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Abstract: The symmetry breaking (SB) of B2N(−,0,+) not only exhibits an energy barrier for ionic or
neutral forms dependent on various basis sets but it also exhibits a few SBs due to the asymmetry
stretching and bending mode interactions. SB obeys the mechanical quantum theorem among discrete
symmetries and their connection to the spin statistics in physical sciences. In this investigation, the
unusual amount of energy barrier of SBs appeared upon the orbit–orbit coupling of BNB (both radical
and ions) between transition states and the ground state. Our goal in this study is to understand the
difference among the electromagnetic structures of the (B2N(∓ ,0)) variants due to effects of various
basis sets and methods and also the quantum symmetry breaking phenomenon. In the D∞h point
group of (B2N(∓ ,0)) variants, the unpaired electron is delocalized, while in the asymmetric C∞v

point group, it is localized on either one of the B atoms. Structures with broken symmetry, C∞v,
can be stable by interacting with the D∞h point group. In viewpoints of quantum chemistry, the
second-order Jahn–Teller effect permits the unpaired electron to localize on boron atom, rather than
being delocalized. In this study, we observed that the energy barrier of SB for BNB increases by post
HF methods.

Keywords: boron nitride cages; hyperfine properties; dipole moment; Chelp G; EPR-II; EPR-III;
MESP (EP)

1. Introduction
1.1. BNB Structures

A deep study on Bx N3−x (x = 1, 2) was accomplished by Martin et al. on BNB struc-
tures using theoretical methods and spectroscopic measurements [1]. The UHF/6-311G
(p, d) level of calculation exhibited an asymmetric linear combination of B2N(0) in its ground
state, and it contains a low bending frequency of 72 cm−1 [1,2]. B2N(−), B2N(+) and B2N(0)

compounds have been studied as the most complicated cases of symmetry breaking (SB),
and they are both real and sometimes artifactual due to the pseudo-second-order Jahn–
Teller effect. Although several experimental or theoretical discussions have been performed
for these subjects of studies [1–5], there are no any quantum reports of SB for ionic structures
resulting from the calculation of various basis sets [6–12]. In total, all scientists agreed with
the linearity of these compounds but only in its ground state, such as (X̃2Σ+

u ) and (X̃1Σ+
g ) in

its radical or ionic forms, respectively. Paldus [9,10] investigated the electronic structure of
B2N(0) using multi-reference coupled cluster optimizations, including both singlet and dou-
blet states with the RMR CCSD (T) Hamiltonian using cc-pVDZ, cc-pVTZ and (cc-pVQZ). In
other approaches CCSD (T), BD (T) and the RMR CCSD (T) methods also exhibited an asym-
metric configuration of unequal BN bound lengths with low barrier energy [1,3]. The B2N(0)

structure has been confirmed by Raman spectroscopy [4], which can also be synthesized
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according to the B(2P) + N(4S)→ BN(1Σ+) and B(2P) + BN(1Σ+)→ BNB(2Σ+
(u)) reac-

tions [12–16]. In addition, the state of Ã2Σ+
g (B2N−) was recognized using photoelectron

spectroscopic studies (PES) at 6335± 20 cm−1 above the X̃2Σ+
u (ground state) [2]. Asmis [2]

predicted where the spectrum in the 350 and 265 nm photoelectron analysis of B2 N− indi-
cates a ground state with an electronic configuration as (X̃1Σ+

g ). He also demonstrated the
position of excited-state B2N(0) (X̃2Σ+

u ) and (Ã2Σ+
g ) with a linear symmetry combination

as transition reactions as follows: X̃1Σ+
g → X̃2Σ+

u + e− and X̃1Σ+
g → Ã2Σ+

g + e− . More-
over, IR spectroscopy also observed a spectrum at 6001 cm−1 due to the Ã2Σ+

g → X̃2Σ+
u

reaction [7,8]. Walsh [17] showed that an ion with 15 or less valence (nS + nP) electrons
would be linear, while up to 20 valence electrons would cause it to bend; thus, they
would become stronger in bending structures if the number of valence electrons increased.
Walsh’s idea properly interpreted all BN(−,0,+) variant behaviors due to the eleven valence
electrons in the ground electronic configuration from (X̃2Σ+

u ) to (X̃1Σ+
g ) for B2N (0) and

B2N−, respectively.

1.2. Quantum Theory of Symmetry Breaking (SB)

SB obeys the quantum mechanics theorem among the discrete symmetries and their
connection to spin statistics for physical sciences. The related wave function can belong
to any representation of the character tables in the group theory, whether degenerate or
not. According to the Pauli Exclusion Principle, a fermion belongs to an antisymmetric
irreducible representation of the associated symmetric group. Therefore, the wave function
of any state should satisfy two eigenvalues: first, the Schrödinger equation and, second,
P|ψ〉 = (−1)P|ψ〉 , which is any permutation of the symmetric group SN that can be
assumbed as a constraint wave function and should satisfy the Schrödinger equation.
Wigner [18] interpreted that the exact electronic wave function satisfying the Pauli principle
that is simultaneously an eigenfunction of S2 and SZ should be written as follows:

ψS,M

(→
x1,
→
x2, . . .

→
xN

)
= (
√

f S
N)
−1

Σ
f S
N

i=1Φi

(→
r1,
→
r2, . . .

