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Abstract: A strategy is developed for writing the time-dependent Schrödinger Equation (TDSE),
and more generally the Dyson Series, as a convolution equation using recursive Fourier transforms,
thereby decoupling the second-order integral from the first without using the time ordering operator.
The energy distribution is calculated for a number of standard perturbation theory examples at first-
and second-order. Possible applications include characterization of photonic spectra for bosonic
sampling and four-wave mixing in quantum computation and Bardeen tunneling amplitude in
quantum mechanics.
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1. Introduction

The Time-Dependent Schrödinger Equation (TDSE), although unsolvable in exact
terms, is often approached through various perturbative methodologies, such as those
pioneered by Rayleigh–Schrödinger [1], Dirac [2], Dyson [3], Lippmann–Schwinger [4],
WKB [5], Feynman [6–8], and others [9]. Under a weak time-dependent perturbation, the
TDSE solution can be written in terms of the known eigenvectors of the time independent
Schrödinger Equation (TISE), which results in a Dyson series—an infinite recursion of
coupled time integrals. In field theory, it is standard to use the time-ordering operator for
decoupling the integrals.

Using the observation that these coupled integrals can be written as repeated Fourier
transforms and their inverse, along with appropriate phase factors, a method is developed
for decoupling the integrals at second order.

Many methods exist to integrate the Schrödinger Equation [5,10–14]. In particular,
some methods use the Fourier transform explicitly, but usually as a trick to make calcula-
tions easier, while in others such as split-step, multi-slice, or Fourier space filtration [15–17],
the Fourier transform plays a more fundamental role relating to the Fourier dual spaces.

In this study, similar to split-step, we break the Hamiltonian into kinetic and potential
energy portions and then employ a Recursive Fourier Transform (RFT) technique in a novel
way to decouple the second-order integral from the first, bypassing the need to invoke
time ordering. Thus, we can represent TDSE, plausibly to any order, as a convolution
equation by invoking the Convolution Theorem. This presentation aims to offer an efficient
second-order analytical solution to the TDSE, while also emphasizing the method’s utility
as a first principle rather than a calculational trick [18].

Using this technique to efficiently and precisely calculate the spectral response of
a time-limited perturbation has relevance for recent advances in single-photon gener-
ation [19–22], quantum computing [23–32], optical traps [33–35], quantum cryptogra-
phy [36], quantum tunneling and microscopy [37–41], quantum information and entangle-
ment [42–44], high harmonic generation [45–47], ultra fast light pulse generation [48–50],
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and measurements of gravity [51,52]. Applications to open systems may be possible by ex-
tending this method to, for example, the Lindblad master Equation [53]. This method may
also hold pedagogical promise in physics education by expanding the range of calculable
use cases for the TDSE [54,55].

The procedure will be applied here to basic examples, such as Gaussian potentials,
but it is quite general to any potential whose Fourier transform exists. One may also
find useful application in studying quantum Zeno dynamics, for instance in suppress-
ing second-order photon exchange relative to first order for the purpose of generating
entanglement [56].

The procedure may also be useful in quantum error correction techniques by charac-
terizing spectral properties of noise sources leading to the decoherence of qubits.

A detailed breakdown of the paper is as follows: first-order RFT technique introduc-
tion to familiar use cases (Section 2.1), a new second-order RFT decoupling technique
(Section 2.2), and experimental and theoretical applications (Section 3). Appendices with
supplemental sections on basic definitions and concepts (Appendices A and B) , mathemat-
ical property examination (Appendix C), numerical accuracy of the method (Appendix D),
and interpretation of the results (Appendix E) are also included.

2. Methods

The TDSE will now be evaluated to first and second order using the recursive Fourier
transform (RFT) method. We use as a starting point the standard formulation of TDSE,
for instance as in [57].

The matrix element for the transition between the initial state |ωi⟩ and the final state
|ω f ⟩ is

⟨ω f |ψ(T)⟩(1) = ∑
i

(
⟨ω f | (1 −

i
h̄

∫ T

0
dt1V̂I(t1)

+ (−i/h̄)2
∫ T

0
dt1

∫ t1

0
dt2V̂I(t1)V̂I(t2) + . . .) |ωi⟩

)
ci(0),

(1)

where the potential V̂I is written in the interaction picture. The potential has both an
operator component and a continuous time dependence. We will focus our discussion on
the latter.

2.1. Formulating the First-Order Time Dependent Schrödinger Equation through Recursive Fourier
Transforms (RFT)

The first-order term in Equation (1) has the well-known approximation [58]

⟨ω f |ψ(T)⟩(1) ∝
1
ih̄ ∑

i

∫ T

0
dt1 ⟨ω f |V̂|ωi⟩V(t1)e

i(ω f −ωi)t1 ci(0)

∼ ∑
i

Vf ici(0)Ṽ(ω f − ωi)
(2)

where the symbol ∼ indicates the Fourier transform, ci(0) is the amplitude of state |ωi⟩
at t = 0, and Vf i = ⟨ω f |V̂|ωi⟩ is the matrix element of the potential that connects the
initial and final states and will be insignificant to the current discussion. In the second line,
a standard approximation was made by allowing the time interval to become infinite in
both directions, “asymptotic time”, so that Equation (2) becomes the Fourier transform of
the potential. This relationship to the Fourier transform becomes further intriguing when
we write Equation (2) in a suggestive way,

⟨ω f |ψ(T)⟩(1) =
1
ih̄

∫ T

0
dt1eiω f t1 V(t1)∑

i
e−iωit1 ⟨ω f |V̂|ωi⟩ ci(0). (3)
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Clearly this expression involves a transformation (though not formally a Fourier-type
transform) from a frequency representation to a time representation, and a subsequent
transformation back to a frequency representation.

Based on this intuition, we modify Equation (2) to not assume asymptotic time by
inserting an indicator function (or mask) that is non-zero only within the specified time
range, 0 → T,

⟨ω f |ψ(T)⟩(1) =
1
ih̄ ∑

i
Vf i ci(0)

∫ ∞

−∞
dt1eiω f t1 rect

(
t1

T
− 1

2

)
V(t1)e−iωit1 . (4)

Everything on the right-hand side is written in the time domain over parameter t1,
but by writing each factor as the inverse Fourier transforms of their Fourier transforms,

rect
(

t1

T
− 1

2

)
= F−1

ω→t1

{
T exp (iωT/2)sinc(ωT/2)

}
V(t1) = F−1

ω→t1

{
Ṽ(ω)

}
e−iωit1 = F−1

ω→t1

{
δ(ω − ωi)

}
,

(5)

we can write the integral over t1 as follows:

F
t1→ω

{
F−1
ω→t1

{
T exp (iωT/2)sinc(ωT/2)

}
F−1
ω→t1

{
Ṽ(ω)

}
F−1
ω→t1

{
δ(ω − ωi)

}}∣∣∣∣∣
ω=ω f

, (6)

where sinc(x) ≡ sin(x)/x, and the symbol F
t1→ω

is an obvious notation that makes explicit

that the transform is converting from an expression in t1 to an expression in ω.
Note that the outer operation in Equation (6) is not technically a Fourier transform

to ω but rather a projection onto a single exp (iω f t1) basis state. To accomplish this, we
computed a Fourier transform to switch to a continuous energy basis and then evaluated
the result at a discrete energy ω = ω f . Conceptually, this is important because ω is a
dummy convolution variable that is replaced by the measurable energy ω f .

