
which was aimed at the realization of secured communications by means of the non-alphabet language
for an MAS. This homeostat model can be considered as a discrete analog of the fuzzy controller,
providing digital outputs for the self-sustaining of several critical parameters within preliminary
chosen bands of values. The general scheme of such agent can be characterized as a MVL homeostat
controller, scheduling the network structure of several MVL mapping functions [76]. The homeostat’s
model supposed the use of the working cycle, including the polling of critical sensors parameters,
communication modules, and secret coding/decoding modules. The working cycle was ended by the
decision making, based on all the obtained information. This scheme needs the formation of time
diagrams for the control of all internal and external subsystems, which are switched by MVL functions.

In [82], the heterogeneous MVL model was proposed for the control of the decision-making
procedure in the agent, combining the MVL, fuzzy, and traditional Boolean logic models. The idea
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was to integrate many diverse models into the holistic model of robotic agent behavior, combining
precise and approximate descriptions for space and time parameters. The problem here is that fuzzy
logic with its linguistic variables and fuzzy rules has strict limitations for the profile of membership
functions, and known fuzzy controllers [40–42] also exploit limited working bands of parameters,
thus decreasing the band of working regimes for actuators. This is not critical for domestic appliances,
but it is unacceptable for decision-making algorithms in industrial robots. In order to control and to
minimize “voids” in the multi-parametrical space of control parameters, it was proposed to apply
scheduling, which was expressed formally by MVL switching functions.

Thus, the design of MVL schemes for data protection was initially aimed at the application
of acknowledged methods of AI [27], including multiagent schemes and fuzzy logic, for simple
microcontrollers MCS-51. Now, such algorithms can be adapted for FPGAs and quantum computing.
However, MVL algorithms are very specific and differ greatly from AI methods. That is why the
interaction of MVL and AI algorithms is preferably to be controlled within the special architecture,
which is proposed in Section 4.

1.6. Actual Methods of Data Clustering

The traditional field of optoelectronic data and signal processing for network robotics includes the
problems of automated pattern recognition and search of regularities in data structures [83,84]. This item
is called pattern recognition and is based on the classification and machine learning tasks [85–87].
The current situation in the sphere of data aggregation and events analysis can be briefly characterized
by referencing reviews [88–90].

In the review [88], published in 2010, the situation in the sphere of biomedical research combining
the large number of various processing methods was estimated as daunting due to the diversity of
cluster analysis, differing terminologies, goals, and assumptions. That is why different methods were
compared in detail in [88] according to the mathematical distance and similarity functions, including
Minkovsky, Euclidian, squared Mahalanobis, Pearson, point symmetry, and many other metrics,
e.g., [91]. First of all, hierarchical and agglomerative clustering algorithms were analyzed. Squared
error-based clustering and the problem of a combinatorial burst of possible number of partitions
was discussed, where the K-means algorithm was acknowledged to be the most popular method.
The exceptional role of approximate fuzzy clustering (realized by Bezdek) was dedicated. In addition,
neural network clustering was related to the concept of competitive learning.

The review [89], presented five years later, has characterized the situation as more positive, but it
has emphasized that every clustering algorithm has its own strengths and weaknesses, due to the
complexity of the information to be processed. It is substantial that the clustering algorithm based on
quantum theory was also discussed in [92–94].

Furthermore, the review [90] has represented the interesting problem of mixed data clustering,
which deals with both numerical and categorical features. That task is especially actual for such
domains as healthcare, finance, and marketing, but this task was called challenging, because it is a
doubtful way to apply mathematical operations, such as the summation or averaging for datasets in
these domains. Special taxonomy was proposed for the study of mixed data clustering algorithms,
which among other methods used hierarchical data structures. To some extent, methods of mixed data
clustering correlate with the method of linguistic variables in fuzzy logic were proposed by Zadeh
in [94], where a linguistic variable can have the set of several linguistic values, defined by membership
functions with special triangle or sigmoid profile. As a whole, mixed data clustering [90] seems
to be the new set of solutions for the old problem to imitate human reasoning and operate quickly
with compact data structures in the high-dimensional space of symbolic and number values. Here,
fuzzy logic provides an adequate description [94] for approximate reasoning, and as it is discussed
further, multiple-valued logic [71] represents the correct and precise description for large-scale sets.
One should note that both concepts are the consequences of human intellect and are to be used together
in AI systems.
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The classification task can be subdivided [57,85] into vector optimization methods (regression
analysis and support vector machine) and statistical methods (discrete and cluster analysis). All these
methods somehow determine the appropriate boundaries between classes. In particular, linear vector
optimization methods calculate the linear separating hypersurface, which is visually shown for the
2D case of a measurement grid (see Figure 2a). Typical methods here are to find the linear geometry
parameters of the optimal surface separating classes of objects and to maximize the margin distance
2d between classes (see Figure 2b). This task involves the choice of the minimal number of trouble
points for the calculation of so-called support vectors [85]. Another popular method is to reduce the
nonlinear tasks to linear separability by means of kernel functions [83].

The review [89], presented five years later, has characterized the situation as more positive, but 
it has emphasized that every clustering algorithm has its own strengths and weaknesses, due to the 
complexity of the information to be processed. It is substantial that the clustering algorithm based on 
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large-scale sets. One should note that both concepts are the consequences of human intellect and are 
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Figure 2. (a) 2D example of two classes of objects (white and gray), which can be linearly separated 
by the support vector machine (SVM) method, using the calculation of geometrical parameters for 
the optimal separating surface. (b) The basic idea of the well-known SVM method is to 
determine the maximal margin 2D length by the calculation of support vectors for the 
minimal number of objects taken near the border. (c) The example of linearly 
nonseparable sets of white and gray objects. 

However, for many situations such as that shown in Figure 2c, it is impossible to find a linear 
separable surface. That is why fuzzy logic with its uncertain and approximate data processing 
methods also can be used [40–43]. However, these methods can not provide the correct method to 
formalize an arbitrary boundary between features classes. The visual example of nonseparable 
classes is given in Figure 2c and demonstrates the need for the mathematical model, which provides 

Figure 2. (a) 2D example of two classes of objects (white and gray), which can be linearly separated by
the support vector machine (SVM) method, using the calculation of geometrical parameters for the
optimal separating surface. (b) The basic idea of the well-known SVM method is to determine the
maximal margin 2D length by the calculation of support vectors for the minimal number of objects
taken near the border. (c) The example of linearly nonseparable sets of white and gray objects.

However, for many situations such as that shown in Figure 2c, it is impossible to find a linear
separable surface. That is why fuzzy logic with its uncertain and approximate data processing methods
also can be used [40–43]. However, these methods can not provide the correct method to formalize an
arbitrary boundary between features classes. The visual example of nonseparable classes is given in
Figure 2c and demonstrates the need for the mathematical model, which provides a correct formal
description for the arbitrary distribution of classified objects near the margin of two classes.

The spectrum of possible solutions for hardly separable sets includes, e.g., the method to add the
calibrated noise component to data; this concept was discussed in the paper [35], which was devoted to
the problem of events aggregation in large-scale IoT systems. However, the guaranteed mathematically
correct method of arbitrary data separation is proposed in Section 3 to be based on MVL function.

1.7. Fuzzy Logic and Approximate Clustering

One more aspect of robotic systems refers to the problem of movement control and space
positioning of agents and their executive devices [27,29–31]. Due to adverse external conditions and
the possible errors of sensors and actuators, the internal model of the scene in the agent may be
inaccurate and incomplete. Such problems are traditionally in the competence of fuzzy logic models,
which have been intensively investigated during last two decades [40–42,52,53]. Such systems are based
on fuzzy reasoning, fuzzy rules, linguistic variables, and membership functions [91]. The research
of fuzzy methods was initiated by Zadeh in the 1960s and has created many successful applications
in the sphere of transport, industrial systems, and medicine [29,33,95]. Now, the role of approximate
reasoning and fuzzy logic models in AI modeling is too great for modern robotic systems, and many
multiagent software and robotic schemes need to include uncertain data processing, fuzzy logic,
and approximate clustering into agent models [12–14,52,53]. That is why the desire to obtain a seamless
space for robotic decision making leads to the recognition of the need to include fuzzy logic into
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the set of basic AI components, which are conjugated with computer vision [57,58]. As a whole,
the processing of approximate space and time data is substantial for global and local positioning,
collective mapping, unmanned vehicles routing, unmanned logistics, and verification tasks in computer
security [30,31,40–42]. Now, fuzzy logic includes a large number of methods, providing the successful
work of many subsystems, reproducing musculoskeletal systems of man and animals. These methods
are specific and differ from traditional models based on kinematic equations [41]; that is why such
system modeling is usually regarded separately.

Fuzzy clustering methods are described in the large number of papers, where earlier works
(published in the 1990s) are represented e.g., by [96–99]. A recent level of fuzzy clustering is disclosed,
e.g., in papers and reviews [100–103]. Now, flexible fuzzy clustering methods are being applied
and provide decision making [100] in many fields, including finance, the energy sector, medicine,
Web classification, healthcare, machine learning, pattern recognition, and time series prediction.
Comparative performance analysis for fuzzy clustering on standard data sets was represented in [101],
which did not find one best variant that was appropriate for all types of noise and outliers.

Modern investigations of space-division multiplexing elastic optical networks (SDM-EON) [102]
are actual for the future enlargement of Internet traffic and were proposed to use dynamic unsupervised
fuzzy clustering for more intelligent and effective resource assignment. For different sample scales,
these fiber systems can use either the known C-means method or the direct clustering method.
However, this method is appropriate for the fiber data transmission line with well investigated physical
parameters, but it scarcely can be applied for the general case, when the intellectual robot does not
have preliminary information about the system, whose data it should analyze.

Briefly, fuzzy clustering was recently characterized in [103] as an unsupervised learning, which can
partition identical data patterns basing on some similarity measure, which increases this similarity
within one group and decreases it between different groups of objects. The main advantages of fuzzy
clustering refer to its simple and straightforward programming, suitable for very large data sets since
its time complexity is O(n). In addition, it can produce very good results for some specific clusters
parameters (i.e., for hyperspherically shaped well-separated clusters). Fuzzy clustering methods are
robust and have been proven to converge to local optimal solutions. At the same time, fuzzy clustering
has some drawbacks, as this technology:

- supposes an a priori known number of clusters to be used,
- is sensitive to the cluster centers’ initialization phase, and
- is also sensitive to noise and outliers.

Thus, now there are many fuzzy logic clustering methods [104], but there is no consensus on which
methods are more suitable for a given database with specific statistics. Moreover, default configuration
is not always accurate, and the random search of parameters proves to give a better alternative.

That is why a complicated agent model for future robotics should envisage a large number of
different rules, linguistic variables, and membership functions supported by the large number of
auxiliary algorithms, based on traditional Boolean logic, and including both statistic and AI methods.
At the same time, all these data structures should be reliably protected from leakage and modifications
of data, as numerous rules and membership functions [13,40,41,91] are difficult for verification,
and potentially any inaccurate or dishonest staff member can create many problems.

1.8. The Aim of the Presented Work

As a result, the general requirements for a network with secure agent communications are
as follows.

- The level of security for CN should be increased further not only by the development of various
QKD schemes [7–9], but also by AI methods of data leakage protection and by the adaptation
of a one-time-pad secret coding for different levels of data processing in the agent [67,75].
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As possible data leakages due to malicious staff members create threats both for traditional and
quantum network subsystems, AI methods should be especially focused on the search, analysis,
and recognition of random and suspicious events, which are described in the multi-parametrical
space of characteristic features of objects and events. New data clustering methods are needed to
be designed both for precise and approximate models, as well as for categorical and linguistic
data structures. Future CN should be enhanced by various authentication and verification
schemes [75,77].

- Computer vision, speech, and acoustic signals processing are the critical technologies for
the knowledge exchange, monitoring of the scene, and for controlling an agent′s motivation,
goal setting, planning, evaluation of resources, and objects positioning. That is why such image
processing methods as data aggregation, clustering, noise filtering, contour extraction, and the
analysis of the knowledge structure are very actual for robotic subsystems in global CN [58].

- Peer-to-peer network segments formed by intellectual agents in global CN should be supported by
the design of protocols for directly targeted and problem-oriented communications between agents.
The traditional address space for future networks is to be complemented by a multi-parametrical
space for the targeted addressing of MASs and for multi-parametrical modeling, which is described
by the special language (protocol) for direct peer-to-peer communications. Seamless computing
in global CN [65] is to be provided for different hardware platforms, and the integration of robots
should not create obstacles for routine Internet protocols.

- Learning methods [27], imitating the behavior of qualified men, are actual for the modeling of
an agent. As of now there are no universal methods of learning that are good for all possible
tasks; thus, heterogeneous models can be applied to form necessary combinations of algorithms.
Methods of learning should support objects and events aggregation [35] for large databases and
should provide control of possible voids and data dubbing in an agent’s knowledge base.

- Fuzzy logic methods [40–42] of uncertain and approximate data processing are necessary for
the simulation of a human‘s behavior and musculoskeletal systems. Such models should be
supplemented by new precise methods for the description of borders between classes of objects.

The goal of the paper is to design new methods of data clustering and supporting network
architecture, which:

- enlarge the choice of data clustering and classification methods for various types of data,
- are adapted for the integration of additional means of secret coding for agents and MAS,

supplementing QKD and traditional network means of data protection,
- provide new schemes for seamless computing and communication languages for global networks,
- can integrate multiagent concepts, fuzzy models, and other AI methods with quantum schemes

in global CN.

The solution of these problems is proposed to be based on multiple-valued logic (MVL) switching
functions, which are appropriate means to link different AI methods in the multi-parametrical space of
control parameters.

Before the discussion of MVL classification methods, the description of an MVL formal model is
given in Section 2.

2. Basic Methods of Multiple-Valued Logic for Data Processing

2.1. Types of Logic Models and the Specifity of Multiple-Valued Allen–Givone Algebra

The history of multiple-valued logic (MVL) was disclosed in [71] and is long enough, as at
the end of 19th century it was not yet obvious that Boolean logic will be supported by effective
technical platforms. Now, one can find in literature various kinds of logic models, including Boolean,
multiple-valued, continuous, fuzzy, hybrid, and threshold ones [59,60,71,72]. In contrast to Boolean



Quantum Rep. 2020, 2 138

logic, discrete MVL logic deals with logic functions y = f (x1, . . . , xn), where all n input variables
x1, . . . , xn and one output variable y have k discrete truth values, which are taken from the set
{0, 1, . . . , k− 1}. Here, 0 is the absolutely false value and k− 1 is the absolutely true one. Thus, it differs
from Boolean logic, which deals with the set of truth levels {0,1}.