→
rN

)
Θi(σ1, σ1, . . . σN)

where Φi is the spinless Schrödinger equation, and Θi includes spin eigenfunctions, and
both belong to dual representations of the symmetric group; moreover, f S

N is the number
of spin eigenfunctions. It is obvious that a trial wave function might be presented by the
Wigner theorem [18]. By considering a zero wave function as ψS,M

0 that also satisfies the
Pauli principle, the following can be described:

ψ0
S,M = Σ

f S
N

K=1Cs
k ψ0

S,M;k,

where
ψ0

S,M;k = (N!)0.5 A
(
ΦN

0 ΘS,M;k
)
=

(N!)−0.5Σp(−1)P(PrΦN
0
)
(PσΘS,M;k) =

(N!)−0.5Σp(−1)P(PrΦN
0
)
Σ

f S
N

l=1Us
lk(P)ΘS,M;l =√

f S
NΣ

f S
N

l=1ΘS,M;l(
f S
N

N! )
0.5
× Σp(−1)PUs

lk(P)
(

PrΦN
0
)

Here, A = (N!)−0.5Σp(−1)PP and P = PrPσ, and US(P) denotes the antisymmetric
representation of the symmetric group generated by spin functions ΘS,M;k k = 1, 2, . . . f S

N .
If the trial wave function cannot be replaced in the above formula, the electrons will not be
treated as indistinguishable particles. Since there are f S

N spin functions that span the full
space of the irreducible representations of the symmetric group, we should consider all of
them. The symmetry breaking (SB) problem is related to a lack of the “correct” permutation
symmetry of the wave function adopted to solve the problem, and it is by no means a real
effect. Within the subject of quantum theory, the term “spatial symmetry breaking” can be
interpreted in two ways: The first is the lack of a broken wave function for transformations
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as an irreducible representation of the related point group and the second is a preference
of the nuclear framework for a lower-symmetry geometry. The first item is due to the
approximate wave function or artifactual in the proper wave functions. Relaxed symmetry
constraints for obtaining lower-energy but symmetry0contaminated wave functions were
described by Lowdin [19] as the symmetry dilemma. The second item is related to the
real or artifactual wave function and symmetry breaking in the nuclear framework due to
first-order Jahn–Teller effects.

2. Materials and Methods
Various Basis Sets

EPR-III and EPR-II basis sets of Baron [20] exhibit the most applicable results for
electrostatic potential fitting (ESP). EPR-II is a double-ζ basis set with a single set of polar-
ization functions for B to F [21,22] that is useful for B2N(∓,0) calculations. EPR-III is also a
triple-ζ consisting of diffuse functions, d-polarizations, and a set of normal polarization
functions, while compared with EPR-II, the s-part improved for better optimization in a set
of B to F atoms [20–24]. In other words, the active space of the CASSCF can be considered,
and all valence electrons and orbitals of these atoms can be considered for any further
calculations with the post-HF method, including 11 active electrons and 12 active orbitals
for B2N(0) and 10 and 12 electrons for B2N(+) and B2N(−), respectively. Due to our target for
comparison, which includes various basis sets and their effects on the symmetry breaking of
artifactual or trial wave functions, B2N(∓,0) has been optimized using several levels of the
theory, such as CASSCF (11, 12)/cc-PVQZ for B2N(−) and CASSCF (11, 12)/AUG-cc-PVQZ
B2N(0) and CASSCF (10, 12)/cc-PVQZ for B2N(+). A spin orbit coupling constant has
also been taken into account during CASSCF calculations [25,26]. The quadratic config-
uration interaction (CI) optimization containing single and double forms [27] has been
also applied for evaluating various properties such as NBO, bonding analysis (AIM) [28],
NPA or natural population analysis, electrostatic potentials and electrostatic potential-
derived charges using the Merz–Kollman–Singh [29], chelp [30] or chelp G [31] methods.
The hyperpolarizabilities have been measured via CISD, QCISD, MP2 and CASSCF levels
of optimization. The AIM software is applied for computing atomic charges, covalent
bonds, localized orbitals and critical points to predict the atomic properties in B2N(∓,0)

variants [28]. The representative atomic charges might be computed as average amounts
over several states in B2N(∓,0). A detailed data of basis sets and the Hamiltonian related to
the charge distribution can be found in Refs. [32–34]. ChelpG data can be computed using
ab initio quantum chemical packages such as Gaussian or GAMESS-US [35] (Table 1).

Table 1. Contribution of various basis sets.

Basis Sets Contraction Level Contraction Scheme N

6-311+G(3df) Original (12s6p3d1f)/[5s4p3d1f] 39

uC-6-311+G(3df) Core-uncontracted (12s6p3d1f)/[10s4p3d1f] 44

u-6-311+G(3df) Fully uncontracted (12s6p3d1f)/[12s6p3d1f] 52

aug-cc-pVTZ Original (11s6p3d2f)/[5s4p3d2f] 46

uC-aug-cc-pVTZ Core-uncontracted (11s6p3d2f)/[11s4p3d2f] 52

u-aug-cc-pVTZ Fully uncontracted (11s6p3d2f)/[11s6p3d2f] 58

aug-cc-pVQZ Original (13s7p4d3f2g)/[6s5p4d3f2g] 80

uC-aug-cc-pVQZ Core-uncontracted (13s7p4d3f2g)/[13s5p4d3f2g] 87

u-aug-cc-pVQZ Fully uncontracted (13s7p4d3f2g)/[13s7p4d3f2g] 93

aug-cc-pV5Z Original (15s9p5d4f3g2h)/[7s6p5d4f3g2h] 127

uC-aug-cc-pV5Z Core-uncontracted (15s9p5d4f3g2h)/[15s6p5d4f3g2h] 135

u-aug-cc-pV5Z Fully uncontracted (15s9p5d4f3g2h)/[15s9p5d4f3g2h] 144
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Table 1. Cont.