By applying the convolution theorem to Equation (6) and inserting into Equation (4),
we obtain an expression for the first-order transition amplitude,

⟨ω f |ψ(T)⟩(1) =
T

2πih̄ ∑
i

Vf i

(
eiωT/2sinc(ωT/2) ∗ Ṽ(ω) ∗ δ(ω − ωi)

)∣∣∣
ω=ω f

ci(0). (7)

This is the first main result, the first order spectral response to the time-dependant perturba-
tion V. Comparing with Equation (2), we observe variations in the frequency domain with
a “spatial frequency” 4π/T, where T is the duration of the measurement (see Figure 1b).

(a) (b)

Figure 1. In the first order TDSE in Equation (7), a Gaussian potential’s tails are truncated by
the measurement. (a) The integration windows for the TDSE are marked as vertical lines. The
tails of the Gaussian are excluded, leading to ringing in the frequency domain (not shown). (b) A
Gaussian potential in ω-space convolved with sinc(ωT/2) in Equation (10) shows the variations in
the frequency domain with “spatial frequency” 4π/T.



Quantum Rep. 2024, 6 326

Two standard cases will be considered to illustrate the validity of the result above.

2.1.1. Example: Gaussian-Kicked Harmonic Oscillator

A simple system to consider is the harmonic oscillator “kicked” by a small Gaussian pulse,

V(t) ∝ e−
t2

2τ2 , (8)

where τ is the characteristic time of the Gaussian. For instance, this can represent a cold
atom in an optical trap [33,34].

To find the transition amplitude from the i to the f state using Equation (2), the asymp-
totic time approximation results in the expression

c(1)(t → ∞) ∝
τ√
Ω

e−ω2τ2/2, (9)

where Ω is a normalization constant owing to the fixed natural frequency of the oscillator,
and ω parameterizes the frequency response of the Gaussian perturbation [58].

Using instead Equation (7), the same transition can be written as

⟨ω f |ψ(T)⟩(1) ≈
1
ih̄

Vf i ci(0)
∫ ∞

−∞
dt1eiω f t1 rect

(
t1

T
− 1

2

)
e−

t21
2τ2 e−iωit1

≈ τT
2πih̄

Vf i

(
eiωT/2sinc(ωT/2) ∗ e−ω2τ2/2 ∗ δ(ω − ωi)

)∣∣∣
ω=ω f

,
(10)

where T is the measurement interval, and τ is the characteristic width of the Gaussian.
Equation (10) is valid under the usual conditions necessary for a Taylor series (weak
interaction), but unlike Equation (9), it does not make the asymptotic time approximation.

The effect of convolution is to add a small ripple to the Gaussian (see Figure 1b). This
ripple was ignored in the standard approach (Equation (9)), when the limits of integration
are arbitrarily set to infinity.

2.1.2. Example: Fermi’s Golden Rule

It will next be verified that Equation (7) reduces to the well-known Fermi Golden Rule.
A typical example involves calculating the transition probability for an electron around the
stationary atom absorbing a photon and transitioning from a bound state to a continuum
of states. The Hamiltonian is

Ĥ = Ĥ0 for t ≤ 0

Ĥ = Ĥ0 + V̂(t) for t > 0

V̂(t) = 2V̂0cos(ωdt)

(11)

where V̂(t) is the time-dependent perturbation, and Ĥ0 and V̂0 are independent of time.
The standard integral in Equation (2) results in the following i → f transition amplitude:

⟨ω f |ψ(T)⟩(1) =
1
ih̄

∫ T

0
dt1ei(ω f −ωi)t1(eiωdt1 + e−iωdt1) ⟨ω f |V̂|ωi⟩

=
Vf i

ih̄

(
ei(ω f i+ωd)T − 1

i(ω f i + ωd)
+

ei(ω f i−ωd)T − 1
i(ω f i − ωd)

)

≈
Vf i

ih̄
ei

(ω f i−ωd)
2 T

(
sin((ω f i − ωd)T/2)

(ω f i − ωd)

)
,

(12)

where ω f i ≡ ω f − ωi. We dropped the first term, as is customary, in favor of the second
term, which dominates around the resonant frequency ω f i ≈ ωd [59].
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Equation (7) obtains the same result. Computing

F{V(t)} ≈ V0

2
(δ(ω − ωd) + δ(ω + ωd)),

and dropping the + term for the same reason as above, gives

⟨ω f |ψ(T)⟩(1) =
1

2πih̄
Vf i

(
TeiωT/2sinc(ωT/2) ∗ δ(ω − ωd) ∗ δ(ω − ωi)

)∣∣∣
ω=ω f

=
1

2πih̄
Vf i Tei(ω f −ωi−ωd)T/2sinc((ω f − ωi − ωd)T/2)

(13)

which is the standard result (up to constant factors).

2.2. Decoupling the Second-Order TDSE through RFT

Having examined the familiar first-order result using recursive Fourier transform
methods, we now derive our second main result: an expression for the second-order term
in the TDSE expansion.

The integrals for the second-order amplitudes are more complicated because the
upper limit of integration for the nested integral is the integration parameter for the outer
integral t1. Starting from Equation (1), by inserting a discrete basis of equally spaced states,
the second-order transition amplitude is

⟨ω f |ψ(T)⟩(2) =
1

(ih̄)2 ∑
ki

∫ T

0
dt1

∫ t1

0
dt2 ⟨ω f | V̂I(t1) |ωk⟩ ⟨ωk| V̂I(t2) |ωi⟩ ci(0)

=
1

(ih̄)2

∫ T

0
dt1

{
eiω f t1 V(t1)∑

k
e−iωkt1 Vf k∫ t1

0
dt2eiωkt2 V(t2)∑

i
e−iωit2 Vki ci(0)

} (14)

The integrals are therefore coupled, and the method in Section 2.1 must be modified.
This is a Dyson series and was decoupled by Dyson by introducing the time-ordering
operator. This is used widely in quantum field theory [3].

Here, the integrals will be decoupled in a new way in the following four steps. We
assume that the spectra of the energy eigenstates ωk are discrete. For simplicity, we consider
only the case in which they are equally spaced, that is, a simple harmonic oscillator. Then,
we can write

ωk = kω(0), (15)

for integers k.

Step 1. Apply the convolution theorem to the nested integral

The limits of integration of the nested integral are extended to infinity, using a rectan-
gular mask, as in Equation (4),

⟨ω f |ψ(T)⟩(2) =
1

(ih̄)2

∫ T

0
dt1eiω f t1 V(t1)∑

k
e−iωkt1 Vf k{ ∫ ∞

−∞
dt2eiωkt2 rect

(
t2

t1
− 1

2

)
V(t2)∑

i
e−iωit2 Vki ci(0)

} (16)

Because we truncated the signal using a rect(t) mask, this step was exact. The integrals
are still coupled via t1, but the coupling now parameterizes the width of the mask rather
than the integration domain.
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By following the steps in Equation (4), we can write each factor in the integrand of the
second line of Equation (16) in the frequency domain,

⟨ω f |ψ(T)⟩(2) =
1

2π(ih̄)2

∫ T

0
dt1eiω f t1 V(t1)∑

ki
e−iωkt1 Vf kVkici(0)

F
t2→ωk

{
F−1
ω→t2

{t1 exp (iωt1/2)sinc(ωt1/2) · F−1
ω→t2

{Ṽ(ω)}F−1
ω→t2

{δ(ω − ωi)}
}

,
(17)

and apply the convolution theorem,

⟨ω f |ψ(T)⟩(2) =
1

2π(ih̄)2

∫ T

0
dt1eiω f t1 V(t1)∑

ki
e−iωkt1 Vf kVkici(0)(

t1ei(ω−ωi)t1/2sinc((ω − ωi)t1/2) ∗ Ṽ(ω)
)∣∣∣

ω=ωk

(18)

In evaluating the Fourier transforms, we have transformed bases from the original
parameter of integration, t2, to ω and then to ωk, an intermediate basis of energy states. Note
that the expression inside the parenthesis on the last line of Equation (18) is a continuous
distribution in a dummy parameter ω, evaluated at a specific value ω = ωk after performing
the convolution.