Briefly, the general idea of discrete multiple-valued logic was to raise the “density” of calculations
and to enlarge the load for one logic gate. Separate microelectronic components for MVL systems
were designed in the 1970s (see Chapters 1 and 2 of [71]), but the priority development of Boolean
systems was based on great achievements in microelectronics. Furthermore, the interest in fuzzy
logic [40–42] has prevailed and left MVL technologies in the shadows. As a result, some authors have
confused concepts of MVL and fuzzy logic. Nevertheless, the difference between them is in the fact
that fuzzy logic uses a continuous description of truth levels and uses logic operators MAXIMUM
and MINIMUM [71,72], but it is the so-called Kleene algebra [72,105], which is not a complete set of
logic operators. This property means that the model formed by this set of logic operators can represent
any arbitrary function. Thus, some truth tables for discrete MVL functions (mainly, with 0s and 1s
truth levels) can not be expressed by fuzzy logic. Moreover, fuzzy logic has made impressive advances
mainly as a method to process uncertain and approximate data. As fuzzy logic rules ‘If... Then...’ and
membership functions [40–42] can be easily described by MVL expressions for control procedures
and secret coding schemes [79,106], the relevant solution seems to use an MVL switching scheme for
the activation of specialized fuzzy logic modules. For global networks and pattern recognition tasks,
it is also convenient to exploit large capacity discrete models for the switching of fuzzy rules and
membership functions. In such systems, an MVL model can be defined for a large number of truth
levels k, which conveniently overlaps with the number of truth levels in fuzzy logic models, but at the
same time, it provides the complete set of logic operators. There are several versions of MVL complete
sets and the most well known of them are the Lucasievich, Rosser–Terkett, Post, and Allen–Givone
systems [71,72]. They all use MAXIMUM and MINIMUM operators, but differ by the third logic
operator, in which specific properties are actively used further. In spite of the fact that the Allen–Givone
complete set is traditionally called Allen–Givone algebra (AGA), one should remember that this
mathematical model differs greatly from the mass term algebra.

2.2. Definition of AGA and its Main Properties

The discrete k-valued AGA model was defined [71] as the complete set of non-Boolean operators〈
0, 1, . . . , k− 1, X(a, b), ∗,+

〉
(1)

where the arbitrary function y = f (x1, . . . , xn) with n input variables x1, . . . , xn and output variable y
can have k discrete truth values, x1, x2 , . . . , xn , y ∈ L = {0, 1, . . . , k− 1}. In expression (1):

- 0, 1, . . . , k− 1 are the logical constants, i.e., C1 , . . . , Ck−1 ∈ L = {0,1, . . . , k − 1}
- binary operator Min(xi, x j ) marked (*) acts on a pair of logic variables xi and x j, choosing the

minimal one,
- binary operator Max(xi, x j ) marked (+) acts on a pair of logic variables xi and x j, choosing the

maximal one,
- unary operator X(a, b) is called Literal and acts on one logic variable x, where the result is given

by expression (2):

X(a, b) =
{

0, i f b < x < a
k− 1, i f a ≤ x ≤ b

(2)

where for any X(a, b) always b ≥ a, and a, b ∈ L = {0, 1, . . . , k− 1}.

One can see from the Figure 3 and expression (2) that the operator Literal can be compared with a
bandpass filter, where the lower and upper cutoff parameters can be adjusted. In addition, it can be
realized as two sequential comparisons with thresholds a and b.
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The arbitrary MVL function y = f (x1, . . . , xn) always can be given by the truth table given in
Figure 4, which has the overall number of rows kn

− 1, as the Boolean one can have only 2n
− 1

rows. The column for output variable y ∈ {1, . . . , k− 1} should be filled by some set of logical
constants C = {0, 1, . . . , k− 1}. Every row of the truth table with a nonzero value of y has equivalent
representation, written as a product term, i.e., as logic expression, where logic constants and Literals
are composed only via operators Min. Operator Literal (2) should be calculated for every input variable
x j in every product term, resulting in X j(a, b) with some fixed values a, b. Thus, any product term for
input variables x1, . . . , xn always has the structure f (. . .) ∗X1(. . . , . . .) ∗X2(. . . , . . .) ∗ . . . ∗Xn(. . . , . . .).
Several expressions with this structure are given in the right side of Figure 3. According to the
definitions in [71], the Literal X(a, b) written for j-th input variable x j in the correspondent row of the
truth table should be filled by equal values of parameters a = b = χ, i.e., X j(χ,χ), where χ is the value
of x j in the relevant row. (In row 1, e.g., χ has the value equal to 1).

< 0, 1, … , 𝑘 − 1, 𝑋(𝑎, 𝑏), , +> (1) 

where the arbitrary function 𝑦 = 𝑓(𝑥ଵ, … , 𝑥) with 𝑛 input variables 𝑥ଵ, … , 𝑥 and output variable 𝑦 
can have 𝑘 discrete truth values, 𝑥ଵ, 𝑥ଶ , … , 𝑥 , 𝑦 𝐿 = {0,1, … , 𝑘 − 1}. In expression (1): 

- 0, 1, … , 𝑘 − 1 are the logical constants, i.e., 𝐶ଵ , … , 𝐶ିଵ ∈L = {0,1,…, k − 1} 
- binary operator Min(𝑥, 𝑥 ) marked ( ) acts on a pair of logic variables 𝑥 and 𝑥, choosing the 
minimal one, 
- binary operator Max(𝑥, 𝑥 ) marked (+) acts on a pair of logic variables 𝑥 and 𝑥, choosing the 
maximal one, 
- unary operator 𝑋(𝑎, 𝑏) is called Literal and acts on one logic variable 𝑥, where the result is 
given by expression (2): 𝑋(𝑎, 𝑏) = ൜ 0,      𝑖𝑓 𝑏 < 𝑥 < 𝑎𝑘 − 1,   𝑖𝑓 𝑎 ≤ 𝑥 ≤ 𝑏 (2) 

where for any 𝑋(𝑎, 𝑏) always 𝑏 ≥ 𝑎,  and 𝑎, 𝑏 ∈ 𝐿 = {0,1, … , 𝑘 − 1}.  
One can see from the Figure 3 and expression (2) that the operator Literal can be compared with 

a bandpass filter, where the lower and upper cutoff parameters can be adjusted. In addition, it can be 
realized as two sequential comparisons with thresholds 𝑎 and 𝑏.  

The arbitrary MVL function 𝑦 = 𝑓(𝑥ଵ, … , 𝑥) always can be given by the truth table given in 
Figure 4, which has the overall number of rows 𝑘 − 1, as the Boolean one can have only 2 − 1 
rows. The column for output variable 𝑦 ∈ {1, … , 𝑘 − 1} should be filled by some set of logical 
constants 𝐶 = {0, 1, … , 𝑘 − 1}. Every row of the truth table with a nonzero value of 𝑦 has equivalent 
representation, written as a product term, i.e., as logic expression, where logic constants and Literals 
are composed only via operators Min. Operator Literal (2) should be calculated for every input 
variable 𝑥  in every product term, resulting in 𝑋(𝑎, 𝑏) with some fixed values 𝑎, 𝑏. Thus, any 
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Figure 3. Logic operator Literal 𝑋(𝑎, 𝑏), shown for Allen–Givone algebra (AGA) with 𝑘 = 8 truth 
levels and parameters 𝑎 = 3, 𝑏 = 5.  

Figure 3. Logic operator Literal X(a, b), shown for Allen–Givone algebra (AGA) with k = 8 truth levels
and parameters a = 3, b = 5.

 
Figure 4. The truth table defines an arbitrary MVL function 𝑦 = 𝑓(𝑥ଵ, … , 𝑥). To the right of the table 
the set of product terms is shown, corresponding to appropriate rows. 

Due to [71], the overall logic expression of an arbitrary function can be written as an expression 
where all nonzero product terms written right to the truth table are connected by operators Max (+). 
The resulting logical expression for 𝑦 = 𝑓(𝑥ଵ, … , 𝑥)) will be 𝑦 =  𝑓(0,0, . . . ,0) ∗ 𝑋ଵ(0,0) ∗ 𝑋ଶ(0,0) ∗. . .∗ 𝑋(0,0)  + 

   +𝑓(0,0, . . . ,1) ∗ 𝑋ଵ(1,1) ∗ 𝑋ଶ(0,0) ∗. . .∗ 𝑋(0,0) + ⋯    +𝑓(𝑘 − 1, 𝑘 − 1, . . . , 𝑘 − 1) ∗ 𝑋ଵ(𝑘 − 1, 𝑘 − 1) ∗ 𝑋ଶ(𝑘 − 1, 𝑘 − 1) ∗. . .∗ 𝑋(𝑘 − 1, 𝑘 − 1). (3) 

The calculation of expression (3) and its product terms [71] should be done as follows. For 
every product term 𝐶𝑜𝑛𝑠𝑡𝑋ଵ(𝑎,ଵ, 𝑏,ଵ) … 𝑋(𝑎,, 𝑏,), all operators Literal Xj(…) should be 
calculated for the fixed set of values of input variables 𝑥1,…,𝑥n . If the current value of variable 𝑥 
does not fit to the segment ൣ𝑎,, 𝑏,൧, then 𝑋൫𝑎,, 𝑏,൯ = 0 and the whole product term will also 
be equal to 0. Otherwise, 𝑋൫𝑎,, 𝑏,൯ = 𝑘 − 1, and the product term will give the value 𝑀𝑖𝑛(𝑘 −1, 𝐶𝑜𝑛𝑠𝑡) = 𝐶𝑜𝑛𝑠𝑡. Operators Max (+) will further give the greatest value from all the product terms 
in (3). 

Logic expression (3) also provides the equivalent reverse transformation into its truth table [71]. 
The given above method [71] principally ensures the correct mathematical method to receive 

the formal expression for an arbitrary function with any finite number of rows. As it was discussed 
earlier [67,76], the structure of product terms easily provides parallel schemes for computing of (3). 
As the basic operators are the operations of comparison Max and Min, then the result of (3) will 
never overload the memory for any amount of data 

The example of the program for the calculation of an arbitrary product term included in 
expression (3) with given parameters 𝑘 and 𝑛, is given in supplementary materials. This program 
was written in C language for debugging and tests of microassembler programs, emulating MVL 
models for microcontrollers MCS-51.  

The application of large-scale MVL models for real IoT devices or cryptography tasks will need 
to represent the arbitrary MVL function as the set of matrixes [75]: 𝐴௨ = ൭ 𝑎ଵଵ … 𝑎ଵ… … …𝑎ିଵ,ଵ … 𝑎ିଵ,൱, 𝐵௨ = ൭ 𝑏ଵଵ … 𝑏ଵ… … …𝑏ିଵ,ଵ … 𝑏ିଵ,൱, 𝐶 = ൭ 𝑐ଵଵ … 𝑐ଵ௩… … …𝑐ିଵ,ଵ … 𝑐ିଵ,௩൱,      (4) 

where always 𝑏 ≥  𝑎, 𝑞. In expression (4), all used matrix elements are natural numbers, where 𝑢 ∈ {1,2, … , 𝑣} and 𝑣 is the number of blocks (or groups) of product terms, which can be fragmented 
during minimization. Matrixes 𝐴௨   and 𝐵௨   in expression (4) define indexed sets of Literal’s 
parameters 𝑎  and 𝑏,  respectively, and both of them have the fixed dimension 𝑛 × (𝑘 − 1) . 
Namely, the number of non-zero elements in matrixes (4) should be transformed during the 
minimization procedure, as described in Section 2.3, and it is shown further that the information 
capacity of the MVL model is very high. 

2.3. Multiparametrical Space Dimension for MVL Function  

The task to integrate robotic systems into CN and to realize targeted language for their 
peer-to-peer communications requires designing the formal model of a high-dimensional space for 
the logical modeling of MAS systems. An arbitrary MVL function 𝑦 = 𝑓(𝑥ଵ, … , 𝑥)  given for n input 
variables and k truth levels can have up to 𝑘𝑛 rows in its truth table instead of 2𝑛 in the Boolean 
logic [71,72], see Table 3. The number of all possible logic functions is much more: 𝑘 instead of 

Figure 4. The truth table defines an arbitrary MVL function y = f (x1, . . . , xn). To the right of the table
the set of product terms is shown, corresponding to appropriate rows.

Due to [71], the overall logic expression of an arbitrary function can be written as an expression
where all nonzero product terms written right to the truth table are connected by operators Max (+).
The resulting logical expression for y = f (x1, . . . , xn)) will be

y = f (0, 0, . . . , 0) ∗X1(0, 0) ∗X2(0, 0) ∗ . . . ∗Xn(0, 0)+
+ f (0, 0, . . . , 1) ∗X1(1, 1) ∗X2(0, 0) ∗ . . . ∗Xn(0, 0) + . . .

+ f (k− 1, k− 1, . . . , k− 1) ∗X1(k− 1, k− 1) ∗X2(k− 1, k− 1) ∗ . . . ∗Xn(k− 1, k− 1).
(3)

The calculation of expression (3) and its product terms [71] should be done as follows. For every
product term Const ∗X1(am,1, bm,1) ∗ . . . ∗Xn(am,n, bm,n), all operators Literal Xj( . . . ) should be calculated
for the fixed set of values of input variables x1, . . . ,xn . If the current value of variable x j does not fit
to the segment

[
am, j, bm, j

]
, then X j

(
am, j, bm, j

)
= 0 and the whole product term will also be equal to 0.
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Otherwise, X j
(
am, j, bm, j

)
= k− 1, and the product term will give the value Min(k− 1, Const) = Const.

Operators Max (+) will further give the greatest value from all the product terms in (3).
Logic expression (3) also provides the equivalent reverse transformation into its truth table [71].
The given above method [71] principally ensures the correct mathematical method to receive

the formal expression for an arbitrary function with any finite number of rows. As it was discussed
earlier [67,76], the structure of product terms easily provides parallel schemes for computing of (3).
As the basic operators are the operations of comparison Max and Min, then the result of (3) will never
overload the memory for any amount of data

The example of the program for the calculation of an arbitrary product term included in
expression (3) with given parameters k and n, is given in supplementary materials. This program was
written in C language for debugging and tests of microassembler programs, emulating MVL models
for microcontrollers MCS-51.

