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Abstract: Quantum annealers conventionally use forward annealing to generate heuristic solutions.
Reverse annealing can potentially generate better solutions but necessitates an appropriate initial
state. Ways to find such states are generally unknown or highly problem dependent, offer limited
success, and severely restrict the scope of reverse annealing. We use a general method that improves
the overall solution quality and quantity by feeding reverse annealing with low-quality solutions
obtained from forward annealing. An experimental demonstration of solving the graph coloring
problem using the D-Wave quantum annealers shows that our method is able to convert invalid
solutions obtained from forward annealing to at least one valid solution obtained after assisted
reverse annealing for 57% of 459 random Erdős–Rényi graphs. Our method significantly outperforms
random initial states, obtains more unique solutions on average, and widens the applicability of
reverse annealing. Although the average number of valid solutions obtained drops exponentially with
the problem size, a scaling analysis for the graph coloring problem shows that our method effectively
extends the computational reach of conventional forward annealing using reverse annealing.
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1. Introduction

Quantum annealers have made steady progress towards solving prototype real-world
problems [1–4] along with gate-based quantum computers [5–7] and their hybrid applica-
tions [8–13]. Quantum annealers are based on the principle of quantum annealing, which is
based on the adiabatic theorem. Quantum annealing has been described as a metaheuristic
for solving combinatorial optimization problems [14–16].

Quantum annealing can be divided into two categories: forward annealing and reverse
annealing (RA). The forward or conventional quantum annealing process starts in an initial
state that is a uniform superposition of all possible classical states. The advantage of such
an initial state is that it is an easy-to-prepare ground state of a known problem. The idea is
to exploit the adiabatic theorem, whereby the amplitude of the transverse field is slowly
decreased to zero, and the system remains in its instantaneous ground state at all times,
thus yielding the solution to the optimization problem at the end of the process.

If we define the total Hamiltonian H as

H = A(s)Hp + B(s)Hi, (1)

then Hi is the initial Hamiltonian and Hp is the problem Hamiltonian. A(s) and B(s)
describe the annealing schedule. In forward annealing, the function A(s) is gradually
increased from 0 to 1, i.e., A(s) : 0 → 1 and B(s) : 1 → 0, when s : 0 → 1 within a
certain annealing time t. A majority of applications of quantum annealers involve this
setup. However, several recent papers have studied or used reverse annealing [14,17–30]
for various problems.

The process of reverse annealing, in contrast to forward annealing, does not start in
an initial state corresponding to the superposition of all possible classical states. It starts
precisely in only one of all possible classical states [14,17]. The amplitude of the transverse
field is thereafter first gradually increased to a certain point and then decreased.
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Thus, according to Equation (1), reverse annealing undergoes A(s) : 1 → A(s′) → 1,
B(s) : 0 → B(s′) → 0, when s : 1 → s′ → 1, where 0 < s′ < 1 is called the reverse distance.
Reverse annealing has been shown to produce better results with a dependence on an
appropriate choice of the initial state [17–22]. In contrast, an inappropriate choice of the
initial state can be generally expected to lead to no improvement in the solution quality.
Thus, such initial states play a decisive role in the effectiveness of reverse annealing.

Currently, it is not always straightforward to find the appropriate choice of initial state
for a given problem. Previous works have used classical greedy algorithms [19], simulated
annealing and approximate message passing algorithm [22], and classical preprocessing or
physical intuition [17]. A general strategy is missing that can be put to use for any problem.

In contrast to forward annealing, which can be termed as a global search routine
aimed at finding the global minimum, reverse annealing can be termed as a local search
routine that refines existing solutions [24]. The combination of both can potentially use the
broad exploration capability of forward annealing and then perform local search refinement
using reverse annealing [31]. However, it is unclear how to effectively combine these two
in practice.