The nested integral is now a convolution in ω-space, but the sinc function’s width
depends on t1, which is coupled to the outer integral. How do we compute a convolution
of a signal whose shape is changing as t1 is integrated over?

Step 2. Discretize the integral over t1 as a Riemann sum and move it inside the sum over k
and i

It is easier to handle Equation (18) by writing the integral over t1 as a Riemann sum of
step size ∆T, and rearranging the sums (switching the order of the sum and the integral in
an infinite series can have unpredictable effects on the convergence of the series in general,
but for our purposes we only examine the second-order expansion; this poses the same
limitation on validity as other variational approaches such as Feynman diagrams):

⟨ω f |ψ(T)⟩(2) =
1

2π(ih̄)2 ∑
ki

Vf kVkici(0)
n f

∑
n=ni

∆T eiω f n∆TV(n∆T)e−iωkn∆T

(
n∆T exp (i(ω − ωi)n∆T/2)sinc((ω − ωi)n∆T/2) ∗ Ṽ(ω)

)∣∣∣
ω=ωk

(19)

Because the second line is a distribution in the frequency domain evaluated at a specific
point, it is simply a c-number for each term in the Riemann sum.

Step 3. Allow the variation over time to vary the width of the distribution sinc(ωn∆T)

Here is the central insight to decouple the integrals. For each step in the Riemann sum
over n (coupling variable), we identify the expression in the second row of Equation (19),
in the continuous limit n∆T → t1, as having the form of an “impulse response” (in the
time domain),

hki[t1] ≡
(

exp (i(ω − ωi)t1/2)
sin((ω − ωi)t1/2)

(ω − ωi)/2
∗ Ṽ(ω)

)∣∣∣
ω=ωk

(20)

Equation (20) is the impulse response of the system to a perturbation of duration t1,
the nested integration variable. The intermediate frequency ωk is defined in Equation (15).

Step 4. Apply the convolution theorem to the outer integral

Now, we can change the Riemann sum back to an integral over t1. Crucially, hki,
which is an explicit distribution in ω-space, appears inside an integral over time t1. We can
therefore interpret it as a function of time rather than frequency. We can now repeat the
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earlier technique of extending the integration domain in the first-order to ±∞ and inserting
a rectangular function of width T,

⟨ω f |ψ(T)⟩(2) =
1

2π(ih̄)2 ∑
ki

Vf kVkici(0)
∫ ∞

−∞
dt1eiω f t1 rect

(
t1

T
− 1

2

)
V(t1)e−iωkt1 hki[t1]. (21)

The effect of the outer integral over t1 on the nested integral is to vary the width t1
of the impulse response across the duration of the measurement window from 0 → T,
and sample it at ωk to generate hki[t1] (see Figure 2).

Figure 2. The width of the sinc function in the impulse response depends on t1. As t1 increases
from top to bottom in the figures, we take samples at ω = ωk (defined in Equation (15), shown
as a diamond on vertical line in the figure; here k = −2). The sample values trace out another
sinc function.

Because of Step 3, everything inside the t1 integral in Equation (21) can be treated as a
distribution in t1, and the convolution theorem can be used again. The t1 integral becomes
a Fourier transform by explicitly writing each factor in the ω-domain,

F
t1→ω f

{
F−1
ω→t1

{
TeiωT/2sinc(ωT/2)

}
· F−1

ω→t1

{
Ṽ(ω)

}
F−1
ω→t1

{
δ(ω − ωk)

}
· F−1

ω→t1

{
H̃ki(ω)

}}
, (22)

where H̃ki(ω) ≡ F
t1→ω

{hki[t1]} is the Fourier transform of the impulse response, also called

the amplitude transfer function (see Figure 3).
The final ω-domain expression for second-order transition amplitude from i → f is

⟨ω f |ψ(T)⟩(2) = ∑
ki

dki

{
Teiω f T/2sinc

(
ω f T

2

)
∗ Ṽ(ω f ) ∗ δ(ω f − ωk) ∗ H̃ki(ω f )

}
(23)

where

H̃ki(ω) = F
t1→ω

{(
exp (i(ω′ − ωi)t1/2)

sin((ω′ − ωi)t1/2)
(ω′ − ωi)/2

∗ Ṽ(ω′)
)∣∣∣

ω′=ωk

}
(24)

For notational simplicity, we have defined dki ≡ ci(0)Vf kVki/(2πih̄)2.



Quantum Rep. 2024, 6 330

Figure 3. We interpret Equation (20) as a function of t1 instead of ω. (Left) Nested sinc distribution
(second line in Equation (18)), varied in width over t1, while repeatedly sampled at ωk = −4ω(0)
(vertical line with diamond marking the sample value). As the width of the sinc decreases, its height
grows linearly with t1, so the height of the sample oscillations is constant. (Middle) The samples
(hki[t1]) oscillate as t1 is varied. (Right) The Fourier transform H̃ki(ω

′) = F{hki[t1]} is a series of
spikes representing second-order impulses. These δ-functions are convolved in Equation (23) to place
a copy of the outer sinc at each impulse. Note that for illustrative purposes the potential was ignored,
i.e., chosen such that Ṽ = δ(ω).

This is the second main result, expressing the second-order contribution to the
transition amplitude owing to an arbitrary time-limited perturbation of a system with
evenly spaced energy eigenkets |ωk⟩. A comparison between second order and first order
(Equation (7)) distributions is given in Figure 4.

A detailed analysis of Equations (23) and (24) has been placed in Appendix C.

Figure 4. Comparison of first and second-order transition amplitude, relative to initial state ωi,
calculated with the RFT method introduced here. The second-order calculation computes paths
through intermediate energies at ±20ω(0). For the second-order calculation, the central peak is
reduced, the wings are amplified, and the minima are increased. Only the range ±10ω(0) is shown,
but the contributions from terms outside of this range have a significant effect on the accuracy of the
result. Not drawn to scale: the second-order contribution is in reality reduced by a factor of h̄ relative
to first-order.
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2.2.1. Example: Second-Order Harmonic Perturbation Golden Rule

To illustrate the results of Section 2.2, we compare the recursive Fourier transform
method with the standard second-order approach [60,61].

Consider the ramped up oscillating potential,

V(t) = eϵte−iωdt, (25)

where ϵ is a small positive constant which ensures ramp up of the potential from t = −∞,
and ωd is the driving frequency of the potential. This can model, for instance, light
interacting with an atom [57].

