Applications of Supersymmetric Polynomials in Statistical Quantum Physics
Abstract
:1. Introduction
2. Preliminary Results for Symmetric Polynomials and Partition Functions
2.1. Symmetric Polynomials
2.2. Partition Functions
2.3. Note about the Banach Space
3. Supersymmetric Polynomials and Partition Functions for Mixed Systems of Bosons and Fermions
4. Semi-ring Structures on the Set of Variables
4.1. The Ring
4.2. A Tropical Semi-Ring Structure
- 1.
- The tropical operations are continuous in ;
- 2.
- The mappings
5. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Macdonald, I.G. Symmetric Functions and Orthogonal Polynomials; University Lecture Series; AMS: Providence, RI, USA, 1997; Volume 12. [Google Scholar]
- Schmidt, H.J.; Schnack, J. Symmetric polynomials in physics. In Institute of Physics Conference Series; Gazeau, J.-P., Kerner, R., Antoine, J.-P., Métens, S., Thibon, J.-Y., Eds.; IOP: Bristol, Philadelphia, 2003; Volume 173, pp. 147–152. [Google Scholar]
- Schmidt, H.-J.; Schnack, J. Partition functions and symmetric polynomials. Am. J. Phys. 2002, 70, 53–57. [Google Scholar] [CrossRef]
- Giraud, O.; Grabsch, A.; Texier, C. Correlations of occupation numbers in the canonical ensemble and application to a Bose-Einstein condensate in a one-dimensional harmonic trap. Phys. Rev. A 2018, 97, 053615. [Google Scholar] [CrossRef]
- Mullin, W.J.; Fernández, J.P. Bose–Einstein condensation, fluctuations, and recurrence relations in statistical mechanics. Am. J. Phys. 2002, 71, 661–669. [Google Scholar] [CrossRef]
- Pain, J.-C.; Gilleron, F.; Porcherot, Q. Generating functions for canonical systems of fermions. Phys. Rev. E 2011, 83, 067701. [Google Scholar] [CrossRef] [PubMed]
- Peña, J.J.; Ponce, A.R.; Morales, J. On the generalization of statistical thermodynamic functions by a Riccati differential equation. J. Phys. Conf. Ser. 2016, 738, 012095. [Google Scholar] [CrossRef]
- Zhou, C.-C.; Dai, W.-S. A statistical mechanical approach to restricted integer partition functions. J. Stat. Mech. Theory Exp. 2018, 2018, 5053111. [Google Scholar] [CrossRef]
- Alencar, R.; Aron, R.; Galindo, P.; Zagorodnyuk, A. Algebra of symmetric holomorphic functions on ℓp. Bull. Lond. Math. Soc. 2003, 35, 55–64. [Google Scholar] [CrossRef]
- Aron, R.; Galindo, P.; Pinasco, D.; Zalduendo, I. Group-symmetric holomorphic functions on a Banach space. Bull. Lond. Math. Soc. 2016, 48, 779–796. [Google Scholar] [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. Some algebras of symmetric analytic functions and their spectra. Proc. Edinb. Math. Soc. 2012, 55, 125–142. [Google Scholar] [CrossRef]
- García, D.; Maestre, M.; Zalduendo, I. The spectra of algebras of group-symmetric functions. Proc. Edinb. Math. Soc. 2019, 62, 609–623. [Google Scholar] [CrossRef]
- González, M.; Gonzalo, R.; Jaramillo, J.A. Symmetric polynomials on rearrangement-invariant function spaces. J. Lond. Math. Soc. 1999, 59, 681–697. [Google Scholar] [CrossRef]
- Falcó, J.; García, D.; Jung, M.; Maestre, M. Group-invariant separating polynomials on a Banach space. Publ. Mat. 2022, 66, 207–233. [Google Scholar] [CrossRef]
- Chernega, I.; Zagorodnyuk, A. Supersymmetric Polynomials and a Ring of Multisets of a Banach Algebra. Axioms 2022, 11, 511. [Google Scholar] [CrossRef]