The application of large-scale MVL models for real IoT devices or cryptography tasks will need to
represent the arbitrary MVL function as the set of matrixes [75]:

Au=


a11 . . . a1n
. . . . . . . . .

ak−1,1 . . . ak−1,n

, Bu =


b11 . . . b1n
. . . . . . . . .

bk−1,1 . . . bk−1,n

, C =


c11 . . . c1v
. . . . . . . . .

ck−1,1 . . . ck−1,v

, (4)

where always bi j ≥ ai j, q. In expression (4), all used matrix elements are natural numbers,
where u ∈ {1, 2, . . . , v} and v is the number of blocks (or groups) of product terms, which can be
fragmented during minimization. Matrixes Au and Bu in expression (4) define indexed sets of Literal’s
parameters a and b, respectively, and both of them have the fixed dimension n × (k− 1). Namely,
the number of non-zero elements in matrixes (4) should be transformed during the minimization
procedure, as described in Section 2.3, and it is shown further that the information capacity of the MVL
model is very high.

2.3. Multiparametrical Space Dimension for MVL Function

The task to integrate robotic systems into CN and to realize targeted language for their peer-to-peer
communications requires designing the formal model of a high-dimensional space for the logical
modeling of MAS systems. An arbitrary MVL function y = f (x1, . . . , xn) given for n input variables
and k truth levels can have up to kn rows in its truth table instead of 2n in the Boolean logic [71,72],
see Table 3. The number of all possible logic functions is much more: kkn

instead of 22n
for Boolean

systems. Thus, the application of 8, 16, or 32 bit platforms for the emulation of MVL functions with
several dozens of variables can provide an extremely high space of targeted parameters for MAS
languages, which can principally include all the addressing spaces of CN and is represented as a
sequence of bytes. Table 3 demonstrates the number of rows and logic functions for, e.g., functions of
50 input variables and for several values of k. In any way, even for only 16 bit platform, these dimensions
exceed the number 4.63 × 10170 of possible positions in Go play 19 × 19 [73], which is much less than

the factor of expansion ee1013
≈ 10 1.55×104342944819032

in the model of the expanding universe obtained in
1984 by Padmanabhan [74]. Some of the other largest known numbers were cited also in [80].

That is why MVL functions are principally much more effective than Boolean ones for the
description of high-dimensional spaces, which are designed for targeted robotic communications.
A further step is to propose the methods that are needed for the efficient computing of an MVL
function in an agent or an MAS. The first step is to form the necessary MVL function and its logic
expression. The simplest variant was disclosed in Section 2.1, where the number of rows in the truth
table potentially can be extremely high. For such situations, one should be ready to simplify MVL
function expression, thus shortening the computing time. This procedure resembles to some extent the
minimization in Boolean logic, but it is much more cumbersome.
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Table 3. Comparative information capacity of multiple-valued logic (MVL) truth table.

N K Nrows = kn Nlog.functions = kkn

50 2 ≈1.13 × 1015
≈1.27·× 1030

50 256 ≈2.58·10120
≈2.96·× 1030825

50 65536 ≈6.67·× 10240 >1015770928

2.4. The Minimization Method for AGA Functions

The simplification of expression (3) for an arbitrary function in AGA is based on the consensus
method [71], which is the multi-stage sequential transformation of the whole set of parameters am, j and
bm, j in (3), decreasing the number of product terms. Useful additional commentaries are also given in
Chapters 7–9 of the same book [71].

The consensus method to obtain the minimized logic expression for an MVL function is grounded
on definitions 1–4, cited from [71] and disclosing the principle of subsuming product terms and the
application of the consensus method.

Definition 1. Product term r1 ∗X1(a1, b1) ∗ . . . ∗Xn(an, bn) subsumes another product term r2 ∗X1(c1, d1) ∗

. . . ∗Xn(cn, dn), if and only if both conditions are true:

1) r1 ≤ r2 (5)

2) ci ≤ ai ≤ bi ≤ di for all Xi, i = 1, . . . , n.

Example 1. Let k = 60 and variables x1, x2, x3 are de f ined. The product term 1 ∗ X1(1, 1) ∗ X2(12, 25) ∗
X3(37, 44) subsumes term 2 ∗X1(0, 7) ∗X2(10, 41) ∗X3(35, 59), as its parameters ai, bi are between ci and di,
and

for x1, inequalities 0 < a = 1 and b = 1 <7 are true,
for x2, we have 10 < a = 12, b = 25 < 41 and
forx3, expressions are true 35 < a = 37, b = 44 < 59.
As in the notation 1 * X1(1,1) * X2(12,25) * X3(37,44) +2 ∗X1(0, 7) ∗X2(10, 41) ∗X3(35, 59) , the first product
term is included into the second one and can be deleted, thus it was crossed out.

The idea of the minimization procedure is based on the search for subsuming product terms,
shortening the logic expression. If all the subsumed product terms were found, then the consensus
operation [71] is to be applied.

Definition 2. Consensus j ∗Uj ∗
i k·Uk in the i–th coordinate for product terms

r ∗U1 = r ∗X1(a1, b1) ∗ . . . ∗Xn(an, bn) and s ∗U2 = s ∗X1(c1, d1) ∗ . . . ∗Xn(cn, dn) is given by the expression
j ∗Uj ∗

i k ∗Uk = q ∗X1(e1, f1) ∗X2(e2, f2) . . . ∗Xn(en, fn) if and only if there exists such a set of q, ek, fk that

q = j ∗ k (6)

Xk(ek, fk) = Xk(ak, bk) + Xk(ck, dk) for k = i,
Xk(ek, fk) = Xk(ak, bk) ∗Xk(ck, dk) for all k , i.

In expression (5), two additional operations are used, which are disclosed further.
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Definition 3. The operator union of Literals is defined asX(a, b) = X(c, d) + X(e, f ), and it exists if

a = MIN(c, e), b = MAX(d, f ), e− 1 ≤ d, c− 1 ≤ f (7)

Definition 4. The intersection of Literals is defined as X(a, b) = X(c, d) ∗X(e, f ), and it exists if

a = MAX(c, e), b = MIN(d, f ), e ≤ d, c ≤ f. (8)

These operations are shown in Figure 5 and respond to the calculation of expressions X1(1, 4) ∗
X2(2, 6) = X(2, 4) and X1(1, 4)+X2(2, 6) = X(1, 6). Simplified visual interpretation for the intersection
and union of Literals can be proposed, basing on differently featured rectangles (marked gray), which fill
the band between parameters a and b in Literals X(a, b). For two product terms, the consensus in the
i-th input variable can be calculated if there is union, i.e., a common (not fragmented) rectangular for
both Literals Xi(a, b), marked by gray in the case b in Figure 5b, and also there exists an intersection of
rectangles for both Literals, which is marked by gray in case a, and it is taken for all the other variables.
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Figure 5. Operation of “intersection” and “union” used in the minimization procedure. (a): 
Intersection of two Literals is given by the coincident set of their values x, marked by grey. (b) Union 
of two Literals is given by the enlarged common set of their values x, marked by grey. 

Example 2 further demonstrates the calculation of consensus for two product terms.  
Example 2: Lets us calculate the consensus for product terms  2 ∗ 𝑋ଵ(1,3) ∗ 𝑋ଶ(0,1) and  3 ∗ 𝑋ଵ(3,4) ∗ 𝑋ଶ(2,3) ∗ 𝑋ଷ(2,4), which is given for three input variables and five truth levels. 
As the variable 𝑥ଷ is not used in the first product term, according to [71], it should be rewritten 

as 2 ∗ 𝑋ଵ(1,3) ∗ 𝑋ଶ(0,1) ∗ 𝑋ଷ(0,4), where Literal 𝑋ଷ(0, 𝑘 − 1) = 𝑋ଷ(0,4) is added. 
Consensus 2 ∗ 𝑋ଵ(1,3) ∗ 𝑋ଶ(0,1) ∗ 𝑋ଷ(0,4) ∗ଵ 3 ∗ 𝑋ଵ(3,4) ∗ 𝑋ଶ(2,3) ∗ 𝑋ଷ(2,4), taken in 𝑥ଵ, does not 
exist as there are no such 𝑒 and 𝑓, for which  𝑋ଶ(𝑒, 𝑓) = 𝑋ଶ(0,1) ∗ 𝑋ଶ(2,3) and rectangle markers 
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The procedure for the minimization of given MVL functions was defined in [71], and it was 
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Figure 5. Operation of “intersection” and “union” used in the minimization procedure. (a): Intersection
of two Literals is given by the coincident set of their values x, marked by grey. (b) Union of two Literals
is given by the enlarged common set of their values x, marked by grey.

Example 2 further demonstrates the calculation of consensus for two product terms.

Example 2. Lets us calculate the consensus for product terms 2 ∗X1(1, 3) ∗X2(0, 1) and 3 ∗X1(3, 4) ∗X2(2, 3) ∗
X3(2, 4), which is given for three input variables and five truth levels.

As the variable x3 is not used in the first product term, according to [71], it should be rewritten as
2 ∗X1(1, 3) ∗X2(0, 1) ∗X3(0, 4), where Literal X3(0, k− 1) = X3(0, 4) is added.

Consensus 2 ∗X1(1, 3) ∗X2(0, 1) ∗X3(0, 4) ∗1 3 ∗X1(3, 4) ∗X2(2, 3) ∗X3(2, 4), taken in x1, does not exist
as there are no such e and f , for which X2(e, f ) = X2(0, 1) ∗ X2(2, 3) and rectangle markers do
not intersect.
Consensus 2 ∗X1(1, 3) ∗X2(0, 1) ∗X3(0, 4) ∗2 3 ∗X1(3, 4) ∗X2(2, 3) ∗X3(2, 4) taken in x2 exists, as there
are such e and f that X2(e, f ) = X2(0, 1) + X2(2, 3).

The procedure for the minimization of given MVL functions was defined in [71], and it was further
commented on in [107,108]. It is based on the use of so-called “don’t care states” (DCS), which are
the non-defined or vacuous rows of the truth table, where y column cells should be filled by a k − 1
constant. If the column y in the row is intentionally filled by zero, this row should not be taken as a
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DCS, as this will change the initially given function. Thus, the substitution of a DCS into an initially
given MVL function redefines the extended variant of the MVL function, which reproduces all the
output values of the initially given one. From the point of view of mathematics, such a minimization
method for logic function does not create any problems. However, for applied tasks, where logic
variables respond to real physical parameters of hardware actuators, the reckless choice of DCS = k− 1
can influence the work of sloppy designed subsystems. Thus, in a general case, the choice of DCS
requires special attention and is explained further for the classifier module.

MVL function minimization can be represented as the algorithm described in detail in [71].

- Algorithm of minimization of AGA function.

Preliminary given parameters: k-number of truth levels, n-number of input variables.

1. Form a numbered list of product terms for the given truth table (or the logic expression).
(Note. Principally, the order does not influence the final result, but not completing the minimization
procedure enlarges the computing time).

2. Replace all vacuous Literals by Literals Xi(0, k− 1).
3. Remove all subsuming product terms in the list, using expression (4) for all possible pairs of

product terms.
4. Add one or several DCS, substituting k− 1 instead of undefined rows in the truth table, add newly

formed product terms to the list, and assign consecutive numbers to product terms.
5. Repeat the search for subsuming product terms, delete such terms from the list, and assign the

numbers in the obtained list.
6. Compute consensus by expression (5) sequentially for all input variables and product terms; if the

obtained product terms do not subsume other terms, add them to the bottom of the list.
7. Find all the prime implicants that do not subsume more other terms.
8. Delete all literals of the form Xi(0, k− 1) in every product term (since they are equal to k − 1

by definition).

The given above method is bulky and cumbersome, even for small-scale examples [107,108].
Typical problems of the MVL minimization are demonstrated for the model function F(x1, x2, x3),

which is defined in Table 4, where for simplicity, the minimization procedure is done for the simple
fragment of some truth table, given for k = 255. In real robotic tasks, such function, e.g., can represent
the results of monitoring atmosphere pollution, where the drone measures the pollution concentration
during flight with the constant altitude, e.g., x3 = 3 a.u. Here, x1, x2 refers to surface coordinates x and
y. N is the number of the term. The product terms in the right part of Table 4 respond to every row of
the table.

Table 4. Truth table for the function F(x1,x2,x3).

N X1 X2 X3 F(x1,x2,x3) Responding Product Terms

1 2 0 3 75 75*X1(2,2)* X2(0,0)* X3(3,3)
2 1 1 3 11 11*X1(1,1)*X2(1,1)* X3(3,3)
3 2 1 3 75 75*X1(2,2)* X2(1,1)*X3(3,3)
4 1 2 3 11 11*X1(1,1)*X2(2,2)*X3(3,3)
5 2 2 3 75 75*X1(2,2)*X2(2,2)*X3(3,3)
6 3 2 3 11 11*X1(3,3)*X2(2,2)*X3(3,3)
7 2 3 3 75 75*X1(2,2)*X2(3,3)*X3(3,3)
8 3 3 3 5 5*X1(3,3)*X2(3,3)*X3(3,3)
9 3 4 3 5 5* X1(3,3)*X2(4,4)*X3(3,3)

The obtained set of product terms is rewritten for visual aids:
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1 5*X1(3,3)*X2(3,3)*X3(3,3)
2 5*X1(3,3)*X2(4,4)*X3(3,3)
3 11* X1(1,1)*X2(1,1)*X3(3,3)
4 11*X1(1,1)*X2(2,2)*X3(3,3)
5 11*X1(3,3)*X2(2,2)*X3(3,3)
6 75*X1(2,2)*X2(0,0)*X3(3,3)
7 75*X1(2,2)*X2(1,1)*X3(3,3)
8 75*X1(2,2)*X2(2,2)*X3(3,3)
9 75*X1(2,2)*X2(3,3)*X3(3,3).

Using the definition in expression (5), one can see that there are no subsuming terms in the list
given above.

