Nitrogen-Related High-Spin Vacancy Defects in Bulk (SiC) and 2D (hBN) Crystals: Comparative Magnetic Resonance (EPR and ENDOR) Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Photoinduced EPR Spectroscopy
3.2. Dynamic Characteristics
- (i)
- non-resonant spins whose Larmor frequencies differ from ω0 (nuclei, as well as other spin defects);
- (ii)
- neighboring centers.
3.3. Room Temperature Measurements
3.4. Electron–Nuclear Interactions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gordon, L.; Weber, J.R.; Varley, J.B.; Janotti, A.; Awschalom, D.D.; Van de Walle, C.G. Quantum Computing with Defects. MRS Bull. 2013, 38, 802–807. [Google Scholar] [CrossRef]
- Weber, J.R.; Koehl, W.F.; Varley, J.B.; Janotti, A.; Buckley, B.B.; Van de Walle, C.G.; Awschalom, D.D. Quantum Computing with Defects. Proc. Natl. Acad. Sci. USA 2010, 107, 8513–8518. [Google Scholar] [CrossRef] [PubMed]
- Strikis, A.; Benjamin, S.C.; Brown, B.J. Quantum Computing Is Scalable on a Planar Array of Qubits with Fabrication Defects. Phys. Rev. Appl. 2023, 19, 064081. [Google Scholar] [CrossRef]
- Gardas, B.; Dziarmaga, J.; Zurek, W.H.; Zwolak, M. Defects in Quantum Computers. Sci. Rep. 2018, 8, 4539. [Google Scholar] [CrossRef] [PubMed]
- Wolfowicz, G.; Heremans, F.J.; Anderson, C.P.; Kanai, S.; Seo, H.; Gali, A.; Galli, G.; Awschalom, D.D. Quantum Guidelines for Solid-State Spin Defects. Nat. Rev. Mater. 2021, 6, 906–925. [Google Scholar] [CrossRef]
- Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L.C.L. The Nitrogen-Vacancy Colour Centre in Diamond. Phys. Rep. 2013, 528, 1–45. [Google Scholar] [CrossRef]
- Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 2014, 65, 83–105. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-K.; Ma, S.-L.; Ren, Y.-L.; Xie, J.-K.; Li, F.-L. Coupling a Single NV Center to a Superconducting Flux Qubit via a Nanomechanical Resonator. J. Opt. Soc. Am. B 2022, 39, 69–76. [Google Scholar] [CrossRef]
- Liu, T.; Xu, J.; Zhang, Y.; Yu, Y.; Su, Q.-P.; Zhou, Y.-H.; Yang, C.-P. Efficient Scheme for Implementing a Hybrid Toffoli Gate with Two NV Ensembles Simultaneously Controlling a Single Superconducting Qubit. Appl. Phys. Lett. 2023, 123, 134002. [Google Scholar] [CrossRef]
- Boixo, S.; Isakov, S.V.; Smelyanskiy, V.N.; Babbush, R.; Ding, N.; Jiang, Z.; Bremner, M.J.; Martinis, J.M.; Neven, H. Characterizing Quantum Supremacy in Near-Term Devices. Nat. Phys. 2018, 14, 595–600. [Google Scholar] [CrossRef]
- de Leon, N.P.; Itoh, K.M.; Kim, D.; Mehta, K.K.; Northup, T.E.; Paik, H.; Palmer, B.S.; Samarth, N.; Sangtawesin, S.; Steuerman, D.W. Materials Challenges and Opportunities for Quantum Computing Hardware. Science 2021, 372, eabb2823. [Google Scholar] [CrossRef] [PubMed]