Basis Sets Contraction Level Contraction Scheme N

aug-cc-pV6Z Original (17s11p6d5f4g3h2i)/[8s7p6d5f4g3h2i] 189

uC-aug-cc-pV6Z Core-uncontracted (17s11p6d5f4g3h2i)/[17s7p6d5f4g3h2i] 198

u-aug-cc-pV6Z Fully uncontracted (17s11p6d5f4g3h2i)/[17s11p6d5f4g3h2i] 210

aug-cc-pCVTZ Original (13s8p4d2f)/[7s6p4d2f] 59

uC-aug-cc-pCVTZ Core-uncontracted (13s8p4d2f)/[13s6p4d2f] 65

u-aug-cc-pCVTZ Fully uncontracted (13s8p4d2f)/[13s8p4d2f] 71

aug-cc-pCVQZ Original (16s10p6d4f2g)/[9s8p6d4f2g] 109

uC-aug-cc-pCVQZ Core-uncontracted (16s10p6d4f2g)/[16s8p6d4f2g] 116

u-aug-cc-pCVQZ Fully uncontracted (16s10p6d4f2g)/[16s10p6d4f2g] 122

3. Results

Based on our previous study [36–52], B2N(0) exhibits a linear structure in terms of ground
state (X̃2Σ+

u ) where the electrons’ occupancy are as follows: 1σ2
g , 1σ2

u, 2σ2
g , 3σ2

g , 2σ2
u, 1π4

u, 4σ2
g ,

and 3σ1
u. In addition, the electron configuration of the lowest excited state can be predicted as

Ã2Σ+
(g), where its orbital occupancy can be exhibited as follows: 1σ2

g , 1σ2
u, 2σ2

g , 3σ2
g , 2σ2

u, 1π4
u, 4σ1

g ,

and 3σ2
u.

In addition, the B̃2Πg excited state can be written as 1σ2
g , 1σ2

u , 2σ2
g , 3σ2

g , 2σ2
u , π4

u, 4σ2
g , 1π1

g

(above the Ã2Σ+
g ), and it is subject to the Renner–Teller effect, and the further excited state

depends on the (4Πg) of triplet form. The electrostatic potential (EP) in ground and excited
states of B2N(∓,0) and also the HOMO-LUMO gap, with isotropic Fermi contact couplings
(MHz), are listed in Table 2. Our target of this study is to understand the difference
between the electromagnetic structures of the B2N(∓,0) variants due to different basis sets
and methods and also quantum symmetry breaking reports due to artifactual and trial
wave functions. In the D∞h point group of B2N(∓,0) variants, an unpaired electron is
delocalized, while in the asymmetric C∞v point group, it is localized on either one of the B
atoms. Structures with broken symmetry, C∞v, can be stable by interaction to the D∞h point
group. In viewpoint of quantum chemistry, the second-order Jahn–Teller effect permits
the unpaired electron to localize on the boron atom rather than being delocalized. The
other two, which correspond to localizing the unpaired electron on one or both of the boron
atoms, do not transform as an irreducible representation of the D∞h symmetry for B2N(0)

radicals on N and either one of the B atoms (Table 2 and Figure 1a,b).

Table 2. Geometry optimization and electrical properties of B2N(−,0,+) in ground and excited states.

State
Number of

Electron

Ee (Hartree)
Isolated

BNB

All Electron Configuration
(Total Energy of

|α〉 *
(Homo−Lumo) **

β Electron Configuration
Total Energy of

|β〉 *
(Homo−Lumo) **

re (B1N)
re (NB2)

A1 (2,1,3,−2,−1)
A2 (2,1,3,−1,−2)

X̃2Σ+
u

(D∞h)
−104.078196 b

[A′]π4
u, 4σ2

g , 3σ1
u |α〉 = −0.4461 b

∗ (−34.87079) b

∗ ∗ (−0.48614) b

[B′], 4σ1
g |β〉 = −0.2620 b

∗ (−34.15042) b

∗ ∗ (−0.17697) b

1.3198 z

1.3198 z
A1 = 180.0 z

A2 = 180.0 z

X̃2Σ+

(C∞v)
(17e)

−104.078196 a

−104.082033 a′

−104.075492 a′′

[A], π4, σ2, σ1|α〉 = −0.44641 a

∗ E(|α〉 )(−34.87083) a

∗ ∗ (−0.48614) a

[B]σ1|β〉 = −0.26180 a

∗ (−34.15046) a

∗ ∗ (−0.17697) a
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Table 2. Cont.