Via the traditional application of the TDSE at second-order, we integrate the potential
twice (Equation (1)) to obtain

⟨ω f |ψ(T)⟩(2) =
(

1
ih̄

)2 ei(ω f −ωi−2ωd)Te2ϵT

ω f − ωi − 2ωd − 2iϵ ∑
k

Vf kVki

ωk − ωi − ωd − iϵ
. (26)

This can be interpreted as an amplitude for a particular transition through an interme-
diate state k, summed over all such possible paths (see [60]). Taking the time-derivative of
the squared amplitude in the small ϵ limit results in an expression for the transition rate,

lim
ϵ→0

d
dT

∣∣∣ ⟨ω f |ψ(T)⟩(2)
∣∣∣2 =

(
1
ih̄

)2∣∣∣∑
k

Vf kVki

ωk − ωi − ωd − iϵ

∣∣∣2δ(ω f − ωi − 2ωd) (27)

where the δ-function comes from the small ϵ limit of

lim
ϵ→0

2ϵ

(ω f − ωi − 2ωd)2 + ϵ2 = δ(ω f − ωi − 2ωd). (28)

This is the second-order version of Fermi’s Golden Rule.
A similar expression can be achieved using recursive Fourier transforms. Starting

with Equations (23) and (24), the second order transition amplitude is

⟨ω f |ψ(T)⟩(2) =
(

1
ih̄

)2

∑
k

Vf kVkite
iω f t/2sinc(ω f t/2) ∗ Ṽ(ω f ) ∗ δ(ω f − ωk) ∗ H̃ki(ω f ), (29)

where

H̃ki(ω f ) = F
t1→ω f

{ ei(ω′−ωi)
t1
2 sin((ω′ − ωi)

t1
2 )

(ω′ − ωi)/2
∗ Ṽ(ω′)

∣∣∣
ω′→ωk

}
. (30)

In Equation (29), the convolution is over ω f , while in Equation (30), the convolution is
over ω′. For ϵ > 0, the Fourier transform of the potential (Equation (25)) is

V̂(ω′) = F
t→ω′

{eϵ|t|e−iωdt}

=
2ϵ

(ω′ − ωd)2 + ϵ2 ,
(31)

which, in the limit ϵ → 0, becomes Ṽ(ω′) = δ(ω′ − ωd) (see Equation (28)). Then, the
transfer function in Equations (A1) and (A3) becomes

H̃ki(ω f ) ∝
2πi

ωk − ωi − ωd

(
δ(ω f + (ωk − ωi − ωd))− δ(ω f − ωd)

)
. (32)

This creates a series of descending harmonic spikes as in Figure A4, but in this case
centered on ωd. This is precisely the content of the summation terms in Equation (26),
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but the new calculation exposes the hidden structure in the harmonics, as described in
Appendix C.

Inserting Equations (31) and (32) into Equation (29) obtains

⟨ω f |ψ(T)⟩(2) =
(

1
ih̄

)2

∑
k

Vf kVkite
iω f t/2sinc(ω f t/2) ∗ δ(ω f − ωd) ∗ δ(ω f − ωk)∗

2πi
ωk − ωi − ωd

(
δ(ω f + (ωk − ωi − ωd)− δ(ω f − ωd))

)
=

(
1
ih̄

)2

∑
k

2πit Vf kVki

ωk − ωi − ωd

(
ei(ω f −ωi−2ωd)t/2sinc((ω f − ωi − 2ωd)t/2)

− ei(ω f −ωk−2ωd)t/2sinc((ω f − ωk − 2ωd)t/2)
)

(33)

In the limit of large t, the sinc function and its pre-factor approach a delta function,
δ(ω f − ωi − 2ωd). In the limit of small ϵ, the factor exp(2ϵt) → 1.

The time dependence of Equation (33) is the same as in Equation (27), only made
more explicit by expressing the result in terms of frequency rather than in terms of energy.
The time derivative (of the amplitude, in this case) is constant, as in Equation (27).

Thus, the new method given in Equation (29) and the traditional method given in
Equation (27) give similar results for the measurable transition probability under the
given conditions.

3. Discussion

The recursive Fourier transform method for decoupling the Dyson series has applica-
tion in both experiment and theory. A few possibilities are discussed.

3.1. Bosonic Sampling and Quantum Computation

Bosonic sampling [23] with indistinguishable photons represents a computational
challenge that can only be tackled by quantum computers and thus would demonstrate
so-called quantum supremacy.

Tamma and Laibacher explain that “for a given interferometric network, the interfer-
ence of all the possible multi-photon detection amplitudes. . . depends only on the pairwise
overlap of the spectral distributions of the single photons” [62]. They emphasize extract-
ing quantum information from the “spectral correlation landscapes” of photons [24]. So
characterizing the frequency spectrum of a single photon is an essential task.

Various physical properties are related to the spectra of the photon. Further elaborating,
Tamma and Laibacher assert that their results reveal the “ability to zoom into the structure
of the frequency correlations to directly probe the spectral properties of the full N-photon
input state. . . ” [24], where “single-photon states”

|ψ⟩ :=
∫ ∞

0
dω c(ω)eiω∆t0 â†(ω) |0⟩ (34)

are characterized by a spectral distribution c(ω) [24].
The indistinguishability of photon pairs, time delays between photons, generation of

ultra short photons, and probability of detection in a multi photon experiment can all be
related to the spectral distribution.

The recursive Fourier transform approach we explored in this study allows us to
calculate the spectral distributions c(ω) of photons with greater precision and efficiency,
potentially leading to improvements in the above areas of research.
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3.2. Quantum Field Theory

Dyson decoupled the nested integrals in higher-order TDSE (Equation (1)) by intro-
ducing a time-ordering operator that places all operators in order of increasing time from
right to left. Then, TDSE can be written as a complex exponential,

U f i = 1 − i
∫ f

i
dtVI(t) +

(−i)2

2

∫ f

i
dt1

∫ t1

i
dt2VI(t1)VI(t2) +O(V3

I ) . . .

= 1 − i
∫ f

i
dtVI(t) +

(−i)2

2

∫ f

i
dt1

∫ f

i
dt2T{VI(t1)VI(t2)}+O(V3

I ) . . .

= T
{

exp
[
− i

∫ f

i
dtVI(t)

]} (35)

where VI is expressed in the Interaction Picture of Dirac. From this method, the usual field
theory methods for calculating field correlation functions are typically derived.

In this study, we accomplished decoupling in a novel way, with no appeal to time
ordering. This may be a more efficient method for directly calculating higher-order cor-
relation functions or Feynman amplitudes by using convolution. It also removes the
asymptotic time assumption, because the limited time intervals are computed exactly,
without approximating the integration domain to be infinite.

If the recursive Fourier transform method allows for efficient calculation of higher
order terms, one may be able to relax the constraint for small perturbations and allow for a
broader range of potential strengths, moving out of the regime of weak coupling forces.

3.3. Bardeen Tunneling

Bardeen investigated electron tunneling at a voltage-biased junction between the
conductive components. Following [37], describe the tunneling potential between tip
and ssample of an electron microscope as V(t) ∝ exp (ηt/h̄), and after making several
assumptions (for instance, keep only first-order terms, and small tunneling current), the
solution the the TDSE is

c f (t) = Mi f
e−i(ω f −ωi+iη)t

(ω f − ωi + iη)
,

where Mi f is the matrix element of the Hamiltonian perturbation. The energies ω f and ωi
correspond to the sample and tip of an electron microscope, respectively. Electrons come in
with energy ωi, and in a junction biased at voltage V0, ωi → ωi + eV0.

Next one typically estimates the tunneling current as the time rate of change of the
tunneling probability, in the limit that η → 0.

I(ω f ) = lim
η→0

d
dt
|c f (t)|2

= |Mi f |2
d
dt

e2ηt

(ω f − ωi − eV0)2 + η2)

= 2π|Mi f |2δ(ω f − ωi − eV0),

where we used the identity lim(η → 0)(η/(ω2 + η2)) = δ(ω).
Bardeen’s formulation is valid under certain conditions [38]. This result is useful

because it describes tunneling in terms of time rather than space.
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A related calculation can be executed using Equation (7) and identifying Ṽ = δ(E),
since the potential is constant in time, and h̄ωi = Ei + eV0, since the initial state includes
and offset due to the bias potential.

c f (t) =
ih̄
2

Vi f

(
exp (iωt/2)) sin(ωt/2)

ω
∗ δ(ω − eV0) ∗ δ(ω − ωi)

)∣∣∣
ω=ω f

=
ih̄
2

Vi f

(
exp (i(ω f − ωi − eV0)t/2)) sin((ω f − ωi − eV0)t/2)

ω f − ωi − eV0

) (36)

With increasing time, Equation (7) converges to a δ-function.
In the first case, we find that the tunneling current is non-zero when ω f = ωi + eV0. In

the second case, we find that the transition amplitude is non-zero under the same condition,
which has the same physical meaning.