According to the algorithm of minimization given above, Steps 1 and 2 are not activated here.
Due to Step 3, the search for consensus is based on definition of expression. (5) and should begin
as follows:

consensus 1*12 does not exist,
consensus 1*22 = 5*X1(3,3)*X2(3,3)*X3(3,3) *2 5*X1(3,3)*X2(4,4)*X3(3,3) = 5*X1(3,3)*X2(3,4)*X3(3,3), so that

1*22 is added as term 10 terms 1 and 2 subsume 10 terms 1 and 2 are deleted
1 5*X1(3,3)*X2(3,3)*X3(3,3) 1 5*X1(3,3)*X2(3,3)*X3(3,3) 1 11*X1(1,1)*X2(1,1)* X3(3,3)
2 5*X1(3,3)*X2(4,4)*X3(3,3) 2 5*X1(3,3)*X2(4,4)*X3(3,3) 2 11*X1(1,1)*X2(2,2)*X3(3,3)
3 11*X1(1,1)*X2(1,1)*X3(3,3) 3 11*X1(1,1)*X2(1,1)*X3(3,3) 3 11*X1(3,3)*X2(2,2)*X3(3,3)
4 11*X1(1,1)*X2(2,2)*X3(3,3) 4 11*X1(1,1)*X2(2,2)*X3(3,3) 4 75*X1(2,2)*X2(0,0)*X3(3,3)
5 11*X1(3,3)*X2(2,2)*X3(3,3) 5 11*X1(3,3)*X2(2,2)*X3(3,3) 5 75*X1(2,2)*X2(1,1)*X3(3,3)
6 75*X1(2,2)*X2(0,0)*X3(3,3) 6 75*X1(2,2)*X2(0,0)*X3(3,3) 6 75*X1(2,2)*X2(2,2)*X3(3,3)
7 75*X1(2,2)*X2(1,1)*X3(3,3) 7 75*X1(2,2)*X2(1,1)*X3(3,3) 7 75*X1(2,2)* X2(3,3)*X3(3,3)
8 75*X1(2,2)*X2(2,2)*X3(3,3) 8 75*X1(2,2)*X2(2,2)*X3(3,3) 8 5*X1(3,3)* X2(3,4)*X3(3,3).
9 75*X1(2,2)*X2(3,3)*X3(3,3) 9 75*X1(2,2)*X2(3,3)*X3(3,3)
10 5*X1(3,3)*X2(3,4)*X3(3,3) 10 5*X1(3,3)* X2(3,4)*X3(3,3)

A new search for the consensus provides:
consensus 1*12 does not exist,
consensus 1*22 = 11* X1 (1,1)*x2(1,1)*x3(3,3) *1 11* X1 (1,1) * x2(2,2) x3(3,3) = 11* X1 (1,1)*X2(1,2)*X3(3,3),

1*22 is added as term 9 terms 1 and 2 subsume 9 terms 1 and 2 are deleted
1 11*X1(1,1) *X2(1,1)*X3(3,3) 1 11*X1(1,1)*X2(1,1)* X3 (3,3) 1 11*X1(3,3)*X2(2,2)*X3(3,3)
2 11*X1(1,1)*X2(2,2)*X3(3,3) 2 11*X1 (1,1)*X2 (2,2)*X3(3,3) 2 75*X1(2,2)*X2(0,0)*X3(3,3)
3 11*X1(3,3)*X2(2,2)*X3(3,3) 3 11*X1(3,3) *X2(2,2)*X3(3,3) 3 75*X1(2,2)*X2(1,1)*X3 (3,3)
4 75*X1(2,2)*X2(0,0)*X3(3,3) 4 75*X1(2,2)*X2(0,0)*X3(3,3) 4 75*X1(2,2)*X2(2,2)*X3(3,3)
5 75*X1(2,2)*X2(1,1)*X3(3,3) 5 75*X1(2,2)*X2(1,1)*X3(3,3) 5 75*X1(2,2)*X2(3,3)*X3(3,3)
6 75*X1(2,2)*X2(2,2)*X3(3,3) 6 75*X1(2,2)*X2(2,2)*X3(3,3) 6 5*X1(3,3)*X2(3,4)*X3(3,3)
7 75*X1(2,2)*X2(3,3)* X2 (3,3) 7 75*X1(2,2)*X2(3,3)*X3(3,3) 7 11*X1(1,1)*X2(1,2)*X3 (3,3).
8 5*X1(3,3)*X2(3,4)*X3(3,3) 8 5*X1(3,3)*X2(3,4)*X3(3,3)
9 11*X1(1,1)*X2(1,2)* X3(3,3) 9 11*X1(1,1)*X2(1,2)*X3 (3,3)

A further procedure demonstrates that term 1 has no consensuses with terms 2–7, so one should check
for term 2:
consensus 2*13 does not exist,
consensus 2*23 = 2*23 = 75*x1(2,2)*x2(0,0) * x3(3,3) *2 75*x1(2,2)*x2(1,1) * x3(3,3) = 75*X1(2,2)*X2(0,1)*X3(3,3),
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2*23 is added as term 8 terms 2 and 3 subsume 8 terms 1 and 2 are deleted
1 11*X1(3,3)*X2(2,2)*X3(3,3) 1 11*X1(3,3)*X2(2,2)*X3(3,3) 1 11*X1(3,3)*X2(2,2)*X3(3,3)
2 75*X1(2,2)*X2(0,0)*X3(3,3) 2 75*X1(2,2)*X2(0,0)*X3(3,3) 2 75*X1(2,2)*X2(2,2)*X3(3,3)
3 75*X1(2,2)*X2(1,1)*X3(3,3) 3 75*X1(2,2)*X2(1,1)*X3(3,3) 3 75*X1(2,2)*X2(3,3)*X3(3,3)
4 75*X1(2,2)*X2(2,2)*X3(3,3) 4 75*X1(2,2)*X2(2,2)*X3(3,3) 4 5*X1(3,3)*X2(3,4)*X3(3,3)
5 75*X1(2,2)*X2(3,3)*X3(3,3) 5 75*X1(2,2)*X2(3,3)*X3(3,3) 5 11*X1(1,1)*X2(1,2)*X3(3,3)
6 5*X1(3,3)*X2(3,4)*X3(3,3) 6 5*X1(3,3)*X2(3,4)*X3(3,3) 6 75*X1(2,2)*X2(0,1)*X3(3,3),
7 11*X1(1,1)*X2(1,2)*X3(3,3) 7 11*X1(1,1)*X2(1,2)*X3(3,3)
8 75*X1(2,2)*X2(0,1)*X3(3,3) 8 75*X1(2,2)*X2(0,1)*X3(3,3)

Consensus 2 *23 = 75*x1(2,2)*X2 (2,2) * x3(3,3) *2 75*x1(2,2) *X2 (3,3)*x3(3,3) = 75*X1(2,2)*X2 (2,3)*X3(3,3),

2 *23 is added as term 7 terms 2 and 3 subsume 7 terms 1 and 2 are deleted
1 11*X1(3,3)*X2(2,2)*X3(3,3) 1 11*X1(3,3)*X2(2,2)*X3(3,3) 1 11*X1(3,3)*X2(2,2)*X3(3,3)
2 75*X1(2,2)*X2(2,2)*X3(3,3) 2 75*X1(2,2)*X2(2,2)*X3(3,3) 2 5*X1(3,3)*X2(3,4)*X3(3,3)
3 75*X1(2,2)*X2(3,3)*X3(3,3) 3 75*X1(2,2)*X2(3,3)*X3(3,3) 3 11*X1(1,1)*X2(1,2)*X3(3,3)
4 5*X1(3,3)*X2(3,4)*X3(3,3) 4 5*X1(3,3)*X2(3,4)*X3(3,3) 4 75*X1(2,2)*X2(0,1)*X3(3,3)
5 11*X1(1,1)*X2(1,2)*X3(3,3) 5 11*X1(1,1)*X2(1,2)*X3(3,3) 5 75*X1(2,2)*X2(2,3)*X3(3,3).
6 75*X1(2,2)*X2(0,1)*X3(3,3) 6 75*X1(2,2)*X2(0,1)*X3(3,3)
7 75*X1 (2,2)*X2(2,3)*X3(3,3) 7 75*X1(2,2)*X2(2,3)*X3 (3,3)

Consensus 4*25 = 75*x1(2,2)*x2(0,1)*x3(3,3) *2 75*x1(2,2) * x2(2,3)*x3(3,3) = 75*X1(2,2)*X2(0,3)*X3(3,3)

4*25 is added as term 6 terms 4 and 5 subsume 6 terms 4 and 5 are deleted
1 11*X1(3,3)*X2(2,2)*X3 (3,3) 1 11*X1(3,3)*X2(2,2)*X3(3,3) 1 11*X1(3,3)*X2(2,2)*X3(3,3)
2 5*X1(3,3)*X2(3,4)*X3(3,3) 2 5*X1(3,3)*X2(3,4)*X3(3,3) 2 5*X1(3,3)*X2(3,4)*X3(3,3)
3 11*X1(1,1)*X2(1,2)*X3(3,3) 3 11*X1(1,1)*X2(1,2)*X3(3,3) 3 11*X1(1,1)*X2(1,2)*X3(3,3)
4 75*X1(2,2)*X2 (0,1)*X3(3,3) 4 75*X1(2,2)*X2(0,1)*X3(3,3) 4 75*X1(2,2)*X2(0,3)* X3(3,3)
5 75*X1(2,2)*X2(2,3)*X3(3,3) 5 75*X1(2,2)*X2(2,3)*X3(3,3)
6 75*X1(2,2)*X2(0,3)*X3(3,3) 6 75*X1(2,2)*X2(0,3)*X3(3,3)

Thus, the overall number of terms was shortened by the minimization procedure from 9 to 4.
Principally, the final set of terms should represent the list of prime implicants, which can not be

shortened further. Formally, the minimization procedure is not finished until all the possible DCS
are not substituted. The obtained intermediate set of four product terms contains two terms with
constants C = 11, which seems to be potentially transformed further for appropriately chosen DCS
with C = 255; this is substituted in place of the undefined rows in the truth table. This choice of DCS
is not reglamented in [71]. However, for the function with k = 256 and dozens of input variables,
the number of possible DCS is too large. It is physically impossible to substitute DCS into all unused
rows! The only reasonable way here is to design further the special AI algorithm for the intentional
choice of DCS.

The general motivation of such an intentional search is shown in detail in Figure 6 for the
results of simplified 2D mapping of the MVL function, which is defined in Table 4 and minimized
above. The interliminary list of obtained product terms includes four terms. For final minimization,
the choice of DCS coordinates (x1, x2, x3) = (3, 1, 3) (case c) in Figure 6 is more preferable than
(x1, x2, x3) = (1, 3, 3) (case b) in Figure 6), although both of them symmetrically fill corner points for
prime implicants for mapping (x1, x2).

For the case DCS = (3,1,3), one should take the interliminary set of four product terms and add
the term 255*X1(3,3)*X2(1,1)*X3(3,3) to the end of list:

1 11*X1(3,3)*X2(2,2)*X3(3,3)
2 5*X1(3,3)*X2(3,4)*X3(3,3)
3 11*X1(1,1)*X2(1,2)*X3(3,3)
4 75*X1(2,2)*X2(0,3)*X3(3,3)
5 255*X1(3,3)*X2(1,1)*X3(3,3)
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A new search for consensus provides
Consensus 1*25 = 11 * X1 (3,3) * X2 (2,2) * X3 (3,3) *2 255* X1 (3,3) * X2 (1,1) * X3 (3,3) = 255 * X1 (3,3) * X2

(0,3) * X3 (3,3).

1*25 is added as term 6 terms 1 and 5 subsume 6 terms 1 and 5 are deleted
1 11*X1(3,3)*X2(2,2)*X3(3,3) 1 11*X1(3,3)*X2(2,2)*X3(3,3) 1 5*X1(3,3)*X2(3,4)*X3(3,3)
2 5*X1(3,3)*X2(3,4)*X3(3,3) 2 5*X1(3,3)*X2(3,4)*X3(3,3) 2 11*X1(1,1)*X2(1,2)*X3(3,3)
3 11*X1(1,1)*X2(1,2)*X3(3,3) 3 11*X1(1,1)*X2(1,2)*X3(3,3) 3 75*X1(2,2)*X2(0,3)*X3(3,3)
4 75*X1(2,2)*X2(0,3)*X3(3,3) 4 75*X1(2,2)*X2(0,3)*X3(3,3) 4 255*X1(3,3)*X2(0,3)*X3(3,3)
5 255*X1(3,3)*X2(1,1)*X3(3,3) 5 255*X1(3,3)*X2(1,1)*X3(3,3)
6 255*X1(3,3)*X2(0,3)*X3 (3,3) 6 255*X1(3,3)*X2(0,3)*X3(3,3)

That result of the last calculation does not shorten the number of prime implicants (still equal
to 4), but formally, this variant, as shown in Figure 6c, is more correct, as the large ellipse describes all
cells with C = 11 as one of the largest rectangular clusters of cells, containing only C = 11 or greater
constants. However, the choice of DCS = (1,3,3) and the addition of the term 255* X1(3,3) * X2(1,1) *
X3(3,3) to the intermediary list of product terms given in Figure 6a provides

1 11*X1(3,3)*X2(2,2)*X3(3,3)
2 5*X1(3,3)*X2(3,4)*X3(3,3)
3 11*X1(1,1)*X2(1,2)*X3(3,3)
4 75*X1(2,2)*X2(0,3)*X3(3,3)
5 255*X1(3,3)*X2(1,1)*X3(3,3)

which does not give new consensus.

Consensus 1*25 = 11 * X1 (3,3) * X2 (2,2) * X3 (3,3) *2 255* X1 (3,3) * X2 (1,1) * X3 (3,3) = 255 * X1 (3,3) * X2 (0,3) * X3 

(3,3). 

 1*25 is added as term 6   terms 1 and 5 subsume 6   terms 1 and 5 are deleted 
1 11*X1(3,3)*X2(2,2)*X3(3,3)  1 11*X1(3,3)*X2(2,2)*X3(3,3)  1 5*X1(3,3)*X2(3,4)*X3(3,3) 
2 5*X1(3,3)*X2(3,4)*X3(3,3)  2 5*X1(3,3)*X2(3,4)*X3(3,3)  2 11*X1(1,1)*X2(1,2)*X3(3,3) 
3 11*X1(1,1)*X2(1,2)*X3(3,3)  3 11*X1(1,1)*X2(1,2)*X3(3,3)  3 75*X1(2,2)*X2(0,3)*X3(3,3) 
4 75*X1(2,2)*X2(0,3)*X3(3,3)  4 75*X1(2,2)*X2(0,3)*X3(3,3)  4 255*X1(3,3)*X2(0,3)*X3(3,3) 
5 255*X1(3,3)*X2(1,1)*X3(3,3)  5 255*X1(3,3)*X2(1,1)*X3(3,3)    
6 255*X1(3,3)*X2(0,3)*X3 (3,3)  6 255*X1(3,3)*X2(0,3)*X3(3,3)    

That result of the last calculation does not shorten the number of prime implicants (still equal to 
4), but formally, this variant, as shown in Figure 6c, is more correct, as the large ellipse describes all 
cells with 𝐶 = 11 as one of the largest rectangular clusters of cells, containing only 𝐶 = 11 or 
greater constants. However, the choice of DCS = (1,3,3) and the addition of the term 255* X1(3,3) * 
X2(1,1) * X3(3,3) to the intermediary list of product terms given in Figure 6a provides 

1 11*X1(3,3)*X2(2,2)*X3(3,3) 
2 5*X1(3,3)*X2(3,4)*X3(3,3) 
3 11*X1(1,1)*X2(1,2)*X3(3,3) 
4 75*X1(2,2)*X2(0,3)*X3(3,3) 
5 255*X1(3,3)*X2(1,1)*X3(3,3) 

which does not give new consensus.  

