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Abstract: Is it possible that two different transitions in the non-relativistic quantum mechanical
model of the hydrogen atom give the same frequency of radiation? That is, can different energy level
transitions in a hydrogen atom have the same photon radiation frequency? This question, which was
asked during a Ph.D. oral exam in 1997 at the University of Colorado Boulder, is well-known among
physics graduate students. We show a general solution to this question, in which all equifrequency
transition pairs can be obtained from the set of solutions of a Diophantine equation. This fun puzzle is
a simple yet concrete example of how number theory can be relevant to quantum systems, a curious
theme that emerges in theoretical physics but is usually inaccessible to a general audience.
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1. Introduction

For more than a century, quantum mechanics has been the fundamental theory that
guides our understanding of how nature works at the scale of atoms and subatomic particles.
The hydrogen atom is the simplest possible atom for theoretical investigation, consisting
of only a single proton and a single electron orbiting around [1]. While the hydrogen
atom has been intensively studied since the dawn of quantum mechanics (Figure 1), as
a demonstration of what measurements can reveal about atoms, there are still surprises
and hidden structures [2]. One example is the emergence of equifrequency transitions, in
which many distinctive jumps between atomic levels can radiate identical photon energy.
This question was raised during a Ph.D. oral exam in 1997 at the University of Colorado
Boulder [3] and soon became well-known in the physics community, especially among
graduate students. The answer is definitely yes, and an infinite number of transitions have
been found [4]; however, to the best of our knowledge, a generalization is still lacking.

Figure 1. Energy-level transitions in the non-relativisitic quantum mechanical model of the hydrogen
atom. An electron jumps from an outer ring n1-th to an inner ring n2-th, emits a photon with radiation
energy ∆E ∝ n−2

2 − n−2
1 .
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Here, we show the connection between the above question and a Diophantine equa-
tion [5], and present a general solution, i.e., how all equifrequency transition pairs can
be obtained. While this finding might not address any foundational issue or important
problem in quantum mechanics, it definitely provides us with a more complete understand-
ing of the most popular atom in all quantum mechanics textbooks, and the relationship
between atomic levels (disregarding degeneracies due to angular momentum and spin). It
is also a simple illustration of how number theory can be of relevance to physics [6], in a
way that is accessible to non-experts.

2. A General Solution for All Equifrequency Transitions

In quantum mechanics, the n-th energy level of a hydrogen atom is given by E(n) =
−Eo/n2, where n ∈ Z+ is a positive integer and Eo = 13.6 eV is the Rydberg energy [7].
For simplicity, we will not consider any relativistic effects [8] or other corrections (such as
fine structure [9,10]) to this equation. The challenge is to find all transition pairs (n1 → n2,
n3 → n4) with an equal radiation energy, which means:

1
n2

2
− 1

n2
1
=

1
n2

4
− 1

n2
3
> 0 . (1)

Here, we will find a general solution to this equation, including trivial solutions where
n1 = n3 and n2 = n4.

Consider the Diophantine equation [5] with a parameter s ∈ Z+ and unknowns
x, y, z ∈ Z+,

x2 − y2 = sz2 . (2)

With any two solutions (x1, y1, z1) and (x2, y2, z2) to this equation, for any positive integer
pair (t1, t2) that satisfies

x1y1t1z2 = x2y2t2z1 , (3)

a solution to Equation (1) can be obtained:

(n1, n2, n3, n4) = (x1t1, y1t1, x2t2, y2t2) , (4)

which can be checked by direct substitution. To generate all solutions (t1, t2) to Equation (3),
we use any k ∈ Z+ and G = gcd(x1y1z2, x2y2z1),

t1 = kx2y2z1/G , t2 = kx1y1z2/G , (5)

where the operation gcd(α, β) determines the greatest common divisor of α, β ∈ Z+ [11].
We can prove that the above procedure comprises all solutions of Equation (1). Starting

from this equation, denote t′1 = gcd(n1, n2) and t′2 = gcd(n3, n4). Write n1 = x′1t′1, n2 =
y′1t′1, n3 = x′2t′2, n4 = y′2t′2. Note that n1 > n2 and n3 > n4 i.e., x′1 > y′1 and x′2 > y′2. Then,
we rewrite (1) as,

x′21 − y′21
x′22 − y′22

=

(
x′1y′1t′1
x′2y′2t′2

)2

(6)

and put the fraction x′1y′1t′1/x′2y′2t′2 into irreducible form z′1/z′2 where gcd(z′1, z′2) = 1 and
both are non-zero,

x′1y′1t′1
x′2y′2t′2

=
z′1
z′2

. (7)

Thus,
x′21 − y′21
x′22 − y′22

=
z′21
z′22

(8)
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and hence there exists s′ ∈ Z+ such that,

x′21 − y′21 = s′z′21 , x′22 − y′22 = s′z′22 . (9)

Note here that condition (7) is exactly Equation (3) and condition (9) provides us two
solutions (2). Combined with the above paragraph, we see that these two conditions (7)
and (9) are both necessary and sufficient. This completes the proof.