The recursive Fourier transform approach efficiently determines the probability am-
plitude for each outgoing energy mode. This method could permit a more detailed de-
scription of the energy transitions across the tunneling barrier, including for arbitrarily
short time-scales. For instance, in tunneling across a voltage-biased barrier, the energy
profile Equation (7) correlates with the excess kinetic energy profile of an electron ensemble
post-barrier-crossing. The ensemble’s velocity profile could be measured.

Example: 2nd Order Bardeen Tunneling

Although a second-order expression is not typically attempted with Bardeen’s ap-
proach, the recursive Fourier transform approach to the general TDSE allows us to guess at
a second-order result for Bardeen tunneling.

First, we determine the transfer function for second order Bardeen tunneling. Again
using Ṽ = δ(E) and h̄ωi = Ei + eV0, Equation (24) obtains

H̃ki(ω f ) = F
t1→ω f

{(exp (i(ω′ − eV0/h̄) t1
2 )sin((ω′ − eV0/h̄) t1

2 )

(ω′ − eV0/h̄)
∗ δ(ω′)

)∣∣∣
ω′=ωk

}
= F

t1→ω f

{exp (i(ωk − eV0/h̄) t1
2 )sin((ωk − eV0/h̄) t1

2 )

(ωk − eV0/h̄)

} (37)

Note that ω′ is the convolution parameter. As usual, indices i, f , k correspond to
initial, final, and intermediate energy states, respectively. Performing the Fourier transform
results in

H̃ki(ω f ) =
1

2πi(ωk − eV0/h̄)

(
δ(ω f + (ωk − eV0/h̄))− δ(ω f )

)
.

Following the steps in Appendix C.1, we write

δ(ω f − ωk) ∗ H̃ki(ω f ) =
1

2πi(ωk − eV0/h̄)

(
δ(ω f − eV0/h̄)− δ(ω f − ωk)

)
so using Equation (23), the 2nd order Bardeen tunneling amplitude is

⟨ω f |ψ(T)⟩(2) = 2πiTV̂f kV̂ki ∑
k

1

(ωk − eV0
h̄ )

eiω f
T
2 sinc

(
ω f

T
2

)

∗
(

δ(ω f −
eV0

h̄
)− δ(ω f − ωk)

)
,

(38)

where V̂ab denotes the matrix elements of the potential operator, and the convolution
variable is ω f .
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Equation (38) incorporates two series of complex sinc functions. The first series is
centered at ω f = eV0/h̄. The distributions in the second series are centered at ω f = ωk,
descending in amplitude away from eV0/h̄. See Figure A4.

This represents the distribution of kinetic energies of tunneled electrons described by
Equation (38). This result is significant as a transient effect for small times only. It illustrates
the usefulness of the RFT method for extending existing methods of calculation.

3.4. Joint Spectral Amplitude Function

Recent experiments in quantum optics [63–68] rely on the generation of entangled
photons characterized by a joint spectral amplitude function (JSA), F(ωs, ωi), such that

|Ψ(ωs, ωi)⟩ ∝
∫

dωs

∫
dωiF(ωs, ωi) |ωs⟩ |ωi⟩

To be concrete, consider 4-wave mixing with signal, idler, and pump photons given by

Es(i)(t, z) =
∫

dωs(i)a
+
s(i)e

−ik(ωs(i))z+iωs(i)t

Ep(t, z) = e−iγPz
∫

dωpe−
(ωp−ω0)

2

2σ2 eik(ωp)z−iωpt

In this process, two pump photons at frequency ω0 annihilate to generate two outgoing
photons (signal and idler) at frequencies ω0 ± ∆ for some frequency detuning value ∆.
This is a statement of energy conservation. The photons are assumed to be in a non-
linear, dispersive medium with wave vector k(ω) (the non-linearity is contained in the
expression with γ, but is not important for this derivation). At first order, the Schrödinger
equation gives

|Ψ(ωs, ωi)⟩ ∝
∫ T

0
dt
∫ 0

−L
dzEsEiEpEp |0⟩

∝
∫

dωsdωi

( ∫ T

0
dt
∫ 0

−L
dze−i(ks(ωs)z−ωst)e−i(ki(ωi)z−ωit)EpEp

)
|ωs⟩ |ωi⟩

∝
∫

dωsdωiF(ωs, ωi) |ωs⟩ |ωi⟩

where F(ωs, ωi) is the JSA.
The wave vector mismatch (due to dispersion) is calculated from the Taylor expansion

of the wave vectors,

∆k = 2k(ωp)− k(ωs)− k(ωi) = (ωp − ω0)
2k′′ − ∆k(ωs, ωi)

where

∆k(ωs, ωi) ≡
k′′

4
(ωs − ωi)

2. (39)

The JSA can be written as

F(ωs, ωi) =
∫ 0

−L
dze−i(k(ωs)+k(ωi))z

∫ T

0
dtei(ωs+ωi)t

(
e−iγPz

∫
dωpe−

(ωp−ω0)
2

2σ2 eik(ωp)z−iωpt
)2

=
∫ 0

−L
dze−i(∆k(ωs ,ωi)+2γP)z

∫ T

0
dtei(ωs+ωi)t

( ∫
dωpe−

(ωp−ω0)
2

2σ2 (1−2ik′′σ2z)e−iωpt
)2

,

(40)
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For Gaussian pump photons, the integral can be evaluated in closed form to obtain an
expression (to second order) for the JSA [63],

F(ωs, ωi) =
∫ 0

−L
dz

1√
1 − ik′′

2 σ2
pz

e−i(∆k+2γP)ze
− (ωs+ωi−2ω0)

2

4σ2
p

≈ ei(∆k+2γP) L
2 sinc((∆k + 2γP)

L
2
)e

− (ωs+ωi−2ω0)
2

4σ2
p ,

(41)

where in the last step, the radical is set to unity using the fiber approximation |k′′| << 1
σ2

p L
.

Alternately, this expression can be derived using the recursive Fourier transform
process developed in this paper. Rewrite the integrals in Equation (40) as

F(ωs, ωi) =
∫ ∞

−∞
dz rect(

z
L0

+
1
2
)e−i∆kz

∫ ∞

−∞
dt rect(

t
T0

− 1
2
)ei(ωs+ωi)t

(
e−iω0te−iγPz

∫
dΩe−

Ω2

2σ2 ei 1
2 Ω2k′′z−iΩt

)2

where Ω ≡ ωp − ω0.
Using the methods of Section 2, we write

F(ωs, ωi) = L0T0

∫
dze−i∆kzF−1

k→z
{eik L0

2 sinc(k
L0

2
)}F−1

k→z
{δ(k + 2γP)}∫

dtei(ωs+ωi)tF−1
ω→t

{eiω T0
2 sinc(ω

T0

2
)}F−1

ω→t
{δ(ω − 2ω0)}(∫

dΩ e−iΩt exp (− Ω2

2σ2 (1 − ik′′σ2z))
)2

Performing the Fourier transform over z first results in a factor δ(k + Ω2k′′/2), and
using the convolution theorem, we arrive at

F = L0T0

[
eiω T0

2 sinc(ω
T0

2
) ∗ω δ(ω − 2ω0)∗ω

e−
ω2

4σ2

(
eik L0

2 sinc(k
L0

2
) ∗k δ(k + 2γP) ∗k δ(k + ω2k′′)

)
k=∆k(ωs ,ωi)

]
ω=ωs+ωi

(42)

The domain of convolution is specified with a subscript, and the distributions are
evaluated at the given expressions of signal and idler frequencies.