State
Number of

Electron

Ee (Hartree)
Isolated

BNB

All Electron Configuration
(Total Energy of

|α〉 *
(Homo−Lumo) **

β Electron Configuration
Total Energy of

|β〉 *
(Homo−Lumo) **

re (B1N)
re (NB2)

A1 (2,1,3,−2,−1)
A2 (2,1,3,−1,−2)

X̃2Σ+
u

(D∞h)
(17e)

−103.639678
[A′]π4

u, 4σ2
g , 3σ1

u |α〉 = −0.42477 d

∗ (−34.74888) d

∗ ∗ (−0.49245) d

[B′], 4σ1
g |β〉 = −0.24844 d

∗ (−34.06924) d

∗ ∗ (−0.18742) d

1.3176 d

1.3176 d
A1 = 180.0 d

A2 = 180.0 d

X̃2Σ+
u

(D∞h)

−104.159145 f

−104.135552 n

[A′]π4
u, 4σ2

g , 3σ1
u |α〉 = −0.44701 f

∗ (−34.86501)
∗ ∗ (−0.48249)

[B′], 4σ1
g |β〉 = −0.26341
∗ (−34.14329)
∗ ∗ (−0.17779)

1.3275 f

1.3275
A1 = 180.0 f

A2 = 180.0

Ã2Σ+
g

(17e)
−104.104759 k

−104.078173 K′

[A′]π4
u, 4σ1

g , 3σ2
u |α〉 = −0.44638 u

∗ (−34.8744) u

∗ ∗ (−0.48626) u

[A′]π4
u, 4σ1

u ,= −0.26134
∗ (−34.15408)
∗ ∗ (−0.17666)

1.3154 k

1.3154 k
A1 = 180.0 k

A2 = 180.0 k

B̃4Πg
(17e)

−104.029702 h

−104.014117 a

[A′]π4
u, π2

g,σ
1
g |α〉 = −0.26899 h

∗ (−35.04484) h

∗ (−0.30125) h

[A′], π2
u|β〉 = −0.4965 h

∗ (−33.74801)
∗ ∗ (−0.50595)

1.3079 x

1.3079 x
A1 = 180.0 x

A2 = 180.0 x

X̃1Σ+
g

(18e)

−104.196567 a

−104.201914 a′

−104.195017 a′′

[A′]1π4
u, 4σ2

g , 3σ2
u = −0.13904 a

∗ E(|α〉 ) = −32.48647 a

∗ ∗ −0.36286

1.335 y

1.335 y
A1 = 180.0 y

A2 = 180.0 y

X̃
1
Σ+

g
(18e)

−104.196566 b ∗ E(|α〉 ) = −32.48644 b 1.3291 b

1.3291
A1 = 180.0 b

A2 = 180.0

X̃1Σ+
g

(18e)

−104.114546 c

−104.116282 c′

−104.112568 c′′
[A′]π4

u, σ2
g , σ2

u = −0.13454 c 1.3459 c

1.3459 c
A1 = 179.8967 c

A2 = 179.9181 c

Ã3Πu
(18e)

−104.088466 a

−104.116467 h

−104.080948 a′

−104.079253 a′′

[C]π4
u, 3σ1

u , 1π1
g|α〉 =

−0.03986 h

∗ E(|α〉 ) = −32.79721 h

∗ ∗ −0.25941 h

[
C′
]
π4

u, 4σ1
g |β〉 =

−0.01559 h

∗ E(|β〉 ) = −32.26335 h

∗ ∗ −0.14777 h

1.3422 w

1.3422
A1 = 180.0 w

A2 = 180.0 w

B̃3Σg
(16e)

−103.760922 a

−103.776711 h

−103.762855 a′

−103.759058 a′′

{
[A′]4σ1

g , 3σ1
u , π4

u,
}

a

π2
u|α〉 = −0.74323 a

∗ E(|α〉 )(−37.33372) a

∗ ∗ (−0.53385) a

{
[A′], π2

u|β〉 = −0.75222
} a

∗ E(|β〉 )(−35.72475) a

∗ ∗ (−0.52131) a

1.2976 w

1.2976 w
A1 = 180.0 w

A2 = 180.0 w

X̃1Σ+
g

(16e)

−103.74543 a

−103.805494 a′

−103.754507 a′′

[D](1π4
u), (4σ2

g = −0.57788 a)

∗ E(|α〉 ) = −36.52419 a

∗ ∗ −0.17926 a

1.2938 v

1.2938 v
A1 = 180.0 v

A2 = 180.0 v

X̃1Σ+
g

(16e)

−103.602313 m

−103.301206 g

−103.837742 f

−103.790333 h

[D](1π4
u), (4σ2

g = −0.57803 g)

∗ E(|α〉 ) = −36.51985 g

∗ ∗ −0.17944 g

1.3156 m

1.3156 m

1.3003 h

1.3004 h

A1 = 179.981 m

A2 = 179.985 m

* (Total Energy of |α〉 or |β〉 ; ** (Homo-Lumo). (a) QCISD/EPR-III; (d) CASSCF(11,12)/UHF; (z) b3p86/6-
31g*; (a′) MP4D/EPR-III//QCISD/EPR-III; (m) CASSCF(10,12)/EPR-I (x) b3lyp/6-31g*; (a”) MP4SDQ/EPR-
III//QCISD/EPR-III; (g) CASSCF(10,12)rohfAUG-cc-pvqz; (y) m062x/epr-ii; (b) QCISD/EPR-III ([A] :
1σ2, 2σ2, 3σ2, 4σ2, 5σ2: (w) b3lyp/6-31g*; (c) QCISD/EPR-II [A′] : 1σ2

g , 1σ2
u , 2σ2

g , 3σ2
g , 2σ2

u ; (v) CASSCF(11,12)/AUG-
cc-pvqz; (c′) MP4D/EPR-II//QCISD/EPR-II: [B] : σ1, σ1, σ1, σ1, σ1, π2; (c”) MP4SDQ/EPR-II//QCISD/EPR-II;
[B′]: 1σ1

g , 2σ1
g , 1σ1

u , 3σ1
g , 2σ1

u , 1π2
u; (f ) CBS-lq; (h) QCISD(T)/EPR-III; [C]: 1σ2

g , 1σ2
u , 2σ2

g , 3σ2
g , 2σ2

u , 4σ2
g ; (n) CBS4O; (u)