In this work, we propose a method that uses forward annealing to provide good initial
states for reverse annealing. To demonstrate the idea, we first use forward annealing to
solve the graph coloring problem and increase the problem size until no valid solutions
are sampled. We then show that reverse annealing can find valid solutions when invalid
solutions obtained from forward annealing are used as the initial state. It also obtains
more unique solutions. Additionally, using forward annealing to provide the initial state
outperforms guessing it randomly. Our approach can be seen as improving the overall
metaheuristic of quantum annealing with general applicability.

The rest of the paper is structured as follows. In Section 2, we give a brief overview of
the problem that we will solve in this work. In Section 3, we introduce the theory of RA
and mention the relevant parameters at play in the process. In Section 4, we show several
results of performing reverse annealing in four different cases, undertake a scaling analysis
by increasing the problem sizes, compare our strategy against random initializations, and
demonstrate the device independence of our idea. We discuss and conclude in Section 5.

2. Graph Coloring

Given an undirected graph G = (V, E), where V represents the set of vertices and E
represents the set of edges connecting these vertices, the graph coloring problem involves
finding an order of coloring such that no two connected vertices receive the same color and
all vertices are colored. The graph coloring problem has two sub-branches: the minimum-
coloring problem and k-coloring problem.

The minimum-coloring problem seeks to find the smallest number of colors k to
properly color G. This k is also called the chromatic number of G. The k-coloring problem
seeks to color G using no more than k colors. The former is NP-hard and the latter NP-
complete for k ≥ 3 [32,33]. In this work, we use the quantum annealer to solve the
k-coloring problem. We create random graphs according to the Erdős–Rényi model using
the networkx package in Python [34]. We set the value of k equal to the number of colors
needed by the ‘largest first’ greedy algorithm.

The graph coloring problem is reformulated as a quadratic unconstrained binary
optimization (QUBO) problem using a Python package [35], which is based on Ref. [36]
and can be solved on quantum annealers [37]. Some previous work has been undertaken
that used quantum annealers: as an independent set sampler [38] and using a domain-wall
encoding [39]. However, none of the previous works on reverse annealing known to the
author [14,17–23,25,26] studied it for the graph coloring problem.

3. Reverse Annealing

Reverse annealing can be categorized into different categories based on either the (a)
Hamiltonian and its implementation or (b) the method used to produce the initial state for
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the first cycle of RA. In case of (a), RA is of three types: first, adiabatic RA, in which an
additional term is added to H given in Equation (1) and can be used to perform analytical
treatment of a problem [20,40]; second, repetitive RA, in which no terms are added to
Equation (1) and the initial state is always the same for each run [41]; third, iterated RA,
in which no terms are added to Equation (1) but the output of a RA cycle is fed as input
to sample the output from the next RA cycle. Iterated RA is an important tool because
the progress of a previous cycle can be improved even further in a new cycle, in contrast
to repetitive RA. If the initial state to iterated RA is a higher-order excited state, then it
is possible to progress towards the ground state by reaching lower-order excited states
through progressive cycles. Iterated RA is commonly used on D-Wave systems [21,42]. We
also use iterated RA for all our experiments.

In case (b), RA is of at least four types: First, random input RA where an initial state is
randomly generated; second, classically assisted RA, in which an algorithm on a classical
computer produces an initial state; third, RA in which the initial state is motivated by
physical or intuitive reasoning about the problem Hamiltonian; fourth, quantum-assisted
RA, in which either the same or a different (type of) quantum device is used to produce the
initial state. The novelty of our work lies in successfully combining this last category with
iterated RA.

Since we use a quantum annealer to produce the initial state in the forward annealing
setting, we call it forward-annealing-assisted RA. The algorithm is illustrated in Figure 1.
The problem graph is created on a classical computer and formulated into a QUBO problem.
The quantum annealer then tries to solve the problem using forward annealing, and its
output is fed to a validator, which checks for valid solutions among the bitstrings. Valid
solutions are those that color our graphs in exactly k colors without violating the constraints.
If at least one valid solution is found among all the sampled bitstrings, then forward
annealing has solved the problem and the algorithm ends. In contrast, if no valid solutions
are found, one of the invalid solutions is input as the initial state for the first cycle of RA.
One or more samples can be obtained through RA. The validator will check the output
bitstring obtained from RA for validity. If an invalid solution is sampled, it is (within
iterated RA) taken as an input for the next RA. The algorithm comes to an end if a valid
solution is sampled.