To compare Equation (42) to the standard result, Equation (41), we assume asymptotic
time (T0 → ∞), in which case sinc(ωT0) → δ(ω), so the convolution over ω reduces to the
identity operation, and we assume that the pump photon dispersion, ω2k′′, is negligible.
Under these conditions,

F(ωs, ωi) ≈ L0

(
δ(ω − 2ω0) ∗ω e−

ω2

4σ2

(
ei(∆k+2γP) L0

2 sinc((∆k + 2γP)
L0

2
)

))
ω=ωs+ωi

≈ L0e−
(ωs+ωi−2ω0)

2

4σ2

(
ei(∆k+2γP) L0

2 sinc((∆k + 2γP)
L0

2
)

)
which matches Equation (41).

The newly-derived expression allows for short-time calculations using easily com-
putable routines. In place of a radical in the denominator, the higher order effects of the
pump are incorporated into the convolution operations.
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3.5. Quantum Zeno Dynamics

The quantum Zeno effect would be a potentially fruitful experimental case to verify
the utility of the new method for calculating second order amplitudes. This effect can be
used, for instance, to generate entanglement by suppressing first-order terms relative to
second-order terms in the Schrodinger Equation [56]. Nodurft et al. use Fermi’s Golden
Rule to demonstrate their scheme utilizing a photonic waveguide coupled with a series of
perturbing atoms to eliminate outcomes in which both photons appear at the same output
port. This effectively entangles the photons by making the wave function inseparable. They
write, “this imbalance between single and two photon absorption rates facilitates the Zeno
effect by suppressing terms where both a left and right photon are found, but not when
a single photon is found”. Performing this calculation to higher precision using the RFT
method presented here may provide more control and efficiency in creating entangled
states. It would be interesting to use as a test case for verification that this method (see
Sections 2.1.2 and 2.2.1) does indeed improve upon Fermi’s Golden Rule.

Other relevant potential applications of this calculation applied to the Zeno effect
include error correction in quantum computers [69] and construction of quantum gates [70].

3.6. Solitons and Non-Linear Cases

The method provided here can be directly applied to any dynamical case in which
the potential function has a Fourier transform. Its generality may make it particularly
helpful for nonlinear versions of the Schrodinger equation. As an example, Bayindir et. al.
study q-deformed Rosen–Morse potentials to analyze the time evolution of solitons [71].
They utilize a spectral method to determine the stationary states of the system and the
Runge–Kutta (RK) method to evolve the stationary states in time.

Non-linear terms are hard to handle because they involve convolution in the frequency
domain, due to the convolution theorem. One typically avoids this by iterating them in
the spatial domain, whereas the linear terms are iterated in the frequency domain. In the
method presented here, the convolutions in the frequency domain are taken into account
explicitly, rendering the spatial iteration of the nonlinear terms unnecessary. It seems that
this method could be used as an alternative to RK to compute time evolution, readily
handling linear and nonlinear terms.

It should be noted that the RK method results in a time domain wave function, whereas
the methods here result in a frequency domain wave function. These can be easily compared
using forward or inverse Fourier transforms.

3.7. Master Equations

When considering open quantum systems, the Lindblad equation can be used to
account for dissipative or decoherence effects from the system to the environment. These
effects are accomplished by a nonlinear term added to the Schrodinger equation, requiring
careful treatment. There is still, however, a time integration that must be accomplished,
which is often done using the Runge–Kutta method. The alternate method proposed here
can likely be applied to that integration process, providing some utility in these cases.
A careful analysis of these benefits was not undertaken.

3.8. Other Applications

The method proposed based upon Fourier transforms has a quite general form and
might be used in other scenarios. The TDSE describes the diffraction of the wave function
around a small temporal perturbation. One might consider application in the spatial
domain, rederiving the usual single slit diffraction formula, and then extending this to a
second-order calculation. Furthermore, in the spatial domain, one might apply the RFT
technique to a tunneling barrier, for instance in a scanning tunneling microscope or in the
alpha decay.
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4. Conclusions

In this work, we devised a novel technique that decouples nested integrals in the
Dyson series for the time-dependent Schrödinger Equation (TDSE) using recursive Fourier
transforms (RFT). This provides an approach which is particularly suited for computation
on both classical and quantum computers.

This method shares similarities with existing multi-slice or split-operator techniques,
but it is used to refine accuracy of wavefunction spectra rather than propagate a wavefunc-
tion over time. The RFT approach computes the temporal diffraction of a wavefunction
under a perturbing force of finite duration. It can be used, for instance, in the characteriza-
tion of single photons in cases where indistinguishability is important.

The decoupling of the integrals at second-order is achieved by shifting to the frequency
domain to obtain a nested sinc function, then interpreting the nested sinc as a function of
time while also swapping the order of operators to perform the outer time integral before
the sum over energy. This varies the width of the sinc function in the frequency domain,
which can be sampled at a given frequency to extract an amplitude in the frequency domain.
This allows the TDSE to be expressed as a sum of (non-nested) convolutions. We anticipate
that this procedure can be iterated to higher orders.
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Appendix A. Definitions of the Fourier Transform

The following definitions of the Fourier transform and its inverse are used.

F(ω) =
1√
2π

∫ ∞

−∞
f (t)eiωt dt f (t) =

1√
2π

∫ ∞

−∞
F(ω)e−iωt dω

F(k) =
1√
2π

∫ ∞

−∞
f (x)e−ikx dx f (x) =

1√
2π

∫ ∞

−∞
F(k)eikx dk

Appendix B. Using the Appropriate Dual Domain

In systems linked by Fourier transforms, a proper domain emphasis can sometimes be
overlooked. For example, TDSE coefficients c(t) are written as functions of time to establish
the time dependence of the wavefunction.

However, Equation (7) (Figure 1b) represents a ω-space distribution featuring an ω
convolution. Time does not appear directly in this expression. Instead, T is a constant that
shapes the oscillatory pattern of the distribution at a given moment. By varying T, we must
recompute the convolution at each time step and then sample the distribution at point
ω f to yield a meaningful transition amplitude. This requires distinguishing “integration
parameters” from “coordinates”, in the sense of [18].
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Consider Fermi’s Golden Rule: a bound state ωi transitions to a continuum state ω f un-
der a driving frequency ωd, producing the transition amplitude expressed in Equation (12).
By varying ωd, ωi, or ω f , Figure A1 is useful for identifying the relevant dependencies.

However, Figure A1 can also be interpreted time-wise because the sinc function
depends symmetrically on time and energy. Over time, the sinc function (as a function of
ω f i − ωd) becomes more peaked, and the image in Figure A1 is considered to be a snapshot
of time. Thus, we interpret the amplitude as time-dependent, c(t).

However, this interpretation misreads the proper domain. Amplitude c f i is a frequency
distribution and not a time distribution. The time dependence is implicit; evolving time
means updating the entire distribution, after which we can derive the frequency-dependent
amplitude at that time.