TD/EPR-II; (k) TD/EPR-III//QCISD (T)/EPR-III; (K′) TD/EPR-III//QCISD/EPR-III;
[
C′
]

: 1σg, 1σu, 2σg, 3σg, 2σu;
[D]: 1σ2

g , 2σ2
g,1σ2

u , 3σ2
g , 2σ2

u .
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Figure 1. The B2N(−,0,+) relative energies versus B-N-B bond distances at various levels of the theory:
(a,a′) for cation, (b,b′) for radical and (c,c′) for anion.

The electrostatic potential (EP) in ground and excited states of B2N(∓,0) and also the
HOMO-LUMO gap, with isotropic Fermi contact couplings (MHz), are listed in Table 2. Our
target of this study is to understand the difference between the electromagnetic structures
of the B2N(∓,0) variants due to different basis sets and methods and also the quantum
symmetry breaking report due to artifactual and trial wave functions. In the D∞h point
group of B2N(∓,0) variants, the unpaired electron is delocalized, while in the asymmetric
C∞v point group, it is localized on either one of the B atoms. Structures with broken
symmetry, C∞v, can be stable by interaction with the D∞h point group. In viewpoint of
quantum chemistry, the second-order Jahn–Teller effect permits the unpaired electron to
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localize on the boron atom rather than being delocalized. The other two, which correspond
to localizing the unpaired electron on one or both of the boron atoms, do not transform as
an irreducible representation of D∞h symmetry for the B2N(0) radical on N and either one
of the B atoms (Table 2 and Figure 1a,b). The unpaired electron of B2N(0) in the D∞h point
group is delocalized. However, it is localized in the asymmetric C∞v geometry for both
radical and ion structures of B2N(∓,0) variants. On the other hand, there is a limitation for
the unpaired electron of non-isolated BNB to obtain a delocalized state rather than being
localized on a single boron atom between the two states of D∞h and C∞v symmetries.

These restrictions between localized and non-localized positions for unpaired electron
result in an enhancement of the symmetry breaking effect of the B2N(∓,0) variants. More-
over, ESP charges, forces, γ = (VB −VN)/rBN, attraction and repulsion energies (eV) of
B2N(∓,0) variants in ground and excited states are listed in Table 3. The charges of MESP
fitting for isolated BNB radicals and the summation of partial charges for two boron and
one nitrogen (Bδq1–Nδq2–Bδq3) in all items of the ranges from ∆ = 0.0 up to ∆ = 0.07 are
zero (indicating a radical system) (Table 3). Interestingly, the summation of partial charges
in Bδq1 –Nδq2–Bδq3 for B2N(0) radical is not zero, and it changes according to the following:
(0.23 + 0.23 + 0.52 = 0.98) for ∆u = 0.0, (0.24 + 0.23 + 0.52 = 0.99) for ∆u = 0.02 and so on
(Table 3). The difference between ∆u, ∆k and ∆x is due to various methods and basis sets
that are applied; however, it is certain that the summation of partial charges in the B2N(0)

radical is far from zero and varies between 0.02 and 0.16. It can be due to the fact that the un-
paired electron of nitrogen is localized while B2N(−) is under the influence of the unpaired
electron. It is obvious, for the excited state of radical forms, even though the change in MESP
for both the excited state (B̃4Πg) and ground state (X̃2Σ+

u ) is negligible, as opposed to the
ground state (S = 1 of B2N(0)). Table 3 illustrates the charges from MESP fitting for isolated
anions. The sum of partial charges (in Bδq1–Nδq2–Bδq3 ) for all items from ∆ = 0.0 to ∆ = 0.2
is −1 (indicating an anion form); however, the total partial charges of Bδq1–Nδq2–Bδq3 for
B2N(−) are not −1. It is due to the fact that the unpaired electron of nitrogen is localized.
The parameters of “γ” for four bonds (B2 − N1, B3 − N4, B6 − N5 and B7 − N8) in Table 3
indicate that the stability sequences are as follows: B2N(−) > B2N(0)) > B2N(+). Using the
Gaussian distribution of partial charges ranging from ∆x = 0.0 to ∆x = 0.06, the expectation
values of charges were calculated, resulting in 0.21, 0.82 and 0.65 for the cation, anion and
radical, respectively. The nitrogen of B2N(−,+,0) is always positive for the radical and anion
and negative for the cation, while in excited states, the sum of partial atomic charges is
positive for all three forms. As observed in Figure 2, a cyclic radical or anion B2N(−,0) in
our calculations has not been observed; however, for the cation, there is a bulge in the
curve at 90