To generate the set of all non-zero integer solutions (x, y, z) to Equation (2), we need the
set of all non-zero rational solutions (a, b) into their dehomogenized version (by dividing
both sides of (2) by 1/y2):

a2 − 1 = sb2 . (10)

This equation is very similar to the Pell equation [12], but can be solved using a much
simpler method. By taking any (a, b) = (a1/a2, b1/b2) that satisfies (10) and any l ∈ Z, we
obtain all triples,

(x, y, z) =
(

la1b2

G2
,

la2b2

G2
,

la2b1

G2

)
, (11)

of (2) where G2 = gcd(a2, b2).
The geometric way [13] of dealing with Equation (10) is to draw a line in the ab-plane

passing through (1, 0) with a rational slope q ∈ Q; for example, the line b = q(a− 1) (see
Figure 2). For q2 6= 1/s, this line will cut the curve (10) at another point,

(a, b) =
(

sq2 + 1
sq2 − 1

,
2q

sq2 − 1

)
, (12)

and, more importantly, all solutions of Equation (10) can be attained in this way by varying
q. Note that q = 0 gives z = 0 /∈ Z+, and changing the sign of q changes the sign of (a, b).
Hence, if we let q = q1/q2 where q1 ∈ Z\{0}, q2 ∈ Z+; then, a = a1/a2, b = b1/b2, where

a1 = sq2
1 + q2

2 , a2 = sq2
1 − q2

2 , (13)

b1 = 2q1q2 , b2 = sq2
1 − q2

2 . (14)

The positive triple (x, y, z) can be obtained from (11) with the correct sign choice.

Figure 2. The geometric representation of curve Equation (10) and line equation b = q(a− 1) in the
a-b plane. The intersection in the first quadrant provides a solution to Equation (10).

In summary, we can generate a solution (x, y, z) to Equation (2) with parameter s ∈ Z+

from any number q = q1/q2 6= 0. Given the pair, we go through Equations (13) and (14),
pick a value l ∈ Z and use Equation (11) to arrive at (x, y, z). Then, with two such solutions,
say, (x1, y1, z1) and (x2, y2, z2), we choose a value k ∈ Z+ and use Equation (5) to obtain
(t1, t2) before plugging in Equation (4) to obtain a pair (n1 → n2, n3 → n4). See Figure 3
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for a demonstration. The key difference in our approach compared to previous ones is
using (2), where we can generate all possible rational solutions, which enables us to find all
possible solutions to the puzzle (1).

Figure 3. A demonstration for the procedure to obtain an equifrequency transition pair. Here we
start by selecting s = 6, then from (q1, q2) = (5, 7) and l = 5 we get (x1, y1, z1) = (995, 505, 350),
from (q1, q2) = (1, 1) and l = 7 we get (x2, y2, z2) = (49, 35, 14). Then, with k = 4, we arrive at
(n1 → n2, n3 → n4) = (6825700→ 3464300, 3939404→ 2813860), which can be checked as satisfying
Equation (1).

3. Families of Equifrequency Transitions

Perondi [4] found an infinite number of solutions to the generalization of (1):

1
β2

1
− 1

α2
1
=

1
β2

2
− 1

α2
2
= · · · = 1

β2
n
− 1

α2
n

, (15)

for any n ∈ Z≥2. His approach is to start with a set of k primes Sk = {µ1, . . . , µk}, for some
k ∈ Z≥2, and then try to find an integer ∆, for which

1
β2

1
− 1

α2
1
=

1
β2

2
− 1

α2
2
= · · · = 1

β2
n
− 1

α2
n
=

4µ1 . . . µk
∆2 (16)

has a solution. By partitioning [14], the set of indices {1, . . . , k} into two sets I, J and
denoting γI = ∏i∈I µi, γJ = ∏j∈J µj, he found that if γI 6= γJ and ∆I,J is divisible by

γI − γJ and γI + γJ , then (α, β) = (
∆I,J

γI−γJ
, ∆I,J

γI+γJ
) is a solution to

1
β2 −

1
α2 =

4µ1 . . . µk

∆2
I,J

, (17)

which, again, using the identity (α + β)2 − (α− β)2 = 4αβ. Now, by enlarging (or shrinking)
Sk if necessary, and splitting the set of indices differently, he found n distinct pairs (γI − γJ , γI +
γJ). Then, he chose a positive integer ∆, which is divisible by n ∆I,J’s, and found n pairs
(αI,J , β I,J) = ( ∆

γI−γJ
, ∆

γI+γJ
) solution to (16).

Similar to the above, we can find all solutions to the generalized Equation (15) of
Perondi by simply solving the first equation, which is equal to the ith equation, for all i,
using the method we found in the previous section. First, choose s ∈ Z+ and n distinct
triple (xi, yi, zi), satisfying: 

x2
1 − y2

1 = sz2
1

x2
2 − y2

2 = sz2
2

. . .
x2

n − y2
n = sz2

n .

(18)
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Then, we want to find ti, such that
x1y1t1z2 = x2y2t2z1

x1y1t1z3 = x3y3t3z1

. . .
x1y1t1zn = xnyntnz1 .

(19)

It suffices that t1 is divisible by{
xiyiz1

gcd(x1y1zi, xiyiz1)
for all 2 ≤ i ≤ n

}
. (20)

and the remaining ti are deduced from (19). The final solution to the generalized Equation (15)
is:

(βi, αi) = (yiti, xiti) for all 1 ≤ i ≤ n . (21)
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