Figure A1. Fermi’s Golden Rule, transition amplitude. There is more than one possible interpretation
for this plot. (Top) For a given driving frequency, we treat the energy jump ω f i as the variable.
The greatest amplitude occurs when ω f i matches the driving frequency, ωd. (Bottom) At a later
time, the resonance curve has changed, so this can serve to predict time evolution despite that it is a
distribution in ω space.

These processes are distinct. The former involves only number reading from the graph,
while the latter requires repeated graphing and sampling. The former is a function, whereas
the latter is a functional.

The same reasoning applies to the usual kicked harmonic oscillator treatment (per-
turbed by a small Gaussian pulse, Section 2.1). The standard methods lead to the coefficient
in Equation (9), which is implicitly defined by the elapsed time T but explicitly a function
of ω. This can help determine the best pulse duration T to match the natural oscillator
frequency ω, but it overshadows the more natural c = c(ω) dependence.

Each t value is a unique experiment leading to a different distribution. In varying t,
Equation (9) becomes a functional by creating a configuration space for each t value.

Appendix C. Detailed Analysis

We will now examine Equations (23) and (24) in more detail.

Appendix C.1. Evaluating the Transfer Function

Evaluating the form of the transfer function H̃ki can be performed first for the case
of a negligible potential, Ṽ(ω) = δ(ω) (infinitely wide in the time domain). Because
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convolution with a δ-function is the identity operation, we can then evaluate hki[t] explicitly
and take its Fourier transform,

H̃ki = F
t1→ω

{
exp (iωkit1/2)

sin(ωkit1/2)
ωki/2

}
=

2πi
ωki

(δ(ω + ωki/2 + ωki/2)− δ(ω − ωki/2 + ωki/2))

=
2πi
ωki

(δ(ω + ωki)− δ(ω)).

(A1)

In other words, the transfer function is composed of a series of discrete impulses
spaced at integer multiples of ω(0) (because ωki = kω(0)). See Figure 3.

Next, H̃ki is convolved with the other factors in Equation (24), resulting in

δ(ω − ωk) ∗ H̃ki =
2πi
ωki

δ(ω − ωk) ∗ (δ(ω + ωki)− δ(ω))

=
2πi
ωki

(δ(ω − ωi)− δ(ω − ωk))

(A2)

As shown in Figures A2 and A3, each term in the sum over k contributes complex
impulses at ωk and ωi.

The special case k = i must be handled separately. Here, the desirable properties of
the sinc function at the origin are required, and Equation (A1) is the Fourier transform of
a constant as follows:

H̃00 = F
{

constant
}
= 2πδ(ω). (A3)

This contributed to a purely real amplitude at the origin, as shown in the middle graph
of Figure A2.

Summing over all H̃ki contributions over the range k = ±25, it can be seen in Figure A4
that for k ̸= 0, H̃ki contributes a real portion at ωk = 0 which is amplified as more frequen-
cies are included (k → ±∞), whereas the real portion remains small and finite at every
other ωk, vanishing when the distribution is normalized (top). Conversely, the imaginary
portions cancel at ωk = 0 but are significant everywhere else, decaying inversely with
respect to |k| (middle).

An analogy can be drawn to the frequency-domain decomposition of sound signals.
In the second-order calculation, the probability amplitude signal was deflected into a series
of higher harmonics. Similarly, an acoustic musical instrument generates sound through
the combination of a pluck (impulse) and resonant cavity that amplifies higher harmonics
(impulse response). This is similar to the relationship between H̃ki in Equation (23) and the
rest of that equation.

Appendix C.2. Stepping Through the Algorithm for Transfer Function

A comparison was made between the direct integration of Equation (1) and the
convolution approach in Equations (23) and (24) using MATLAB. The program begins by
generating a nested impulse response, Equation (20). This has the form sinc ∗ V and width
t1, as shown in Figure 3 (far-left).

This impulse response (in ω) is then varied over time across the integration limits
0 < t1 < T, generating a sequence of sinc graphs of varying widths. The sample value at
the vertical line ωk for each graph was stored as a new array hki[t] (Figure 3, middle). For a
given ωk, these samples oscillate with a frequency profile that is dependent on the physics
of the experiment (such as the properties of the potential and duration of the window
of measurement).
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Figure A2. Contributions to the second-order complex valued “transfer function” H̃ki from the frequen-
cies k = −1, 0, 1 (top to bottom, respectively). The cases k = ±1 contribute a real portion (solid) and
an imaginary portion (dashed) at ωk = ±1. The case k = 0 contributes only a real portion (solid). See
Equations (A1) and (A3).

Figure A3. The frequency-distributions for k = 2, 3 contributions. (Top) The real (solid) and imaginary
(dashed) parts of the complex sinc function in Equation (23), corresponding to the outer integral over
t1 in Equation (18). (2nd/3rd row) The transfer function H̃ki(ω) in Equation (24) captures information
from the nested t2 integral as a series of spikes, δ(ω − 2ω(0)) + δ(ω), (left), δ(ω − 3ω(0)) + δ(ω),
(right). See Equation (A1). (4th row) The real (solid) and imaginary (dashed) parts of the convolution
in Equation (23). (Bottom) The combined result from k = 2 and k = 3.

The Fourier transform of hki[t] is H̃ki(ω) (Figure 3 right panel). It is a series of im-
pulses representing each intermediate contribution to the second-order amplitude (see
Figures A2 and A4). If the perturbation is negligible, we can write Ṽ(ω) = δ(ω). In this
case, H̃ki is composed of δ-function impulses at ωk and ωi. If the potential is strong, other
harmonics appear in this graph (see Figure A5 bottom-right).

Finally, in Equation (23), H̃ki is convolved with a phase-shifted sinc impulse response
so that a copy of the impulse response is placed wherever H̃ki has a spike, as shown in
Figure A3. This is performed for every possible intermediate state ωk, and the amplitude
plots for each are summed. Each code loop over ωk contributes an impulse response
centered at ωk and another centered at ωi (Figure A2).
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After looping over all 2k + 1 intermediate distributions, the impulses centered on
ωi reinforce 2k + 1 times, whereas the second-order signal at each ωk appears only once.
The result is a strong central peak and decaying wings (Figure 4).

Figure A4. H̃ki(ω) for −25 < k < 25. The contribution to H̃ki(ω) at k = 0 is non-zero for every k ̸= 0,
growing without bound, as we include more momenta (k → ∞), see Equation (A3). There is also a
small, constant, real contribution at each ωk, which vanishes when the distribution is normalized
(top). The imaginary portions cancel at ωk = 0 and are built everywhere else, decaying inversely to
|k| (middle), see Equation (A1). The absolute magnitude of H̃ki was a harmonic series of impulses
(bottom). These impulses are convolved with the first-order impulse response, Equation (7).

Appendix C.3. Domain and Resolution of Transfer Function

In the code implementation of Equation (20), the length of hki[t1] is not equal to the
length of the original signal. This is because hki[t1] is generated by scanning t2 over the
variable range 0 < t2 < t1. Thus, the corresponding resolution of its Fourier transform, H̃ki,
is reduced (Figure A5, top left).

To compensate for the band-limited spectrum, H̃ki was padded with copies of itself.
This is necessary for the convolution operation to be well-defined. The time window T was
chosen to be an integer fraction of the duration of the original signal so that the padding
fits evenly (this is necessary to avoid artifacts in the Fourier transform).

This defines a fundamental harmonic frequency associated with the measurement,

ω(1) ≡ total duration of original signal/duration of time integration

=
1
T

,
(A4)

(see the harmonic spacing in Figure A4).
When the Gaussian potential is weak, the tiled instances of hki[t1] line up smoothly,

and H̃ki only contains two spikes, as in Equation (A1) and Figure A2. When the potential
is stronger, hki[t1] does not line up on its endpoints, and spectral artifacts occur at integer
multiples of ω(1).