- Chopyuk, Y.; Vasylyshyn, T.; Zagorodnyuk, A. Rings of Multisets and Integer Multinumbers. Mathematics 2022, 10, 778. [Google Scholar] [CrossRef]
- Jawad, F.; Zagorodnyuk, A. Supersymmetric polynomials on the space of absolutely convergent series. Symmetry 2019, 11, 1111. [Google Scholar] [CrossRef]
- Olshanski, G.; Regev, A.; Vershik, A.; Ivanov, V. Frobenius-Schur Functions. In Studies in Memory of Issai Schur; Progress in Mathematics; Joseph, A., Melnikov, A., Rentschler, R., Eds.; Birkhauser: Boston, MA, USA, 2003; Volume 210, pp. 251–299. [Google Scholar]
- Sergeev, A.N. On rings of supersymmetric polynomials. J. Algebra 2019, 517, 336–364. [Google Scholar] [CrossRef]
- Stembridge, J.R. A characterization of supersymmetric polynomials. J. Algebra 1985, 95, 439–444. [Google Scholar] [CrossRef]
- Martsinkiv, M.; Vasylyshyn, S.; Vasylyshyn, T.; Zagorodnyuk, A. Lipschitz symmetric functions on Banach spaces with symmetric bases. Carpathian Math. Publ. 2021, 13, 727–733. [Google Scholar] [CrossRef]
- Dineen, S. Complex Analysis on Infinite Dimensional Spaces; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Mujica, J. Complex Analysis in Banach Spaces; North-Holland: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1986. [Google Scholar]
- Golan, J.S. Semirings and Their Applications; Springer Science and Business Media: Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Speyer, D.E.; Sturmfels, B. Tropical Mathematics. Math. Mag. 2009, 82, 163–173. [Google Scholar] [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. The convolution operation on the spectra of algebras of symmetric analytic functions. J. Math. Anal. Appl. 2012, 395, 569–577. [Google Scholar] [CrossRef]
- Balantekin, A.B. Partition functions in statistical mechanics, symmetric functions, and group representation. Phys. Rev. E 2001, 64, 066105. [Google Scholar] [CrossRef] [PubMed]
- Landsberg, P.T. Thermodynamics with Quantum Statistical Illustrations; Interscience Publishers: New York, NY, USA; London, UK, 1961. [Google Scholar]
- Lee, M.H.; Kim, J. Quantum gases and polylogs. Phys. A Stat. Mech. Its Appl. 2002, 304, 421–428. [Google Scholar] [CrossRef]
- Schmidt, H.J.; Schnack, J. Investigations on finite ideal quantum gases. Phys. A Stat. Mech. Its Appl. 1998, 260, 479–489. [Google Scholar] [CrossRef]
- Schmidt, H.J.; Schnack, J. Thermodynamic fermion-boson symmetry in harmonic oscillator potentials. Phys. A Stat. Mech. Its Appl. 1999, 265, 584–589. [Google Scholar] [CrossRef]
- Nemirovskii, A.; Semenov, S. On polynomial approximation of functions on Hilbert space. Mat. USSR-Sb. 1973, 21, 255–277. [Google Scholar] [CrossRef]
- Burtnyak, I.V.; Chopyuk, Y.Y.; Vasylyshyn, S.I.; Vasylyshyn, T.V. Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions. Carpathian Math. Publ. 2023, 15, 411–419. [Google Scholar] [CrossRef]
- Galindo, P.; Vasylyshyn, T.; Zagorodnyuk, A. Analytic structure on the spectrum of the algebra of symmetric analytic functions on L∞. RACSAM 2020, 114, 56. [Google Scholar] [CrossRef]
- Burtnyak, I.; Chernega, I.; Hladkyi, V.; Labachuk, O.; Novosad, Z. Application of symmetric analytic functions to spectra of linear operators. Carpathian Math. Publ. 2021, 13, 701–710. [Google Scholar] [CrossRef]