- Mizuochi, N.; Yamasaki, S.; Takizawa, H.; Morishita, N.; Ohshima, T.; Itoh, H.; Isoya, J. Continuous-Wave and Pulsed EPR Study of the Negatively Charged Silicon Vacancy with S=3/2 and C3v Symmetry in n-Type 4H-SiC. Phys. Rev. B 2002, 66, 235202. [Google Scholar] [CrossRef]
- Baranov, P.G.; Bundakova, A.P.; Soltamova, A.A.; Orlinskii, S.B.; Borovykh, I.V.; Zondervan, R.; Verberk, R.; Schmidt, J. Silicon Vacancy in SiC as a Promising Quantum System for Single-Defect and Single-Photon Spectroscopy. Phys. Rev. B 2011, 83, 125203. [Google Scholar] [CrossRef]
- Davidsson, J.; Ivády, V.; Armiento, R.; Ohshima, T.; Son, N.T.; Gali, A.; Abrikosov, I.A. Identification of Divacancy and Silicon Vacancy Qubits in 6H-SiC. Appl. Phys. Lett. 2019, 114, 112107. [Google Scholar] [CrossRef]
- Murzakhanov, F.F.; Sadovnikova, M.A.; Mamin, G.V.; Nagalyuk, S.S.; von Bardeleben, H.J.; Schmidt, W.G.; Biktagirov, T.; Gerstmann, U.; Soltamov, V.A. 14N Hyperfine and Nuclear Interactions of Axial and Basal NV Centers in 4H-SiC: A High Frequency (94 GHz) ENDOR Study. J. Appl. Phys. 2023, 134, 123906. [Google Scholar] [CrossRef]
- Murzakhanov, F.F.; Yavkin, B.V.; Mamin, G.V.; Orlinskii, S.B.; von Bardeleben, H.J.; Biktagirov, T.; Gerstmann, U.; Soltamov, V.A. Hyperfine and Nuclear Quadrupole Splitting of the NV- Ground State in 4H-SiC. Phys. Rev. B 2021, 103, 245203. [Google Scholar] [CrossRef]
- Sato, S.; Narahara, T.; Abe, Y.; Hijikata, Y.; Umeda, T.; Ohshima, T. Formation of Nitrogen-Vacancy Centers in 4H-SiC and Their near Infrared Photoluminescence Properties. J. Appl. Phys. 2019, 126, 083105. [Google Scholar] [CrossRef]
- Lee, S.W.; Vlaskina, S.I.; Vlaskin, V.I.; Zaharchenko, I.V.; Gubanov, V.A.; Mishinova, G.N.; Svechnikov, G.S.; Rodionov, V.E.; Podlasov, S.A. Silicon Carbide Defects and Luminescence Centers in Current Heated 6H-SiC. Semicond. Phys. Quantum Electron. Optoelectron. 2010, 13, 24. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Silicon Carbide Color Centers for Quantum Applications. J. Phys. Photonics 2020, 2, 022001. [Google Scholar] [CrossRef]
- Liu, X.; Hersam, M.C. 2D Materials for Quantum Information Science. Nat. Rev. Mater. 2019, 4, 669–684. [Google Scholar] [CrossRef]
- Roy, S.; Zhang, X.; Puthirath, A.B.; Meiyazhagan, A.; Bhattacharyya, S.; Rahman, M.M.; Babu, G.; Susarla, S.; Saju, S.K.; Tran, M.K.; et al. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. Adv. Mater. 2021, 33, 2101589. [Google Scholar] [CrossRef] [PubMed]
- Gottscholl, A.; Kianinia, M.; Soltamov, V.; Orlinskii, S.; Mamin, G.; Bradac, C.; Kasper, C.; Krambrock, K.; Sperlich, A.; Toth, M.; et al. Initialization and Read-out of Intrinsic Spin Defects in a van Der Waals Crystal at Room Temperature. Nat. Mater. 2020, 19, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Shaik, A.B.D.; Palla, P. Optical Quantum Technologies with Hexagonal Boron Nitride Single Photon Sources. Sci. Rep. 2021, 11, 12285. [Google Scholar] [CrossRef] [PubMed]