◦
in MP4DQ and MP4DSQ methods, which indicates a cyclic B2N+. At the SCF

level, the lowest energy corresponds to a bent molecule with an angle of 90
◦
; however, for

the QCISD (T), MP4DQ, MP4DSQ, and HF/aug-cc-pVTZ calculations (Figure 2), the linear
structure clearly has the lowest energies for radical and anion structures. In viewpoint of
the wave function when the BNB has a D∞h point group, the real wave function should
convert as an irreducible representation of the D∞h point group. However, “4σ2

g” and
“3σ1

u” become close to degenerate when the two B–N bonds are asymmetrically stretched
(while 6σ and 7σ MOs have the same symmetry). Thus, the excited state of [core]6σ, 7,
has a rather strong interaction with single and triple excitations. Anisotropic spin dipole
coupling (MHZ), the differences of (Eacceptor(j) − EDonor(i) ) and NBO properties are listed
in Table 4. It is obvious that the approximate electronic structure methods could suffer
from an artifactual symmetry-breaking effect, which would, therefore, be challenged by a
real Jahn–Teller distortion. The energy of these distortions for a non-isolated form of BNB
compared to that of an isolated form has two characteristics: (1) high distortion energy and
(2) irregular symmetry breaking (Table 4 and Figures 2 and 3). Although the total wave
functions of each molecule for ΦBNB

n under the permutation of electron coordinates are
antisymmetric, the product states of these non-bonded molecules under intermolecular ex-
changes of the electrons cannot be antisymmetric. Therefore, when the two B–N bonds are
asymmetrically stretched, the “4σ2

g” and “3σ1
u” orbitals cannot be degenerate. On the other
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hand, there are major problems for introducing intermolecular antisymmetries because the
antisymmetrized unperturbed states are no longer an eigenfunction of H(0), which follow
the non-commutation of

[
Ã, H(0)

]
6= 0.

Table 3. Charges from ECP (effective core potential) fitting for BNB with several methods and
basis sets.

State of BNB BN Bonds γ= VB−VN
rBN

force =(Σ2
x+Σ2

y+Σ2
y)

1
2 ,

θ=Angle of Force Vector,
δ(qB−qN) from ECP

Bδq1 –Nδq2 –Bδq3

∆=r1(B1N)−r2(B2N)
Charges from ESP Fitting

X̃
2
Σ+

u Radical B1 − N
B2 − N

γ = 4.7201 a

γ = 4.7193 a
0.89, 51.22◦, 0.807 a

0.90, −39.11◦, 0.806 a
∆k = 0.03 & δq1 = 0.23,

δq2 = − 0.46, δq3 = 0.23

X̃1Σ+
g

Anion
B1 − N
B2 − N

γ = 4.6213 a

γ = 4.6195 a
1.09, 85.12◦, 0.807 a

1.11, −31.15◦, 0.806 a
∆u = 0.02 & δq1 = 0.10,

δq2 = −0.92, δq3 = −0.18

X̃1Σ+
g

Cation
B1 − N
B2 − N

γ = 4.5197 a

γ = 4.5199 a
1.15, 75.22◦, 0.807 a

1.19, −27.11◦, 0.806 a
∆u = 0.04 & δq1 = 0.056,
δq3 = −0.08, δq2 = 0.52

a QCISD/EPR-III; u m062x/6-31g*; k b3p86/6-31g*.
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Table 4. The NBO, electric potential, anisotropic spin dipole couplings (ASDF), isotropic Fermi
contact coupling {IFCC[ f (∆)], IFCC[ f (θ)]}, atomic occupancies and Fock Matrix data of isolated and
non-isolated forms of B2N(−,0,+) in ground and excited states.

State (* Ne) Hybrids Coefficient&
Eacceptor(j)−EDonor(i)

** Fock Matrix (Fi,j, a.u.) Atomic Occupancies

X̃1Σ+
g

(* 18e)

|ψ〉 BD(2) = 0.66SP1.0
N1

+ 0.75SP1.0 a

B2

|ψ〉 BD(3) = 0.95SP1.0
N1

+ 0.32SP1.0 a

B2

|ψ〉 BD ∗ (1) = 0.44SP1.01
N1
− 0.90 SP2.24 a

B2

|ψ〉 BD ∗ (2) = 0.75SP1.0
N1
− 0.67 SP1.0 a

B3

|ψ〉 BD ∗ (3) − |ψ〉 BD(1) = 1.94
** 0.107

|ψ BD ∗ (1) − |ψ〉 BD(1) = 0.73
** 0.021

|α, β〉N : 2s1.592P1.70
x 2P1.70

y 2P1.66
z

|α, β〉B : 2s0.972P0.14
x 2P0.14

y 2P0.37
z

Ã3Πu
(* 18e)

|ψ〉 BD(2) = 0.97SP1.0
N1

+ 0.26SP1.0 h

B2

|ψ〉 BD(3) = 0.91SP1.0
N1

+ 0.40SP1.62 h

B3

|ψ〉 BD(4) = 0.70SP0.51
B2

+ 0.70SP0.51 g

B3

|ψ〉 BD∗(1) = 0.4SP1.0
N1
− 0.91 SP1.62 h

B2

|ψ〉 BD ∗ (3) − |ψ BD(1) = 1.94
** 0.107

|ψ〉 BD ∗ (4) − |ψ〉 BD(1) = 1.01
** 0.064

|α〉N : 2s0.752P0.81
x 2P0.60

y 2P0.86
z

|α〉B : 2s0.742P0.09
x 2P0.70

y 2P0.43
z

|β〉N : 2s0.802P0.87
x 2P0.90

y 2P0.86
z

B̃3Σ+

(* 16e)