 
Figure 6. The impact of the choice of “don’t care states” (DCS) on the final result of minimization of 
the MVL function given in Table 4. Undefined states DCS are marked “–“.(a) The intermediary set of 
obtained product terms is shown for simplicity as 2D mapping 𝐹(𝑥ଵ, 𝑥ଶ ),  and it is given only for 
input variables 𝑥ଵ, 𝑥ଶ, as 𝑥ଷ  is constant. Obtained product terms are marked by ellipses and by 
product terms. (b) The 2D set of prime implicants, which was obtained by the minimization for the 
DCS = (1,3,3). Such a choice enlarges the list of product terms by one term 255* X1(1,1) * X2(3,3). (c) 
The choice of DCS = (3,1,3) correctly finishes the search of prime implicants. 

From the practical point of view, it is possible to use both variants with four prime implicants. 
However, the more preferable variant is to foresee by additional AI algorithms the features of the 
situation, when the full minimization is of no sense. Principally, it is possible to count the events 
with the enlargement of product terms and then to return back to the earlier obtained version with 
four prime implicants, thus excluding the product term 255* X1(3,3) * X2(1,1) * X3(3,3) from the list. 

Figure 6. The impact of the choice of “don’t care states” (DCS) on the final result of minimization of
the MVL function given in Table 4. Undefined states DCS are marked “–”. (a) The intermediary set of
obtained product terms is shown for simplicity as 2D mapping Fmap(x1, x2 ), and it is given only for
input variables x1, x2, as x3 is constant. Obtained product terms are marked by ellipses and by product
terms. (b) The 2D set of prime implicants, which was obtained by the minimization for the DCS =

(1,3,3). Such a choice enlarges the list of product terms by one term 255* X1(1,1) * X2(3,3). (c) The choice
of DCS = (3, 1, 3 ) correctly finishes the search of prime implicants.

From the practical point of view, it is possible to use both variants with four prime implicants.
However, the more preferable variant is to foresee by additional AI algorithms the features of the
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situation, when the full minimization is of no sense. Principally, it is possible to count the events
with the enlargement of product terms and then to return back to the earlier obtained version with
four prime implicants, thus excluding the product term 255* X1(3,3) * X2(1,1) * X3(3,3) from the list.
However, this procedure can not be described only within MVL models and should use external AI
procedures, which is one of reasons to discuss special heterogeneous architecture in Section 3.

Thus, the formal consensus minimization of the MVL function in Table 4 is not the trivial procedure
and can lead to different final results depending on the choice of DCS and the real number of runs
carried out for the minimization algorithm. Of course, the random choice of the limited number of
DCS does not guarantee the best result and needs to be analyzed more thoroughly. As it was shown
in [108], the choice of DCS should be regarded as a multi-criteria task, which for real physical variables
should be done elaborately, basing on Pareto optimization methods. Potentially, methods of image
processing seem to be useful here, too.

The above examples demonstrate that the analysis of product terms and prime implicants provides
the principal possibility of using logic minimization as the tool for analyzing the structure of logic
constants for arbitrarily given logic switching functions. Although MVL minimization [71] itself needs
external intellectual algorithms, its basic advantage is the correct method of equivalent transformations
of any logic expression without any information losses. DCS-based minimization can be applied
for correct transformations and the analysis of arbitrary types of aggregated data, which makes it
a potential candidate for the processing and clusterization of mixed types of data, including both
numerical and categorical data [90].

It is necessary to emphasize that one of the reasons to use further special architecture is determined
by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., the drone
measures atmospheric pollutions at different altitudes x3, then the structure of prime implicants would
be much more complicated, which will need a special algorithm to process and analyze it.

3. Classification Schemes Based on MVL Functions

3.1. AGA Classifier and its Learning With a Teacher

The classification of objects [83] is regarded as the task to design the algorithm (or the device)
that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the
corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification should
be based on known learning samples Xm = { (x1, y1) , . . . , (xm, ym)}.

The MVL function can be easily learned with a teacher to recognize q objects. Let’s take q objects Oq,
which are known to belong to J different classes
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  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…
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which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 
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with a greater true level. One should keep in mind this specific feature while designing the 
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here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 
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that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j for every combination of input variables
x1, . . . , xn taken from the given set.

As the MVL function [75] can be defined with an arbitrary number of truth levels k, then the
switching logical function y = Fc(x1, . . . , xn) always can be generated to reproduce the mentioned
above classifier. This can be done correctly for any finite number of objects and classes, as the MVL truth
table by its definition [75] provides the mathematically correct method to receive the logic expression
for an arbitrary function, which is written as a finite number of rows in the truth table.
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3.2. Nested Structure of Classes in AGA Classifier

The classifier based on AGA functions will provide the nested structure of classes

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j, as its
minimization procedure always produce prime implicants with appropriate logic constants according
to the scale of truth levels C j. This nested structure is shown in Figure 7. That is why the structure
of prime implicants is hierarchical and ordered, i.e., the object with a greater C j value will be always
included into the n-dimensional rectangular “box” with a smaller C j value as an object with a greater
true level. One should keep in mind this specific feature while designing the classification tree.
For example, the objects can be incomparable within the context of the robotic task, but their tags of
classes can respond to the material cost of objects. The general structure of classes here can differ from
the scale of truth values. The AGA can be defined for k = 256 and greater, but in reality, one may use
only one part of tags, reserving the structure for complicated schemes with network mapping of MVL
functions [76].
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Figure 7. AGA classification by definition has the nested structure of classe𝑠 ₡, responding 
to truth levels scale 𝐶.  

As it follows from [71], the maximal logic constant 𝐶 = 𝑘 − 1 always should be substituted 
instead of DCS for the minimization proceedure. In a model with the large numbers of variables 𝑛 and truth levels 𝑘 − 1, it is reasonable to reserve the maximal 𝐶 only for the tagging of DCS. It 
will help to monitor the steps of the minimization procedure. In order to learn such a function (with 
a teacher), one should compose the table as in Figure 3 according to algorithm as follows. 

- Algorithm of Learning MVL Classifier with a Teacher 
1. To evaluate the maximal number of objects (tags) 𝑞, i.e., to fix the necessary number of rows in the 
truth table. 
2. To evaluate the maximal number of classes 𝐽 to be used, thus choosing the necessary number of 
truth levels 𝑘  𝐽 . 
3. To write the list of all characteristic features for classification 𝑛, thus choosing the number of input 
variables 𝑥ଵ, … , 𝑥.  
4. To fill the rows of the table by sets 𝑥ଵ, … , 𝑥.  
5. To fill the column for 𝑦 = 𝐹(𝑥ଵ, … , 𝑥)  by responding tags of classes 𝐶 , using any correct 
methods for their estimates. 
6. To compose the expression нaбоp 𝐶 ∗ 𝑋ଵ൫𝑥,ଵ, 𝑏,ଵ൯ ∗ … ∗ 𝑋൫𝑎,, 𝑏,൯ for every row 𝑥ଵ, … , 𝑥.  
7. To unite all sets of minterms  𝐶 ∗ 𝑋ଵ൫𝑥,ଵ, 𝑏,ଵ൯ ∗ … ∗ 𝑋൫𝑎,, 𝑏,൯ by the operator MAXIMUM (+) 
into the general expression of the function                             𝑦 =    𝑓(0,0, . . . ,0) ∗ 𝑋ଵ(0,0) ∗ 𝑋ଶ(0,0) ∗. . .∗ 𝑋(0,0)  +                                  +𝑓(0,0, . . . ,1) ∗ 𝑋ଵ(1,1)  ∗ 𝑋ଶ(0,0) ∗. . .∗ 𝑋(0,0)  + 

… +𝑓(𝑘 − 1, 𝑘 − 1, . . . , 𝑘 − 1) ∗ 𝑋ଵ(𝑘 − 1, 𝑘 − 1) ∗ 𝑋ଶ(𝑘 − 1, 𝑘 − 1) ∗. . .∗ 𝑋(𝑘 − 1, 𝑘 − 1).  (10) 

8. To hold a consensus minimization procedure according to Section 2, in order to reduce the 
computing time. 

9. To choose the platform and adapt the software for emulation of the minimized MVL function by 
the classifier device. 

The AGA method of formal description of hierarchical structures potentially provides the 
possibility to process the unknown set of data, basing only on the chosen set of classification 
features, but it does not need to use any hypothesis concerning the density of objects or statistic 
parameters. That is the principal potential advantage of MVL classifier schemes and is the task for 
future investigations.  

Figure 7. AGA classification by definition has the nested structure of classes

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j, responding to truth
levels scale C j.

As it follows from [71], the maximal logic constant C j = k− 1 always should be substituted instead
of DCS for the minimization proceedure. In a model with the large numbers of variables n and truth
levels k − 1, it is reasonable to reserve the maximal C j only for the tagging of DCS. It will help to
monitor the steps of the minimization procedure. In order to learn such a function (with a teacher),
one should compose the table as in Figure 3 according to algorithm as follows.

- Algorithm of Learning MVL Classifier with a Teacher

1. To evaluate the maximal number of objects (tags) q, i.e., to fix the necessary number of rows in the
truth table.

2. To evaluate the maximal number of classes J to be used, thus choosing the necessary number of
truth levels k > J.

3. To write the list of all characteristic features for classification n, thus choosing the number of
input variables x1, . . . , xn.

4. To fill the rows of the table by sets x1, . . . , xn.
5. To fill the column for y = F(x1, . . . , xn) by responding tags of classes Ci, using any correct methods

for their estimates.
6. To compose the expression нaбop C j ∗X1(xi,1, bi,1) ∗ . . . ∗Xn(ai,n, bi,n) for every row x1, . . . , xn.
7. To unite all sets of minterms C j ∗X1(xi,1, bi,1) ∗ . . . ∗Xn(ai,n, bi,n) by the operator MAXIMUM (+)

into the general expression of the function

y = f (0, 0, . . . , 0) ∗X1(0, 0) ∗X2(0, 0) ∗ . . . ∗Xn(0, 0)+
+ f (0, 0, . . . , 1) ∗X1(1, 1) ∗X2(0, 0) ∗ . . . ∗Xn(0, 0)+

. . .
+ f (k− 1, k− 1, . . . , k− 1) ∗X1(k− 1, k− 1) ∗X j2(k− 1, k− 1) ∗ . . . ∗X jn(k− 1, k− 1).

(10)
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8. To hold a consensus minimization procedure according to Section 2, in order to reduce the
computing time.

9. To choose the platform and adapt the software for emulation of the minimized MVL function by
the classifier device.

The AGA method of formal description of hierarchical structures potentially provides the
possibility to process the unknown set of data, basing only on the chosen set of classification features,
but it does not need to use any hypothesis concerning the density of objects or statistic parameters. That is
the principal potential advantage of MVL classifier schemes and is the task for future investigations.

3.3. Description of Objects in the AGA Model

Data processing and classification by means of AGA minimization suppose the formation of a
data base, representing real objects by formal logic expressions. The initial task is to add a new object to
the base. As it was shown above, in a general case, the structure of classes

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j can be chosen arbitrarily,
but as described above, AGA minimization will provide the correct regrouping and simplification of
product terms, reducing it finally to the set of prime implicants. For simplicity, the given examples are
given for visual 2D cases for low values of k.

- Algorithm to create the new object of class

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 
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makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             
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…
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which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

∗ X(x1,x1) ∗...∗((xn,xn) to the earlier obtained list of product terms.
Note.Position in the list can be chosen intentionally in order to fasten the search of aggregated
groups of terms.
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makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
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which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 
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j, run the minimization
procedure defined in Section 2.3.

As a whole, the work with classes will not differ greatly from the procedures for the search
of prime implicants. Let’s take for simplicity the minimized function y = F(x1, x2), (see Figure 8a),
defined only for eight truth levels {0,1, . . . ,7}. As in Section 2, it can be shown as a 2D grid containing
10 objects (white and black), which belong to classes
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It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 
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3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  
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𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
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which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 
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makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 
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3.1. AGA Classifier and its Learning With a Teacher 
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that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  
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𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 
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₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
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which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 
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be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 
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3.3. Description of Objects in the AGA Model 

Data processing and classification by means of AGA minimization suppose the formation of a 
data base, representing real objects by formal logic expressions. The initial task is to add a new object 
to the base. As it was shown above, in a general case, the structure of classes ₡ can be chosen 
arbitrarily, but as described above, AGA minimization will provide the correct regrouping and 
simplification of product terms, reducing it finally to the set of prime implicants. For simplicity, the 
given examples are given for visual 2D cases for low values of 𝑘. 

- Algorithm to create the new object of class ₡, positioned in the cell (x1,... xn). 
1. Add the product term ₡ ∗ 𝑋(x1, x1) ∗...∗ (xn, xn) to the earlier obtained list of product terms. 
Note.Position in the list can be chosen intentionally in order to fasten the search of aggregated 
groups of terms. 
2. If the added cell has neighboring cells with nonzero logic constants ₡, run the minimization 
procedure defined in Section. 2.3. 

As a whole, the work with classes will not differ greatly from the procedures for the search of 
prime implicants. Let’s take for simplicity the minimized function 𝑦 = 𝐹(𝑥ଵ, 𝑥ଶ), (see Figure 8a), 
defined only for eight truth levels {0,1,…,7}. As in Section 2, it can be shown as a 2D grid containing 
10 objects (white and black), which belong to classes ₡ = 2 and ₡ = 5.  

 
Figure 8. (a) The example of the minimized MVL function of two variables, which is given as a 2D 
measurement grid including 10 objects classified by two classes ₡ = 2, ₡ = 5. (b) The structure of 
prime implicants of the function in class 5 is marked by six ellipses. If one adds a new object of class 5 
to the cell (4,1) in the given structure, this event should be expressed by adding the new product term 
marked by the arrow. 