For reasons that are not fully understood by the author, the interpretation of the
second-order results is clear only when ω(1) = ω(0), which is known as cyclotron res-
onance. This appears to be related to the interpretation of Equations (23) and (24) as a
signal reconstruction problem using sinc-interpolation: this is the only case considered in
this study.
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Figure A5. Bandlimited signal: Because the duration of the time integration of the TDSE is less than
the full signal (5% shown here, top left), hki[t] is smaller than Ṽ by that factor, and the resolution is
decreased (bottom left, the distinct spikes are only resolvable because horizontal scale is expanded).
In the top right, hki[t] was padded with copies of itself to compensate for the limited bandwidth of the
signal. This ensures its Fourier transform has the desired high resolution (bottom right). Shown here
is the k = +2 term of Equation (24). A moderate strength potential was used, resulting in harmonics
at nearby states (see small spikes at k = +1,+3 and other integers).

Appendix C.4. Effect of Time Window Shift on the Form of the Transfer Function

In Figure A4, the imaginary part of H̃ki decays inversely with |k|. The time measure-
ment window was shown to extend from the origin to t, leading to a translational factor of
1
2 in the rect(t) function. In the general case, the measurement window can be translated
r units by shifting the rect(t) function again, rect( t

t −
1
2 − r

t ), leading to an overall phase
shift in the frequency domain, exp (iωk(r/t)). This leads to an oscillating envelope for the
impulses in Figure A4 (envelope not shown). In the MATLAB simulation, a phase shift
of this sort was introduced to compensate for coding artifacts (the base index for the time
window started at 1 instead of 0).

Appendix C.5. Normalizability of the Transfer Function

The appearance of ωki in the denominator of Equation (20) inside summation over both
i and k is the cause for questioning whether this expression can be normalized. However,
owing to the good properties of the sinc function, hki and H̃ki are non-singular.

To observe this, note that when 1/ωki becomes singular, we use Equation (A3) (which
is well defined) instead of Equation (A1).

In general, H̃ki is a series of harmonics of spacing ω(0), as shown in Figure A4. The mid-
dle plot shows imaginary impulses at every non-zero integer ωk that form a harmonic
series, which is well known to not converge, and therefore, it is not clear whether the
final expression Equation (23) is convergent. The upper plot shows an impulse at wi = 0
resulting from each term in the sum over k. The height of this impulse increases without
bounds for k → ±∞. This is ultraviolet divergence.

This can easily be resolved from a practical perspective. Because the height of the
impulse at the origin is proportional to the size of the domain, |kmax|, in the code implemen-
tation, this expression can be normalized by dividing by the maximum value of k, where
only a finite number of terms are included.

From a theoretical perspective regarding the convergence of the second-order, the issue
is whether the sinc functions, each of which are normalizable and arranged in a harmonic
series (which does not converge) are normalizable. This was not addressed in this study.
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Appendix D. Accuracy of Method

To analyze the accuracy of Equations (7), (23) and (24), we used MATLAB to compare
the convolution method and the method of direct integration of the Schrödinger equation
in Equation (14).

Appendix D.1. Comparing First-Order to Second-Order Convolution

The first-order contributions and second-order corrections for the convolution (or
recursive Fourier transform) method were compared, as shown in Figure 4. The second-
order contribution shortens the central peak, while heightening the wings of the distribution
by a small amount. This is reasonable because we expect the potential to deflect the system
away from its original state each time it is applied.

Appendix D.2. Frequency Profile versus Potential Strength

For the measurement of duration T, Figure A6a–c show the second-order amplitude
calculated by direct integration and convolution. In both methods, increasing the potential
spreads the central peak and smoothens the ripples in the distribution. For a given increase
in the potential strength, the ripples are preserved to a greater extent in the convolution
method. Furthermore, the smoothing occurred differently in both cases. In particular,
Figure A6b shows that for the convolution method, the odd-numbered zero-crossings are
preserved longer than the even ones, as the potential strength is increased.

(a) Low potential. (b) Medium potential. (c) High potential.
Figure A6. Second-order comparison of spectra for various values of the potential for convolution
versus integration methods. Potential increasing from left figure to right figure.

Appendix D.3. Frequency Profile versus Range of Intermediate States

Figure A7a,b demonstrate the distinct behavior of direct integration versus convo-
lution with respect to the number of intermediate states kmax that are summed over.
The convolution method converges faster than the direct integration with respect to
the number of intermediate terms included. The convolution method relies heavily on
non-local surrounding states. This is not surprising when considering the similarity be-
tween Equations (23) and (24) to the sinc interpolation signal reconstruction (as shown in
Appendix E.2).

(a) kmax = ±4 (b) kmax = ±10

Figure A7. Second-order comparison of spectra for two values of the kmax range for convolution
versus integration methods. The methods match each other more closely far from the origin as more
k terms are added. Left (right) figure case is kmax = ±4(±10).
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Appendix E. Interpretation

Appendix E.1. Kicked Frequency and Natural Frequency for Harmonic Oscillator

Equation (24) presents two distinct energy scales: the unperturbed harmonic oscil-
lator’s discrete spacing ω(0), and the truncated perturbation-induced minima spacing
ω(1) = 2π/T. The latter corresponds to the sinc function zeros in Equations (7) and (24).
This truncated perturbation is comparable to the periodic kick potential in the Floquet
theory, where the Hamiltonian splits into a free part (with a discrete eigenspectrum) and a
kick part (with a continuous eigenspectrum).

The unitary evolution operator Û comprises Û f ree, which determines ω(0) and the
unperturbed basis states, and Ûkick, which establishes ω(1).

The dynamics of a Floquet system strongly hinge on the relationship between the
natural frequencies of the two Hamiltonian parts: ω(1) and ω(0). Engels [72] investigated
structured stochastic webs arising in the phase space for various energy scale values.
When these two are integer ratios, the phase-space web is distinct, with clear allowed and
forbidden regions. By contrast, when the two are irrational, the web structure collapses,
allowing the entire phase space. Floquet systems show that the discrete energy states ω(0)
endure through time evolution, whereas the continuous states defined by ω(1) disperse.

This scenario underscores the distinction between oscillator frequency ω(0) and per-
turbation frequency ω(1) [72]. We focused on the “cyclotron resonance” case in Figure A4
and the subsequent graphs, where ω(0) = ω(1). Here, the periodic kicks of the Floquet
system coincided with the natural motion of the unperturbed oscillator.

Appendix E.2. Frequency Sampling Interpretation

It is interesting to note the similarity between Equation (7) and the Shannon–Nyquist
sampling theorem

f (t) = ∑
i

f (nt) · sinc(ωt − nπ). (A5)

The theorem states that any signal f (t) can be exactly reconstructed from its samples,
f (nt), using a series of ideal sinc interpolation functions centered on each sample, separated
by a Nyquist period.

In the case of Equation (7), a signal in the frequency domain, c(ω), is smoothly
reconstructed from discrete samples, c(n∆ω(0)), using a series of sinc-like interpolation
functions centered on each energy eigenstate. In the case of zero potential (Ṽ(ω) = δ(ω)),
if we constrain the measurement window to be the inverse of the oscillator frequency,
T = 1/ω(1) = 1/ω(0), then Equation (7) exactly reconstructs the original wavefunction
with an ideal sinc interpolator. As the perturbation increases from zero, the interpolation
function changes, and the reconstructed signal is no longer identical to the original.
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