|ψ〉 BD(1) = 0.90SP1.0
N1

+ 0.42 SP0.72 h

B

|ψ〉 BD(2) = 0.96SP1.0
N1

+ 0.26SP1.0 h

B

|ψ〉 BD(3) = 0.96SP1.0
N1

+ 0.26SP1.0 f

B

|ψ〉 BD ∗ (3) − |ψ〉 BD(1) = 1.98
** 0.119

|ψ〉 BD ∗ (1) − |ψ〉 BD(2) = 0.77
** 0.028

|α〉N : 2s0.782P0.81
x 2P0.81

y 2P0.87
z

|α〉B : 2s0.722P0.92
x 2P0.92

y 2P0.44
z

|β〉N : 2s0.772P0.87
x 2P0.87

y 2P0.86
z

a QCISD/EPR-III; h QCISD(T)/EPR-III; f b3lyp/6-31g*(pop=chelp G); g m062x/6-31g*( pop=chelp G). * = Number
of electrons; ** = Fock Matrix (Fi,j, a.u.)

Quantum Rep. 2022, 4, FOR PEER REVIEW  9 
 

In this study, our focus was to obtain results from DFT methods, such as b3p86, 

b3lyp, m062x, m06-L and m06 for the non-bonded interaction between BNB (−, 0, +) and 

B12N12, which are monotonous through the comparison between different situations. The 

m062x, m06-L and m06-HF are new methods with good correspondences in non-bonded 

calculations and are useful for the energies according to the distance between two frag-

ments in a molecule with medium (∼2–5Å ) and long ranges (≥5 Å ). 

 

Figure 3. Isotropic Fermi contact coupling (IFCC) of B2N (0). 

B3LYP is unable to describe van der Waals [53,54] complexes that are bonded by 

medium-range interactions such as the interactions of B12N12-BNB systems. The failure of 

B3LYP and most of the other popular functional to correctly describe medium-range 

exchanges and correlation energies limits their applicability for distant non-bonded sys-

tems (our non-bonded system has a short distance). Moreover, some recent studies have 

shown that inaccuracy for medium-range exchange energies lead to large systematic er-

rors in the prediction of molecular properties [55–59]. This is due to the fact that the spin 

orbital energies are related to the small bending angles of A1 and A2, which have an ex-

tremely low bending frequency of 70 cm−1. 

Table 4. The NBO, electric potential, anisotropic spin dipole couplings (ASDF), isotropic Fermi 

contact coupling {𝐼𝐹𝐶𝐶[𝑓(∆)],𝐼𝐹𝐶𝐶[𝑓(𝜃)]}, atomic occupancies and Fock Matrix data of isolated and 

non-isolated forms of B2𝑁(−,0,+) in ground and excited states. 

State (*Ne) Hybrids Coefficient& 
𝑬𝒂𝒄𝒄𝒆𝒑𝒕𝒐𝒓(𝒋)

− 𝑬𝑫𝒐𝒏𝒐𝒓(𝒊)
 

∗∗ 𝐅𝐨𝐜𝐤 𝐌𝐚𝐭𝐫𝐢𝐱 (𝑭𝒊,𝒋, 𝒂. 𝒖. ) 
Atomic Occupancies 

𝑋 ̃1𝛴𝑔
+ 

(*18e) 

|𝜓〉𝐵𝐷(2) = 0.66𝑆𝑃𝑁1
1.0 + 0.75𝑆𝑃𝐵2

1.0 𝑎 

|𝜓〉𝐵𝐷(3) = 0.95𝑆𝑃𝑁1
1.0 + 0.32𝑆𝑃𝐵2

1.0 𝑎 

|𝜓〉𝐵𝐷∗(1) = 0.44𝑆𝑃𝑁1
1.01 − 0.90 𝑆𝑃𝐵2

2.24 𝑎 

|𝜓〉𝐵𝐷∗(2) = 0.75𝑆𝑃𝑁1
1.0 − 0.67 𝑆𝑃𝐵3

1.0 𝑎 

|𝜓〉𝐵𝐷∗(3) − |𝜓〉𝐵𝐷(1) = 1.94 

**0.107 
|𝜓〉𝐵𝐷∗(1) − |𝜓〉𝐵𝐷(1) = 0.73 

**0.021 

|𝛼, 𝛽〉𝑁: 2𝑠1.592𝑃𝑥
1.702𝑃𝑦

1.702𝑃𝑧
1.66 

|𝛼, 𝛽〉𝐵: 2𝑠0.972𝑃𝑥
0.142𝑃𝑦

0.142𝑃𝑧
0.37 

 �̃�3𝛱𝑢 
(*18e) 

|𝜓〉𝐵𝐷(2) = 0.97𝑆𝑃𝑁1
1.0 + 0.26𝑆𝑃𝐵2

1.0 ℎ 

|𝜓〉𝐵𝐷(3) = 0.91𝑆𝑃𝑁1
1.0 + 0.40𝑆𝑃𝐵3

1.62 ℎ 

|𝜓〉𝐵𝐷(4) = 0.70𝑆𝑃𝐵2
0.51 + 0.70𝑆𝑃𝐵3

0.51 𝑔   

|𝜓〉𝐵𝐷∗(3) − |𝜓〉𝐵𝐷(1) = 1.94 

**0.107 
|𝜓〉𝐵𝐷∗(4) − |𝜓〉𝐵𝐷(1) = 1.01 

**0.064  

|𝛼〉𝑁: 2𝑠0.752𝑃𝑥
0.812𝑃𝑦

0.602𝑃𝑧
0.86 

|𝛼〉𝐵: 2𝑠0.742𝑃𝑥
0.092𝑃𝑦

0.702𝑃𝑧
0.43 

|𝛽〉𝑁: 2𝑠0.802𝑃𝑥
0.872𝑃𝑦

0.902𝑃𝑧
0.86 

Figure 3. Isotropic Fermi contact coupling (IFCC) of B2N(0).