This simple case responds to five prime implicants, which are shown by all possible variants to 
draw continuous horizontally or vertically oriented rectangulars composed from equal or greater 
logic constants in the grid. All these prime implicants are marked by ellipses and respond to the set 
of product terms  𝑦 =  5 ∗ 𝑋ଵ(1,1) ∗ 𝑋ଶ(7,7) + 5 ∗ 𝑋ଵ(2,5) ∗ 𝑋ଶ(6,6) + 5 ∗ 𝑋ଵ(3,4) ∗ 𝑋ଶ(5,6) + +2 ∗ 𝑋ଵ(1,2) ∗ 𝑋ଶ(2,2) + 2 ∗ 𝑋ଵ(2,2) ∗ 𝑋ଶ(2,3). (11) 

Note that the object with coordinates (1,7) is given by class 5 and by the first prime implicant in 
expression (9); thus, it is an isolated object, as described by the separate rectangular segment of 
minimal size. 

If the classifier given above is additionally learned by a new object of class 5, responding e.g., to 
point (4,1) of the grid, it should be described as the new product term 5 ∗ 𝑋ଵ(4,4) ∗ 𝑋ଶ(1,1), which is 
further to be added to expression (11). For such a simple example, one can easily see that the newly 
added object gives a separate product term, which will be the prime implicant if it is isolated from 
other objects. 

- Deleting an object from the MVL classifier. 
If the object is no longer relevant, its deletion procedure differs for minimized and not 

minimized MVL functions. 

Figure 8. (a) The example of the minimized MVL function of two variables, which is given as a 2D
measurement grid including 10 objects classified by two classes

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             
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which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

= 2,

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

= 5. (b) The structure of
prime implicants of the function in class 5 is marked by six ellipses. If one adds a new object of class 5
to the cell (4,1) in the given structure, this event should be expressed by adding the new product term
marked by the arrow.

This simple case responds to five prime implicants, which are shown by all possible variants to
draw continuous horizontally or vertically oriented rectangulars composed from equal or greater logic
constants in the grid. All these prime implicants are marked by ellipses and respond to the set of
product terms
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y = 5 ∗X1(1, 1) ∗X2(7, 7) + 5 ∗X1(2, 5) ∗X2(6, 6) + 5 ∗X1(3, 4) ∗X2(5, 6)+
+2 ∗X1(1, 2) ∗X2(2, 2) + 2 ∗X1(2, 2) ∗X2(2, 3).

(11)

Note that the object with coordinates (1,7) is given by class 5 and by the first prime implicant in expression (9);
thus, it is an isolated object, as described by the separate rectangular segment of minimal size.

If the classifier given above is additionally learned by a new object of class 5, responding e.g.,
to point (4,1) of the grid, it should be described as the new product term 5 ∗X1(4, 4) ∗X2(1, 1), which is
further to be added to expression (11). For such a simple example, one can easily see that the newly
added object gives a separate product term, which will be the prime implicant if it is isolated from
other objects.

- Deleting an object from the MVL classifier.

If the object is no longer relevant, its deletion procedure differs for minimized and not minimized
MVL functions.

For the not minimized function, it is enough to substitute zero instead of the earlier given logic
constant into the column y of the truth table or into the appropriate matrix C of expression (4).

For the minimized MVL function, the object deleting is much more complicated, as it will need to
destroy the set of prime implicants, containing the deleted object and to correct indexed pairs (ai, b j)

for all involved Literals.

- Algorithm to delete the object of class

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

from the AGA base.

The object to be deleted is positioned in the cell (x1,..., xn) and belongs to class

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j.

1. Find the aggregated group of all V cells, neighboring to the cell (x1, ..., xn) and surrounded by
DCSs. The set of constants used in the aggregated group is marked as

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j, j = 1,..,m.
2. Restore the set of product terms for individual cells in the aggregated group, according to

Steps 3–5:

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j ∗X1(a1,1, b1,1) ∗ . . . ∗Xn(a1,n, b1,n)

. . .

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j ∗X1(am,1, bm,1) ∗ . . . ∗Xn(am,n, bm,n).

3. Assign j = 1.
4. For every input variable x1, . . . , xn in the jth product term

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j ∗X1(a1,1, a1,1) ∗ . . . ∗Xn(a1,n, b1,n) form
the set of all possible Literals, as shown below:{

X1(a1,1, a1,1) , X1(a1,1 + 1, a1,1 + 1), X1(a1,1 + 2, a1,1 + 2) , . . . , X1(b1,1, b1,1)
}

. . .{
Xn(a1,n, a1,n) , Xn(a1,n + 1, a1,n + 1), Xn(a1,n + 2, a1,n + 2) , . . . , Xn(b1,n, b1,n)

}
5. Compose all possible combinations of product terms

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j ∗ X1(a1,1, a1,1) ∗ X2(a1,2, a1,2) . . . ∗
Xn(a1,n, b1,n), containing the constant

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j and all possible combinations of Literals X1, . . . , Xn,
obtained at Step 4:

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j ∗X1(a1,1, a1,1) ∗ X2(a1,2, a1,2) . . . ∗Xn(a1,n, b1,n)

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j ∗X1(a1,1, a1,1) ∗ X2(a1,2 + 1, a1,2 + 1) . . . ∗Xn(a1,n, b1,n)

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j ∗X1(a1,1, a1,1) ∗ X2(a1,2 + 2, a1,2 + 2) . . . ∗Xn(a1,n, b1,n)

. . . ..

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
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which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j ∗X1(b1,1, b1,1) ∗ X2(b1,2, b1,2) ∗ . . . ∗Xn(b1,n, b1,n)

6. Repeat Steps 4 and 5 for all other j.
7. Run the minimization procedure.
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The given above algorithm is opposite to the formation of an MVL function by means of
the truth table and is very bulky. Respectively, Figure 9 visually demonstrates the corrections of
the prime implicants set, which are necessary for the deletion of the object (Class 5) with grid
coordinates (4,6) from the MVL function, as described above in Figure 8. The deletion procedure
destroys the segment of Class 5 with two intersected prime implicants, given by the product term
5 ∗ X1(2, 5) ∗ X2(6, 6) + 5 ∗ X1(3, 4) ∗ X2(5, 6). It transforms it to the set of four prime implicants
5 ∗X1(2, 3) ∗X2(6, 6) + 5 ∗X11(5, 5) ∗X2(6, 6) + 5 ∗X1(3, 3) ∗X2(5, 6) + 5 ∗X1(3, 4) ∗X2(5, 5), which are
marked by ellipses on the right in the Figure 9. Thus, for the large number of variables, the deletion
of an object can be a tricky procedure, enlarging the computing time and disturbing clocking cycles.
That is why often the adding and deletion of objects in the minimized MVL classifier motivates its
use mainly for descriptions of static knowledge structures or in dynamic structures, as expressed by
non-minimized product terms.

 
Figure 9. The deletion of the object from the minimized MVL function. The object to be deleted 
(marked X) belongs to Class 5. All the objects of Class 5 were initially given by two prime implicants, 
which are marked by ellipses. Such procedure enlarges the number of prime implicants in the 
localized group from two up to four, thus changing the computing time. 

- The scheme to define formal expressions for a segment positioned near the separating 
hypersurface.  

If there is some external formal method to calculate the border of the class of objects, then AGA 
can give a correct formal expression for the new segment, neighboring the border. The detailed 
discussion of this question is out of this paper, as it needs to discuss different space orientations for 
different segments of the border between classes. That is why only the general idea is shown here. 
Further, only the general idea is disclosed.  

Let us consider the 2D function 𝑦 = 𝐹(𝑥ଵ, 𝑥ଶ), 𝑘 = 256, shown in Figure 10 and defined as the 
product term Г =  𝐶 ∗ 𝑋ଵ (2,3) ∗ 𝑋ଶ(7,7)  + 𝐶 ∗ 𝑋ଵ (4,4) ∗ 𝑋ଶ (5,6)  + 𝐶 ∗ 𝑋ଵ (5,5) ∗ 𝑋ଶ (3,4). (12) 

This set of cells is regarded as the border of the class Ck, for which one should assign class 𝐶ା 
to all 𝑥ଵ, 𝑥ଶ >  Г. In other words, it is necessary to obtain the formal expression for all cells, which 
are located to the right and up the sides of the Гk, which can be regarded as the separating curve. The 
appropriate logic function Sk+ can be constructed by the choice of the set of intersecting rectangulars, 
covering the given segment. 

 
Figure 10. The principle scheme to define the formal expressions for a segment (marked gray), which 
is positioned near the separating hypersurface of class 𝐶. 

The choice of four rectangular segments (a), (b) (c) and (d) is clear from Figure 10. They should 
fill all the space between the curve (12) and the borders of the measurement grid, which have the 
maximal truth level 255 for all variables:  𝑆ା = 𝐶ା ∗ 𝑋1(6,255) ∗ 𝑋2(3,255) + 𝐶ା ∗ 𝑋1(5,255) ∗ 𝑋2(5,255) + 𝐶ା∗ 𝑋1(4,255) ∗ 𝑋2(7,255) + 𝐶ା ∗ 𝑋1(2,255) ∗ 𝑋2(8,255) (13) 

Thus, the possible scheme to describe the chosen segment 𝐶ା in the measurement grid is to 
modify the set of Literals in initial expression (12) as 𝑋 (𝑎 + 1, 𝑘 − 1) for all the input variables and 
all cells, including the Гk. For example, the horizontal segment, consisting of two cells and given by 
the product term 𝐶 ∗ 𝑋ଵ (2,3) ∗ 𝑋ଶ(7,7), should be transformed to 𝐶ା ∗ 𝑋ଵ (3,255) ∗ 𝑋ଶ(8,255). 

Figure 9. The deletion of the object from the minimized MVL function. The object to be deleted
(marked X) belongs to Class 5. All the objects of Class 5 were initially given by two prime implicants,
which are marked by ellipses. Such procedure enlarges the number of prime implicants in the localized
group from two up to four, thus changing the computing time.
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If there is some external formal method to calculate the border of the class of objects, then AGA can
give a correct formal expression for the new segment, neighboring the border. The detailed discussion
of this question is out of this paper, as it needs to discuss different space orientations for different
segments of the border between classes. That is why only the general idea is shown here. Further,
only the general idea is disclosed.
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The choice of four rectangular segments (a), (b) (c) and (d) is clear from Figure 10. They should 
fill all the space between the curve (12) and the borders of the measurement grid, which have the 
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Thus, the possible scheme to describe the chosen segment 𝐶ା in the measurement grid is to 
modify the set of Literals in initial expression (12) as 𝑋 (𝑎 + 1, 𝑘 − 1) for all the input variables and 
all cells, including the Гk. For example, the horizontal segment, consisting of two cells and given by 
the product term 𝐶 ∗ 𝑋ଵ (2,3) ∗ 𝑋ଶ(7,7), should be transformed to 𝐶ା ∗ 𝑋ଵ (3,255) ∗ 𝑋ଶ(8,255). 

Figure 10. The principle scheme to define the formal expressions for a segment (marked gray), which is
positioned near the separating hypersurface of class Ck.
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This set of cells is regarded as the border of the class Ck, for which one should assign class Ck+ to all
x1, x2 > Γk. In other words, it is necessary to obtain the formal expression for all cells, which are located
to the right and up the sides of the Гk, which can be regarded as the separating curve. The appropriate
logic function Sk+ can be constructed by the choice of the set of intersecting rectangulars, covering the
given segment.

The choice of four rectangular segments (a), (b) (c) and (d) is clear from Figure 10. They should fill
all the space between the curve (12) and the borders of the measurement grid, which have the maximal
truth level 255 for all variables:

Sk+ = Ck+ ∗X1(6, 255) ∗X2(3, 255) + Ck+ ∗X1(5, 255) ∗X2(5, 255) + Ck+
∗X1(4, 255) ∗X2(7, 255) + Ck+ ∗X1(2, 255) ∗X2(8, 255)

(13)

Thus, the possible scheme to describe the chosen segment Ck+ in the measurement grid is to
modify the set of Literals in initial expression (12) as Xi (a + 1, k− 1) for all the input variables and all
cells, including the Гk. For example, the horizontal segment, consisting of two cells and given by the
product term Ck ∗X1 (2, 3) ∗X2(7, 7), should be transformed to Ck+ ∗X1 (3, 255) ∗X2(8, 255).

Expression (13) demonstrates the general idea of how one can further design the necessary set of
operations that are necessary for AGA classifiers and the initial level of analysis of hypersurfaces in them.

What is substantial is that AGA logic expressions provide a correct model for any set of data,
written either by prime implicants or non-minimized expressions. However, the problem here is to
apply the appropriate set of methods to calculate the parameters of the border of the class, which
cannot be solved directly by logic operators of AGA. It does not have embedded arithmetic operations
and cannot directly calculate space parameters. That is why one should use appropriate software
external modules in order to calculate MVL classification tasks.

3.4. The General Scheme to Analyze the MVL Classifier

As it was shown above, the modification of the MVL data set includes the search of isolated groups
of cells formed by prime implicants with specific logic constants and surrounded by DCSs. It follows
from the definitions in [71] that the general algorithm can be proposed to analyze the structure of
classes in the learned MVL classifier. This method needs to graph the distribution of different values
of input variables x1, . . . , xn for all logic constants { C1 , . . . , Cm }. It is shown in Figure 11 as the set
of diagrams C1(x1), . . . , C1(xn), . . . , Cm(x1), . . . , Cm(xn), the overall number of which will be m× n,
where m is number of used logic constants and n is the number of input variables. The possible way
to obtain correctly such diagrams is to subsequently scan all product terms in the MVL function.
That potentially can be done just during its formation. For product terms with known logic constants
C j { C1 , . . . , Cm }, one should analyze all Literals X j(a, b) for all 1 ≤ j ≤ n and tag (by the vertical
stroke in diagrams) the fact that x j ∈ [a, a + 1, . . . , b], and thus this product term is not equal to zero.
The algorithm can be proposed for the formation of such diagrams.

- Algorithm to obtain diagrams C1(x1), . . . , C1(xn), . . . , Cm(x1), . . . , Cm(xn).

Given parameters: k− number of truth levels, n− number of input variables,

makes it a potential candidate for the processing and clusterization of mixed types of data, including 

both numerical and categorical data [90]. 

It is necessary to emphasize that one of the reasons to use further special architecture is 

determined by the need to analyze more complicated cases than the MVL function in Table 4. If e.g., 

the drone measures atmospheric pollutions at different altitudes 𝑥3 , then the structure of prime 

implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j− number of used
classes, j = 1, .., m, where m ≤ k − 1.
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implicants would be much more complicated, which will need a special algorithm to process and 

analyze it. 