- Li, H.-D.; Li, S.-L.; Chen, Y.-J.; Li, W.-D.; Dai, W.-S. Energy spectrum of interacting gas: Cluster expansion method. Chem. Phys. 2022, 559, 111537. [Google Scholar] [CrossRef]
- Litvinov, G.L. Maslov dequantization, idempotent and tropical mathematics: A brief introduction. J. Math. Sci. 2007, 140, 426–444. [Google Scholar] [CrossRef]
- Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces I: Sequence Spaces. Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Bingham, N.H.; Ostaszewski, A.J. Normed versus topological groups: Dichotomy andduality. Diss. Math. 2010, 472, 138. [Google Scholar] [CrossRef]
- Faria, E.; Melo, W. Mathematical aspects of quantum field theory. In Cambridge Studies in Advanced Mathematics, 127; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Erler, T.; Schnabl, M. A simple analytic solution for tachyon condensation. J. High Energy Phys. 2009, 10, 066. [Google Scholar] [CrossRef]
- Rosas, M. MacMahon symmetric functions, the partition lattice, and Young subgroups. J. Combin. Theory Ser. A 2001, 96, 326–340. [Google Scholar] [CrossRef]
- Bandura, A.; Kravtsiv, V.; Vasylyshyn, T. Algebraic basis of the algebra of all symmetric continuous polynomials on the Cartesian product of ℓp-Spaces. Axioms 2022, 11, 41. [Google Scholar] [CrossRef]
- Kravtsiv, V. Algebraic basis of the algebra of block-symmetric polynomials on ℓ1⊕ℓ∞. Carpathian Math. Publ. 2019, 11, 89–95. [Google Scholar] [CrossRef]
- Kravtsiv, V.V. Analogues of the Newton formulas for the block-symmetric polynomials. Carpathian Math. Publ. 2020, 12, 17–22. [Google Scholar] [CrossRef]
- Kravtsiv, V. Zeros of block-symmetric polynomials on Banach spaces. Mat. Stud. 2020, 53, 201–206. [Google Scholar] [CrossRef]
- Kravtsiv, V.; Vitrykus, D. Generating elements of the algebra of block-symmetric polynomials on the product of Banach spaces Cs. AIP Conf. Proc. 2022, 2483, 030010. [Google Scholar] [CrossRef]
- Kravtsiv, V. The analogue of Newton’s formula for block-symmetric polynomials. Int. J. Math. Anal. 2016, 10, 323–327. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. Quantum product of symmetric functions. Int. J. Math. Math. Sci. 2015, 2015, 476926. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernega, I.; Martsinkiv, M.; Vasylyshyn, T.; Zagorodnyuk, A. Applications of Supersymmetric Polynomials in Statistical Quantum Physics. Quantum Rep. 2023, 5, 683-697. https://doi.org/10.3390/quantum5040043
Chernega I, Martsinkiv M, Vasylyshyn T, Zagorodnyuk A. Applications of Supersymmetric Polynomials in Statistical Quantum Physics. Quantum Reports. 2023; 5(4):683-697. https://doi.org/10.3390/quantum5040043
Chicago/Turabian StyleChernega, Iryna, Mariia Martsinkiv, Taras Vasylyshyn, and Andriy Zagorodnyuk. 2023. "Applications of Supersymmetric Polynomials in Statistical Quantum Physics" Quantum Reports 5, no. 4: 683-697. https://doi.org/10.3390/quantum5040043
APA StyleChernega, I., Martsinkiv, M., Vasylyshyn, T., & Zagorodnyuk, A. (2023). Applications of Supersymmetric Polynomials in Statistical Quantum Physics. Quantum Reports, 5(4), 683-697. https://doi.org/10.3390/quantum5040043