In this study, our focus was to obtain results from DFT methods, such as b3p86,
b3lyp, m062x, m06-L and m06 for the non-bonded interaction between BNB (−, 0, +) and
B12N12, which are monotonous through the comparison between different situations. The
m062x, m06-L and m06-HF are new methods with good correspondences in non-bonded
calculations and are useful for the energies according to the distance between two fragments
in a molecule with medium (∼2–5Å) and long ranges (≥5 Å).

B3LYP is unable to describe van der Waals [53,54] complexes that are bonded by
medium-range interactions such as the interactions of B12N12-BNB systems. The failure
of B3LYP and most of the other popular functional to correctly describe medium-range
exchanges and correlation energies limits their applicability for distant non-bonded systems
(our non-bonded system has a short distance). Moreover, some recent studies have shown
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that inaccuracy for medium-range exchange energies lead to large systematic errors in
the prediction of molecular properties [55–59]. This is due to the fact that the spin orbital
energies are related to the small bending angles of A1 and A2, which have an extremely
low bending frequency of 70 cm−1.

Spin orbital energies are related to the small bending angles of A1 and A2, which have
an extremely low bending frequency of 70 cm−1. As observed in Tables 3 and 4, the results
of m062x including epr-ii and 6–31 g* basis sets, compared to other functionals such as
B3P86 and B3LYP, have different values (in lower level); however, in Table 2, the difference
between the two positions of the global minima and local minima of the isolated BNB
for both |α〉 and |β〉 is 8.77 cm−1. It is indicated in our harmonic frequencies that these
were determined at the QCISD/EPR-III//prop=epr and characterized by 228.79 cm−1

(ϑ1 = ϑ′1, bending mode “πu”), 1178.64 cm−1 (ϑ2, symmetric stretching “σg”) and 2146.42
(ϑ3, asymmetric stretching “σu”) [60–62]. The energy differences in Tables 4 and 5 indicate
that the 2R basis sets/method, employing QRHF+ and QRHF-MOs, produces the closest
result to FCI (full configuration interaction), even though it slightly underestimates SB
effects. The reason for the improved performance of the QRHF+ MOs relative to the QRHF
ones is the weaker MR (multi reference) character in the former case. We will thus employ
QRHF+ MOs in our subsequent calculations. We also observe that, in general, CASSCF
(10, 12) AUG-cc-pvqz tends to overestimate SB effects primarily due to the singly excited
configuration. It is well known that in the presence of a strong MR character, CASSCF
(10, 12) AUG-cc-pvqz tends to overestimate the correlation energy. Of course, the use of the
ROHFSA MOs is not reliable in any case in view of a large energy gap in HF energies.

Table 5. ∆E among the BNB ground states having linear symmetric R1 = R2 = 1.35 Å and linear
asymmetric R1 = 1.25, R2 = 1.40 Å geometries [1–5,13–16,63,64].

Basis Set and Method Orbital ∆E

QCISD/EPR-III ROHFSA 7.34

TD/EPR-III//QCISD/EPR-III ROHFSB 6.98

TD/EPR-III//QCISD/EPR-III ROHFSA 7.12

MP4D/EPR-II//QCISD/EPR-II ROHFSB 5.99

QCISD/EPR-II QRHF(+) 6.42

CASSCF(10,12)AUG-cc-pvqz ROHFSA 4.33

CASSCF(11,12)/AUG-cc-pvqz QRHF(−) 4.45

MP4SDQ/EPR-II//QCISD/EPR-II QRHF(+) 6.66

MP4SDQ/EPR-III//QCISD/EPR-III ROHFSB 7.45

m062x/EPR-II ROHFSB 8.33

MP4D/EPR-III//QCISD/EPR-III ROHFSB 6.88

MP4D/EPR-II//QCISD/EPR-II ROHFSB 7.21

CBS4O ROHFSA 7.93

CASSCF(11,12)/UHF ROHFSB 6.83

TD/EPR-III//QCISD (T)/EPR-III QRHF(−) 7.19

TD/EPR-II QRHF(+) 7.55

QCISD(T)/EPR-III ROHFSA 7.36

4. Conclusions

The results of this study made it pretty clear that the SB problem is not a real phe-
nomenon; it is a hidden function depending on various variables such as charge distribution,
bond length, IFCC, Gaussian primitives, trial wave function properties. It is indicated
that the SB is generally applied to the electronic wave function failure in order to be trans-
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formed as an irreducible representation of the molecular point group; thus, the failure of
the electronic wave function is purely artifactual. It is not wise to conclude that only a
special level of theory on the symmetry breaking for BNB is real, which is something that
has been concluded in some references. Within the subject of quantum theory, the term
“spatial symmetry breaking” can be interpreted in two ways: first, the lack of a broken wave
function for transformations as an irreducible representation of the related point group and
the second is the preference of a nuclear framework for a lower-symmetry geometry. The
first item is due to the approximate wave function or artifactual in which the proper wave
functions. The second item is related to the real or artifactual wave function and symmetry
breaking in the nuclear framework due to the first-order Jahn–Teller effects.
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