- Gottscholl, A.; Diez, M.; Soltamov, V.; Kasper, C.; Krauße, D.; Sperlich, A.; Kianinia, M.; Bradac, C.; Aharonovich, I.; Dyakonov, V. Spin Defects in hBN as Promising Temperature, Pressure and Magnetic Field Quantum Sensors. Nat. Commun. 2021, 12, 4480. [Google Scholar] [CrossRef] [PubMed]
- Gracheva, I.N.; Murzakhanov, F.F.; Mamin, G.V.; Sadovnikova, M.A.; Gabbasov, B.F.; Mokhov, E.N.; Gafurov, M.R. Symmetry of the Hyperfine and Quadrupole Interactions of Boron Vacancies in a Hexagonal Boron Nitride. J. Phys. Chem. C 2023, 127, 3634–3639. [Google Scholar] [CrossRef]
- Kianinia, M.; White, S.; Fröch, J.E.; Bradac, C.; Aharonovich, I. Generation of Spin Defects in Hexagonal Boron Nitride. ACS Photonics 2020, 7, 2147–2152. [Google Scholar] [CrossRef]
- Gao, X.; Pandey, S.; Kianinia, M.; Ahn, J.; Ju, P.; Aharonovich, I.; Shivaram, N.; Li, T. Femtosecond Laser Writing of Spin Defects in Hexagonal Boron Nitride. ACS Photonics 2021, 8, 994–1000. [Google Scholar] [CrossRef]
- Gerstmann, U.; Rauls, E.; Frauenheim, T.; Overhof, H. Formation and Annealing of Nitrogen-Related Complexes in SiC. Phys. Rev. B 2003, 67, 205202. [Google Scholar] [CrossRef]
- von Bardeleben, H.J.; Cantin, J.L.; Rauls, E.; Gerstmann, U. Identification and Magneto-Optical Properties of the NV Center in 4H-SiC. Phys. Rev. B 2015, 92, 064104. [Google Scholar] [CrossRef]
- Liu, W.; Guo, N.-J.; Yu, S.; Meng, Y.; Li, Z.-P.; Yang, Y.-Z.; Wang, Z.-A.; Zeng, X.-D.; Xie, L.-K.; Li, Q.; et al. Spin-Active Defects in Hexagonal Boron Nitride. Mater. Quantum. Technol. 2022, 2, 032002. [Google Scholar] [CrossRef]
- Strand, J.; Larcher, L.; Shluger, A.L. Properties of Intrinsic Point Defects and Dimers in Hexagonal Boron Nitride. J. Phys. Condens. Matter 2019, 32, 055706. [Google Scholar] [CrossRef] [PubMed]
- Berliner, L.J.; Eaton, S.S.; Eaton, G.R. Distance Measurements in Biological Systems by EPR; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Goldfarb, D.; Stoll, S. EPR Spectroscopy: Fundamentals and Methods; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Ye, M.; Seo, H.; Galli, G. Spin Coherence in Two-Dimensional Materials. npj Comput. Mater. 2019, 5, 44. [Google Scholar] [CrossRef]
- Baibekov, E.I. Decay of Rabi Oscillations Induced by Magnetic Dipole Interactions in Dilute Paramagnetic Solids. JETP Lett. 2011, 93, 292–297. [Google Scholar] [CrossRef]
- Murzakhanov, F.; Sadovnikova, M.; Mamin, G.; Sannikov, K.; Shakirov, A.; von Bardeleben, H.J.; Mokhov, E.; Nagalyuk, S. Room Temperature Coherence Properties and 14N Nuclear Spin Readout of NV Centers in 4H–SiC. Appl. Phys. Lett. 2024, 124, 034001. [Google Scholar] [CrossRef]
- Kaupp, M.; Bühl, M.; Malkin, V.G. Introduction: The Quantum Chemical Calculation of NMR and EPR Parameters. In Calculation of NMR and EPR Parameters; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004; pp. 1–5. [Google Scholar] [CrossRef]