3. Classification Schemes Based on MVL Functions 

3.1. AGA Classifier and its Learning With a Teacher 

The classification of objects [83] is regarded as the task to design the algorithm (or the device) 

that is capable of finding the arbitrary object x ∈ X (taken from the set X of input instances) and the 

corresponding tag (name) of its class y ∈ Y, where Y is the set of output labels. The classification 

should be based on known learning samples Xm = { (x1, y1) , …, (xm, ym)}.  

The MVL function can be easily learned with a teacher to recognize 𝑞  objects. Let’s take 

𝑞  objects 𝑂𝑞, which are known to belong to 𝐽 different classes ₡𝑗  . The set of classification parameters 

𝑥1, … , 𝑥𝑛 is supposed to be enough for the classification of all objects. Thus, objects respond to 𝑞 rows 

of the truth table in Figure 3, for which the logic constant in 𝑦 column is equal to some nonzero value 

₡𝑗. Then, the classification algorithm (or a final device) is defined by some function  
  𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) =          𝐶1 ∗ 𝑋1(𝑎11, 𝑏11) ∗ 𝑋2(𝑎12, 𝑏12) ∗ … ∗ 𝑋𝑛(𝑎1𝑛 , 𝑏1𝑛) +                               (9)             

  𝐶2 ∗ 𝑋1(𝑎21, 𝑏21) ∗ 𝑋2(𝑎22, 𝑏22) ∗ … ∗ 𝑋𝑛(𝑎2𝑛 , 𝑏2𝑛) +
…

               𝐶𝑘−1 ∗ 𝑋1(𝑎𝑘−1,1, 𝑏𝑘−1,1) ∗ 𝑋2(𝑎𝑘−1,2, 𝑏𝑘−1,2) ∗ … ∗ 𝑋𝑛(𝑎𝑘−1,𝑛, 𝑏𝑘−1,𝑛),

 

which reproduces the output logic value (or the class tag) ₡𝑗 for every combination of input variables 

𝑥1, … , 𝑥𝑛 taken from the given set.  

As the MVL function [75] can be defined with an arbitrary number of truth levels 𝑘, then the 

switching logical function 𝑦 = 𝐹𝑐(𝑥1, … , 𝑥𝑛) always can be generated to reproduce the mentioned 

above classifier. This can be done correctly for any finite number of objects and classes, as the MVL 

truth table by its definition [75] provides the mathematically correct method to receive the logic 

expression for an arbitrary function, which is written as a finite number of rows in the truth table.  

3.2. Nested Structure of Classes in AGA Classifier  

The classifier based on AGA functions will provide the nested structure of classe𝑠 ₡𝑗 , as its 

minimization procedure always produce prime implicants with appropriate logic constants 

according to the scale of truth levels  𝐶𝑗.  This nested structure is shown in Figure 7. That is why the 

structure of prime implicants is hierarchical and ordered, i.e., the object with a greater 𝐶𝑗 value will 

be always included into the n-dimensional rectangular “box” with a smaller 𝐶𝑗 value as an object 

with a greater true level. One should keep in mind this specific feature while designing the 

classification tree. For example, the objects can be incomparable within the context of the robotic task, 

but their tags of classes can respond to the material cost of objects. The general structure of classes 

here can differ from the scale of truth values. The AGA can be defined for 𝑘 = 256 and greater, but 

in reality, one may use only one part of tags, reserving the structure for complicated schemes with 

network mapping of MVL functions [76]. 

j ∗X1(am,1, bm,1) ∗ . . . ∗Xn(am,n, bm,n).

2. Define the set of arrays C1(x1), . . . , C1(xn), . . . , Cm(x1), . . . , Cm(xn), for x1, . . . xn ∈ L =

{0, 1, . . . , k− 1} and C1, . . . , Cm ∈ L = {0, 1}.
3. Assign C1, . . . , Cm = 0.
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4. Assign
C1(x1) = 1 for x1 ∈ [a1,1, a1,1 + 1, . . . , b1,1]

. . .
C1(xn) = 1 for xn ∈ [a1,n, a1,n + 1, . . . , b1,n]

. . .
Cm(x1) = 1 for x1 ∈ [am,1, am,1 + 1, . . . , bm,1]

. . .
Cm(xn) = 1 for xn ∈ [am,n, am,n + 1, . . . , bm,n.

Expression (13) demonstrates the general idea of how one can further design the necessary set 
of operations that are necessary for AGA classifiers and the initial level of analysis of hypersurfaces 
in them.  

What is substantial is that AGA logic expressions provide a correct model for any set of data, 
written either by prime implicants or non-minimized expressions. However, the problem here is to 
apply the appropriate set of methods to calculate the parameters of the border of the class, which 
cannot be solved directly by logic operators of AGA. It does not have embedded arithmetic 
operations and cannot directly calculate space parameters. That is why one should use appropriate 
software external modules in order to calculate MVL classification tasks.  

3.4. The General Scheme to Analyze the MVL Classifier  

As it was shown above, the modification of the MVL data set includes the search of isolated 
groups of cells formed by prime implicants with specific logic constants and surrounded by DCSs. It 
follows from the definitions in [71] that the general algorithm can be proposed to analyze the 
structure of classes in the learned MVL classifier. This method needs to graph the distribution of 
different values of input variables 𝑥ଵ, … , 𝑥 for all logic constants { 𝐶ଵ , … ,  𝐶 }. It is shown in Figure 
11 as the set of diagrams 𝐶ଵ(𝑥ଵ), … , 𝐶ଵ(𝑥), … , 𝐶(𝑥ଵ), … , 𝐶(𝑥), the overall number of which will be 𝑚 × 𝑛,   where 𝑚 is number of used logic constants and 𝑛 is the number of input variables. The 
possible way to obtain correctly such diagrams is to subsequently scan all product terms in the MVL 
function. That potentially can be done just during its formation. For product terms with known logic 
constants 𝐶  { 𝐶ଵ , … ,  𝐶 }, one should analyze all Literals 𝑋(𝑎, 𝑏) for all 1 ≤ j ≤ n  and tag (by the 
vertical stroke in diagrams) the fact that 𝑥 ∈ [𝑎, 𝑎 + 1, . . . , 𝑏ሿ, and thus this product term is not equal 
to zero. The algorithm can be proposed for the formation of such diagrams. 

 
Figure 11. The set of diagrams 𝐶ଵ(𝑥ଵ), … , 𝐶ଵ(𝑥), … , 𝐶(𝑥ଵ), … , 𝐶(𝑥) is proposed to determine the 
repeatability frequency for different logic constants and to find zero gaps between aggregated 
groups of cells. 

- Algorithm to obtain diagrams 𝐶ଵ(𝑥ଵ), … , 𝐶ଵ(𝑥), … , 𝐶(𝑥ଵ), … , 𝐶(𝑥).  
Given parameters: 𝑘 −number of truth levels, 𝑛 −number of input variables, ₡𝑗 −number 
of used classes, j = 1, .., m, where m ≤ k − 1. 

1. Form the numbered (in arbitrary order) list of all product terms: ₡𝒋𝑋ଵ(𝑎ଵ,ଵ, 𝑏ଵ,ଵ) … 𝑋(𝑎ଵ,, 𝑏ଵ,) 

…   ₡𝒋𝑋ଵ൫𝑎,ଵ, 𝑏,ଵ൯ … 𝑋൫𝑎,, 𝑏,൯.  

2. Define the set of arrays 𝐶ଵ(𝑥ଵ), … , 𝐶ଵ(𝑥), … , 𝐶(𝑥ଵ), … , 𝐶(𝑥),  for  𝑥ଵ, … 𝑥 ∈ 𝐿 = {0,1, … , 𝑘 − 1} 
and 𝐶ଵ, … , 𝐶 ∈ 𝐿 = {0,1}. 

3. Assign 𝐶ଵ, … , 𝐶 = 0.   
4. Assign 
  

Figure 11. The set of diagrams C1(x1), . . . , C1(xn), . . . , Cm(x1), . . . , Cm(xn) is proposed to determine
the repeatability frequency for different logic constants and to find zero gaps between aggregated
groups of cells.

If one has earlier obtained some structure of prime implicants, namely that fact guarantees that
diagrams will be filled non-uniformly and there will be some gaps near the borders of different classes.
As prime implicants can be intersected [71], then the number of repeated values for x j obtained during
the calculation diagrams does not matter. The method proposed above is cumbersome, but it is
supposed to disclose the structure of any MVL function. Potentially, different hypotheses and estimates
for needed corrections of the classifier can be based namely on the analysis of gaps in diagrams.

- The partial minimization for selected pairs of variables.

The given above examples of AGA-based procedures are illustrated by 2D grids in order to
simplify the representation of the proposed method. However, for an MVL function with a large
number of variables and classes, such analysis would be much more difficult, as one should deal
with n-dimensional boxes. In order to process multiparametrical tasks, one may use additional steps
in order to understand the possible structure of aggregated data. The minimization procedure [71]
(described in Section 2) supposes the search and the deleting of product terms, which subsume other
ones. This procedure involves the obligatory testing of all possible variables, which are taken for pairs
of product terms and supplemented by the intentional choice of DCS. Principally, this method gives
the possibility of running minimization firstly for some groups of variables and for some deliberately
chosen DCS, and afterwards finishing this procedure for other ones. In this variant, one can initially
perform minimization for pairs of space coordinates.

3.5. Heterogenious Architecture for the Integration of MAS

The growing complexity and variety of tasks for CN needs to work out the architecture, which is
relevant to the integration of intellectual MAS robotics with quantum optics. The priority task is to
form the structure of formal parameters for the description of the space of all the needed physical
variables and to provide seamless computing for all types of robots. AI methods here include Boolean
logic, fuzzy methods, and neural networks [27], which differ by basic logic models. MVL methods are
mainly attractive for relevant description of high-dimensional spaces [71], as tree data structures [76]
are actual for parallel computing. At the same time, quantum computing [44] is itself the way to
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provide a new level of parallel computing. Thus, all these methods are interrelated, and the first step is
to unite all these heterogeneous data processing methods within the general model, providing quick
and clear navigation in the multi-parametrical space. Such a model should not only combine traditional
IP protocols for addressing network nodes, but it should also provide targeted (or problem-oriented)
addressing of AI algorithms, imitating human behavior. This goal demands modifying the architecture
of network data processing.

The useful recent step to coordinate network data processing methods with AI technologies
was done in QKD architectures [50,109,110]. QKD schemes employ complicated protocols, as they
provide the generation of quantum keys and their application in classical cryptography coding [9].
As a result, QKD networks designers were forced to create new complicated architectures based on
MAS. The integration of quantum optics with MAS model was considered in [50] for purely optical
global photonic networks. This variant included the special level for protocol attributed to MAS and
agents, which are specialized at the joint management of all quantum and traditional cryptography
keys, which also can be interpreted as the attempt to minimize the access of the administrative staff

to the processing of quantum cryptography keys [9]. The special key management center for human
control of all cryptography resources was attributed to the highest level of hierarchical control, as it
should protect the whole CN from all possible threats, and its work is specially regulated. The lower
level was given to autonomous agents of special MAS, processing all the keys and isolating the network
from the possible intervention of eavesdroppers or unloyal staff members.

A more specific version of network architecture was realized for the network-centric system with
QKD lines, which was plugged via the standard fiber commutator to the trusted server [109,110].
The last scheme realized a trusted authority model for the “star” topology, which partially reproduced
the agent’s functions. As a result, this architecture also went beyond traditional ones.

Both of the above-mentioned quantum architectures with QKD lines are shown in Table 5 in
comparison with a traditional open system interconnection (OSI) network model [87,111], which initially
does not suppose any agents, robots, or quantum optics. OSI has not become the strictly supported
standard, but it is the most visual means of disclosing the specific features of new schemes in comparison
with the seven traditional levels of interaction of network protocols.

The highest level of priority for the architecture in [50] was given to the key management center
for human control, which was attributed to the greatest ninth level in Table 4, as MAS responded to the
lower eighth level, which responded to autonomous agents, processing all cryptographical keys. Such a
structure seems to be adequate, as the “intellectual” and complexity level of key management agents is
higher than ordinary applications, which is attributed to the seventh level of the OSI model. Any other
intellectual agents with routine tasks should respond to additional levels between the seventh and the
eighth ones. They can interact with application level 7, which coincides with the principle that OSI
models mainly interact with either adjacent levels or via one level. Moreover, that scheme responds
quite well to architectures [50,109,110].

The described above architecture is shown in Figure 12 and differs from other [50,109] network
models, as it has the separate level of logic models, which should support in general three different types
of logic models, which are namely traditional Boolean logic, fuzzy logic, and MVL. Here, neural networks
are to be included into the Boolean logic type, as their threshold logic roots [59,60] are almost forgotten.

The MVL level of logic models is designed for targeted navigation and scheduling within
the branched tree structure [76], describing all AI algorithms and robotic agents modules.
MVL algorithms suppose the aggregation and processing of data and knowledge structures, which can
be directly transmitted in peer-to-peer segments of MAS and integrated into CN. In other words,
direct communications of robots and software agents should be provided by high-dimensional
multi-parametrical space for the seamless addressing and target setting for robots. The simplest
versions of such knowledge structures were earlier considered within the scheme of network mapping
of MVL functions [76]. The task here is to provide the uniform model for the effective direct interaction
of a software agent in the edge host computer with the distant hardware robotic agent.
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Table 5. The difference between advanced quantum key distribution (QKD) architectures and a traditional OSI model.

Levels
of OSI Model

Standard OSI Model,
(Key Words),

[86,111]

Network-centric
QKD Project,

[109]

Photonics Networks QKD Project
[50]

9. - - Key management center

8. - - Multiagent system for joint key management

7. Application (access to network services,
HTTP, FTP, POP3, etc.)

Trusted authority (“Trent”) was realized
by the server +

6. Presentation and secret coding
(ASCII, EBCDIC) + +

5. Session
(communication session control) + +

4.
Transport

(reliability of a link,
segment, datagram, TCP, UDP)

+ +

3. Network (packet, routing and logical
addressing, IPv4-6, IPSec) + +

2.
Data link

(bits, frames, physical addressing,
Ethernet, network card, IEEE 802.22)

+ +

1.
Physical

(bits, cable, twisted pair, fiber optics,
RF channel, USB ports,)

traditional means and
QKD fiber lines

traditional means and
QKD fiber lines and optical cross connects, directly

plugged to switchers
of IP routers



Quantum Rep. 2020, 2 156

The location of a separate level for fuzzy logic models is motivated by the specifics of
approximate and uncertain models, which are needed primarily for actuators control, space positioning,
and reasoning procedures. The description of algorithms for such subsystems suppose the large number
of routine computing of fuzzy rules and membership functions [40–42]. The transfer of such knowledge
structures does not need high-level programming and principally can be realized by FPGAs.