- Felton, S.; Edmonds, A.M.; Newton, M.E.; Martineau, P.M.; Fisher, D.; Twitchen, D.J.; Baker, J.M. Hyperfine Interaction in the Ground State of the Negatively Charged Nitrogen Vacancy Center in Diamond. Phys. Rev. B 2009, 79, 075203. [Google Scholar] [CrossRef]
- Takou, E.; Barnes, E.; Economou, S.E. Precise Control of Entanglement in Multinuclear Spin Registers Coupled to Defects. Phys. Rev. X 2023, 13, 011004. [Google Scholar] [CrossRef]
- Xiong, Y.; Bourgois, C.; Sheremetyeva, N.; Chen, W.; Dahliah, D.; Song, H.; Zheng, J.; Griffin, S.M.; Sipahigil, A.; Hautier, G. High-Throughput Identification of Spin-Photon Interfaces in Silicon. Sci. Adv. 2023, 9, eadh8617. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, G.D.; Burkard, G.; Klimov, P.V.; Awschalom, D.D. A Quantum Memory Intrinsic to Single Nitrogen–Vacancy Centres in Diamond. Nature Phys. 2011, 7, 789–793. [Google Scholar] [CrossRef]
Vacancy Type | g|| | g⊥ | D (MHz) | E (MHz) | EPR Line-Width (MHz) |
---|---|---|---|---|---|
2.0065 | 2.004 | 1300 | 0 | 5 | |
2.0086 | 2.006 | 3600 | 50 | 37 |
Vacancy Type | T1 (ms) | T2 (µs) | (µs) | Spin-Diffusion | ESEEM Modulation |
---|---|---|---|---|---|
500 | 50 | 2.2 | No | No | |
3.52 | 15 | 5.5 | Yes | Yes |
Vacancy Type | T1 (μs) | T2 (µs) | Spin Polarization | ENDOR Effect |
---|---|---|---|---|
100 | 25 | Yes | Yes | |
20 | 4 | No | No |
Vacancy Type | Aiso (MHz) | Adip-dip (MHz) | CQ (MHz) | η | Line-Width (kHz) |
---|---|---|---|---|---|
−1.1 | 0.01 | 2.53 | 0 | 4.5 | |
59.3 | 13.7 | 2.11 | 0.007 | 270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latypova, L.; Murzakhanov, F.; Mamin, G.; Sadovnikova, M.; von Bardeleben, H.J.; Gafurov, M. Nitrogen-Related High-Spin Vacancy Defects in Bulk (SiC) and 2D (hBN) Crystals: Comparative Magnetic Resonance (EPR and ENDOR) Study. Quantum Rep. 2024, 6, 263-277. https://doi.org/10.3390/quantum6020019
Latypova L, Murzakhanov F, Mamin G, Sadovnikova M, von Bardeleben HJ, Gafurov M. Nitrogen-Related High-Spin Vacancy Defects in Bulk (SiC) and 2D (hBN) Crystals: Comparative Magnetic Resonance (EPR and ENDOR) Study. Quantum Reports. 2024; 6(2):263-277. https://doi.org/10.3390/quantum6020019
Chicago/Turabian StyleLatypova, Larisa, Fadis Murzakhanov, George Mamin, Margarita Sadovnikova, Hans Jurgen von Bardeleben, and Marat Gafurov. 2024. "Nitrogen-Related High-Spin Vacancy Defects in Bulk (SiC) and 2D (hBN) Crystals: Comparative Magnetic Resonance (EPR and ENDOR) Study" Quantum Reports 6, no. 2: 263-277. https://doi.org/10.3390/quantum6020019
APA StyleLatypova, L., Murzakhanov, F., Mamin, G., Sadovnikova, M., von Bardeleben, H. J., & Gafurov, M. (2024). Nitrogen-Related High-Spin Vacancy Defects in Bulk (SiC) and 2D (hBN) Crystals: Comparative Magnetic Resonance (EPR and ENDOR) Study. Quantum Reports, 6(2), 263-277. https://doi.org/10.3390/quantum6020019