The location of a separate level for Boolean logic models is quite a natural step, as a specific
feature of AGA modeling is its very limited tool kit, which initially does not include trivial arithmetic
operations. The obvious solution here is the coordinated computing of conjugated algorithms, using a
one-to-one mapping of the results obtained in AGA and Boolean logic modules. Another possible
solution is that complicated functions can be defined as truth tables and logic functions, coordinated via
network mapping schemes [76]. So, the higher level of MVL logic models in the proposed architecture
does not diminish the role of Boolean logic and only reflects that different models are used for different
tasks, and MVL is to provide additional secret coding by the MVL version of the OTP method [9].

 
Figure 12. Proposed architecture for the integration of multiagent systems (MAS), traditional 
Boolean, and fuzzy logic by means of MVL functions. 

3.6. The Structure of Knowledge and the Agent′s Model, Necessary for Processing by AGA Methods 

A substantial aspect of the proposed above heterogeneous architecture refers to the fact that 
intellectual agents in a network MAS are expected to provide many more intellectual algorithms and 
reduce traffic compared to applications in the traditional OSI model in Table 5. The difference 
between knowledge structures for modern and future robots is shown in Figure 13. Future agents 
are supposed to use computer vision and sensor networks for the autonomous evaluation of the 
scene parameters. Moreover, software and hardware agents in all nodes of CN need to use the same 
language for communications. That is why the united knowledge base structure for all robots in a 
MAS should be envisaged for peer-to-peer network communications. 

Another aspect of the proposed above architecture is that both software and hardware robots 
should provide three main components, as shown in the Figure 14.  

 
Figure 13. The difference between knowledge structures for modern and future versions of network 
agents. 

The first component is to be composed from unchangeable and data written beforehand. For the 
AGA component of these data, the learning of the agent is considered as the targeted transfer of 

Figure 12. Proposed architecture for the integration of multiagent systems (MAS), traditional Boolean,
and fuzzy logic by means of MVL functions.

3.6. The Structure of Knowledge and the Agent′s Model, Necessary for Processing by AGA Methods

A substantial aspect of the proposed above heterogeneous architecture refers to the fact that
intellectual agents in a network MAS are expected to provide many more intellectual algorithms
and reduce traffic compared to applications in the traditional OSI model in Table 5. The difference
between knowledge structures for modern and future robots is shown in Figure 13. Future agents are
supposed to use computer vision and sensor networks for the autonomous evaluation of the scene
parameters. Moreover, software and hardware agents in all nodes of CN need to use the same language
for communications. That is why the united knowledge base structure for all robots in a MAS should
be envisaged for peer-to-peer network communications.
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Another aspect of the proposed above architecture is that both software and hardware robots
should provide three main components, as shown in the Figure 14.
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Figure 13. The difference between knowledge structures for modern and future versions of network agents.

The first component is to be composed from unchangeable and data written beforehand. For the
AGA component of these data, the learning of the agent is considered as the targeted transfer of logic
expressions, describing objects by the set of product terms, which supposes the united scheme of
parameters for all variables x1, . . . , xn , constants Ci, and Literals X(a, b). This component should
imitate the intuitive decision making and can be compared to some extent with a pattern recognition
system or a neural network.

logic expressions, describing objects by the set of product terms, which supposes the united scheme 
of parameters for all variables 𝑥ଵ, … , 𝑥 ,  constants 𝐶, and Literals 𝑋(𝑎, 𝑏). This component should 
imitate the intuitive decision making and can be compared to some extent with a pattern recognition 
system or a neural network.   

  
Figure 14. The model of knowledge for MVL representation. 

The second component of the MVL knowledge structure is to be formed by different methods 
of robotic learning, which are attributed to the current scene of action. This dynamic component is 
preferably designated for not a large number of quickly appearing and disappearing objects of the 
scene, as it is principally difficult to modify a large-scale MVL model.  

The third component for an MVL knowledge base should contain the set of all DCSs and 
completed corrections that are needed for debugging and testing. 

4. Discussion of Possible Further Steps for Application of MVL Models 

4.1. High Information Capacity MVL Model of a Language for Robotic Communications  

The integration of peer-to-peer segments into a CN for the direct communication of robotic 
agents [50,51,69] should be supported by the special language or protocol, depicting vast data 
structures and complicated tasks. This problem seems to be actual not only for MAS, but also for IoT, 
sensor networks, intellectual cities, and houses. 

The design of Nes C and Tiny DB languages, which are destined for large collectives of agents 
[65,66], has stimulated the design of an MVL-based language for simple robotic agents, and it is 
intended for the simplest microcontrollers, MCS-51 [68]. This MVL language protocol was proposed 
for instructions transmission via laser and twisted pairs. As the transmission of text instructions 
traditionally faces the problem of frequency analysis for different letters and words, the 
non-alphabet language for further secret coding was designed, using the transmission of 
homogeneous blocks of 𝑘-level logic values with a uniform distribution of repeatability frequency. 
To solve that task, the set of targeted vocabularies W1, …,Wn should be preliminarily formed, where 
all vocabularies can contain 𝑘 different words, and a transmitted phrase {w} should be formed by 
the strictly ordered sequence {w1,…,wn}, which is composed of  𝑛 𝑘-valued numbers. For simple 
agents, 𝑘 = 256 seems to be quite enough and responds to 8-bit hardware platforms [68]. The 
strictly ordered grammar construction “Message sender—Message receiver—Task (what should be 
done)—Where—When—Commentaries” consisted of eight words [64] and was adapted for the 
mass microcontroller MCS-51 with a limited number of memory registers. Such a model of the 
robotic language [68] supposes the transfer of a minimal set of bytes, which prevents the hidden 
penetration of malicious codes via service data.  

The perception of MVL language phrases can be based on the scheme of the AGA classifier, 
using the MVL function with many input variables y = f(xଵ, … , x୬). One can define the answering 
function y= f(xଵ, … , x୬), where xଵ Wଵ, … , x୬W୬ , and W1, …,Wn  are the preliminary learned 
vocabularies, each containing  k different words marked by k different truth levels. The task of the 
MVL classifier is to receive messages and produce responses. The number of different answers for 

Figure 14. The model of knowledge for MVL representation.

The second component of the MVL knowledge structure is to be formed by different methods
of robotic learning, which are attributed to the current scene of action. This dynamic component is
preferably designated for not a large number of quickly appearing and disappearing objects of the
scene, as it is principally difficult to modify a large-scale MVL model.

The third component for an MVL knowledge base should contain the set of all DCSs and completed
corrections that are needed for debugging and testing.

4. Discussion of Possible Further Steps for Application of MVL Models

4.1. High Information Capacity MVL Model of a Language for Robotic Communications

The integration of peer-to-peer segments into a CN for the direct communication of robotic
agents [50,51,69] should be supported by the special language or protocol, depicting vast data
structures and complicated tasks. This problem seems to be actual not only for MAS, but also for IoT,
sensor networks, intellectual cities, and houses.
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The design of Nes C and Tiny DB languages, which are destined for large collectives of
agents [65,66], has stimulated the design of an MVL-based language for simple robotic agents, and it is
intended for the simplest microcontrollers, MCS-51 [68]. This MVL language protocol was proposed
for instructions transmission via laser and twisted pairs. As the transmission of text instructions
traditionally faces the problem of frequency analysis for different letters and words, the non-alphabet
language for further secret coding was designed, using the transmission of homogeneous blocks of
k-level logic values with a uniform distribution of repeatability frequency. To solve that task, the set of
targeted vocabularies W1, . . . ,Wn should be preliminarily formed, where all vocabularies can contain
k different words, and a transmitted phrase {w} should be formed by the strictly ordered sequence
{w1, . . . ,wn}, which is composed of n k-valued numbers. For simple agents, k = 256 seems to be quite
enough and responds to 8-bit hardware platforms [68]. The strictly ordered grammar construction
“Message sender—Message receiver—Task (what should be done)—Where—When—Commentaries”
consisted of eight words [64] and was adapted for the mass microcontroller MCS-51 with a limited
number of memory registers. Such a model of the robotic language [68] supposes the transfer of a
minimal set of bytes, which prevents the hidden penetration of malicious codes via service data.

The perception of MVL language phrases can be based on the scheme of the AGA classifier,
using the MVL function with many input variables y = f(x1, . . . , xn). One can define the answering
function y = f(x1, . . . , xn), where x1 ∈ W1, . . . , xn ∈Wn , and W1, . . . ,Wn are the preliminary learned
vocabularies, each containing k different words marked by k different truth levels. The task of the
MVL classifier is to receive messages and produce responses. The number of different answers
for the output variable y is limited by k values, but it can be drastically enlarged by the method
considered in [80], where additional input variables s1, . . . , sβ are used as scrolling parameters in
y = fansw

(
x1, . . . , xn, s1, . . . , sβ

)
. These parameters are sequentually substituted by numbers from 1 up

to k− 1 and instead of k, such a system will produce the enlarged number of responses.
The message or the query phrase in the robotic language can be generated also by the MVL

function with the same structure y = fquer
(
x1, . . . , xn, s1, . . . , sβ

)
. One or several scrolling parameters

will also provide the necessary length of the query.
The allocated level for MVL models, which was proposed in the architecture in Section 3.5,

seems to be the necessary step to provide the joint work of MVL versions of OTP secret coding
methods [67,80] with MVL language formal constructions, which are represented by the minimal
number of bytes. Principally, for confidential communications within private MAS, an agent’s messages
can be additionally secretly coded by keys obtained from network QKD agents [9] or MVL modules
for OTP secret coding [67]. Here, the allocated level of MVL models provides the chance to use
simple schemes for the selective secret coding of robotic instructions and language constructions.
For the separate level of MVL models, the owner of a hardware robot will receive the chance to
choose additional cryptography means, supplementing the basic network cryptography facilities
provided by network QKD agents. The user potentially can work out his own vocabularies, truth table,
and language constructions.

Now, such a method can be supported by high-quality quantum random number generators [69,70],
as well as by an MVL random oracle scheme and position-based cryptography algorithms [75,77,78].

4.2. MVL Emulation of Classification Models

The advantage of the complete set of AGA logic operators is the correct mathematical model,
which is principally guaranteed for any finite set of input variables and truth levels. The switching
function can be composed for arbitrary data, including both mathematical metrics and categorical data.
The discussed above hierarchical structure of nested classes is good for formal symbolic parameters,
where even an 8-bit platform provides up to 256 different classes.

The task of seamless computing supposes the detection of two kinds of “seams” in the
multi-parametrical space by means of the AGA minimization procedure:
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- the presence of voids in the truth table between adjacent blocks of rows in the truth table, if these
blocks refer to different groups of data and there are gaps in the domain of the function,

- the overlap of blocks of rows in the truth table, if these blocks were obtained for partially matching
training sequences or respond to different models.

The threat of the first situation is determined by the presence of undefined gaps in output
signals domains, as the second situation leads to the redundant consumption of memory, energy,
and computing time for a robotic agent. That is why the robotic component in the global CN requires
the analysis of the learned knowledge base. A more complicated task is to compare software modules,
which is needed for optimal knowledge base formation in a robot by means of network transfer and
the exchange of software modules.

As quantum computing is in prospect a method to raise the network throughput, new logic
methods should be able to use it, too. The discussed above method of MVL minimization is based
on a sequential search of the subsuming product terms and prime implicants. In practice, it will be
necessary to scan a large number of rows and columns of arrays (4), containing logic constants and
parameters of Literals. The idea to analyze the content of vast data structures by means of AGA
demands a large volume of computing. As the quantum Grover algorithm [112] is now regarded as a
well-investigated algorithm for data search in quantum networks, potentially it can be used also for
AGA minimization. The detailed discussion of this question is out of the frames of the presented work,
but AGA minimization seems not to create substantial obstacles to apply the Grover algorithm.

5. Conclusions

Future generations of CN demonstrate the trend for integration of quantum technologies and AI
methods, because modern global networks are to control autonomous robotic and collective multiagent
systems. Another motivation is to use QKD methods for reliable a one-time pad secret coding of traffic
and to protect future distributed quantum network computing. One more reason is the necessity of
preventing data leakage and controlling non-loyal staff by means of AI technologies.

The earlier designed methods and schemes of multiple-valued logic, which are intended for secure
data coding in small-scale microcontroller systems, also have revealed the need to design AI algorithms
for robotic multiagent systems. Attempts to model multiple-valued functions for secret coding and
different agents’ subsystems demonstrate the need to use cumbersome logic minimization procedures,
which in practice suppose the solution of multi-criteria optimization tasks and also motivate the use of
AI methods.

The presented paper discusses the possible scheme for MVL-based data clustering, which obtains
a hierarchical and nested structure of classes for arbitrary data that are characterized only by different
classes. This method does not suppose any preliminary given hypothesis or estimates of data parameters
based on metrics or statistical parameters. Such a method is a candidate for actual mixed clustering,
combining numerical and categorical values.

The MVL minimization clustering scheme can be supplemented by the correct formation of an
MVL model for arbitrarily given borders of classes and by MVL schemes for adding/deleting objects
and for a detailed description of segments near the borders.

In order to coordinate an MVL algorithm with the well-known precise and approximate fuzzy
logic metrics employed in data clustering, the heterogeneous architecture is proposed with allocated
levels for Boolean, fuzzy, and MVL logic models. Such a choice is dictated by the necessity of providing
additional MVL-based secret coding for robotic agents. Another reason is the need to coordinate a large
number of various logic models and metrics, in order to form the complicated logic model of an agent.

Further research of the MVL agent‘s model and the proposed architecture is supposed to
be continued by the design of the special language with high information capacity, which can
provide seamless computing on platforms with different resources. Another task for it is the correct
representation of models containing mixed data. Full-scale MVL modeling potentially can be simplified
by the quantum Grover algorithm, which is used for the search of subsuming product terms.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2624-960X/2/1/10/s1,
the version of a program is given in supplementary materials, which was developed in the C language for the
debugging and testing of microassembler programs, providing MVL algorithms in microcontrollers MCS-51.
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