Quantum Annealer

Forward annealing Reverse annealing

Classical computer

Input InputOutput Output

QUBO Validator

Quantum Annealer

Start End

Validator

Initial state: uniform superposition Initial state: classical

H = A(s)Hp + B(s)Hi H = A(s)Hp + B(s)Hi

A(s) : 0 → 1 B(s) : 1 → 0

s : 0 → 1

s : 1 → s
′
→ 1

0 < s
′
< 1

A(s) : 1 → A(s′) → 1

B(s) : 0 → B(s′) → 0

Figure 1. Working of the forward-annealing-assisted reverse-annealing algorithm. The QUBO
problem is first solved using forward annealing, and the algorithm halts if the output of the quantum
annealer is a valid bitstring (green check mark). Otherwise, the lowest energy bitstring is taken as
input for reverse annealing, which can be made to run until a valid solution is obtained or a given
sampling limit is reached.
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RA Parameters

An important factor in the success of RA is the choice of parameters. These include
the reverse distance, annealing schedule, and annealing path. We look at these parameters
closely in this section.

In the following, we illustrate using a simple example of how choosing the reverse
distance can be relevant and its relationship to different annealing schedules. To do so,
we will look at the energy spectrum of H from Equation (1) for one case of the graph
coloring problem. Consider a graph with five vertices in the form of a one-dimensional
chain without periodic boundaries. This graph can be colored using two colors. To proceed,
we first convert the QUBO to its corresponding Hp. A given QUBO variable can be mapped
to the corresponding Ising variable using

si = 1 − 2xi, (2)

where s ∈ {+1,−1 } is the i-th spin variable and x ∈ { 0, 1 } is the i-th binary variable. The
Ising Hamiltonian can be written as [43,44]

Hp =
N

∑
i,j=1

Qij(1 − Zi)(1 − Zj), (3)

where Q is the QUBO matrix and Z is the σz Pauli operator. Python packages are available
for converting QUBO to Ising and vice versa [37].

One must decide on an annealing scheme to study the energy spectrum in Equation (1).
A linear scheme is one of the simplest. To use this scheme, we set

H = sHp + (1 − s)Hi, (4)

where Hi = ∑N
j=1 σx

j , and s increases from 0 to 1 in one hundred equal steps. At each step,
we reconstruct and exactly diagonalize H and plot its 15 lowest-lying eigenvalues. We
include degenerate cases, if any. The spectrum is shown in Figure 2.
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Figure 2. Energy spectrum of a coloring problem with five vertices using a linear annealing schedule.
Shown are the 15 lowest-lying eigenvalues as a function of s, the annealing parameter. Inset: an
anti-crossing between paths of ground and first excited states, shown in brown and pink, respectively.

The energy spectrum in Figure 2 reveals that the ground state is degenerate. This is
understood intuitively by noting that, in general, there are multiple ways to color a graph.
It is interesting to note that multiple paths lead to the ground state in our example. Several
anti-crossings can be observed. We highlight one of them (in pink) in the inset magnified
image, where one starts from the first excited state (at s = 1), anneals back up to s ≈ 0.8,
and performs forward annealing; then, if the system shifts to another path (in brown), it
leads to the ground state. Such a situation would imply that we started from an invalid
solution initial state and obtained a valid solution final state.
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Actual quantum hardware, however, rarely follows the relatively simple linear sched-
ule considered above. We plot the data released by D-Wave about their annealing schedule
in Figure 3 for the Advantage System 5.4. We observe immediately that this schedule differs
substantially from a linear schedule. Using Hp from Equation (3), the D-Wave data are then
used in Equation (1) as the annealing schedule. The energy spectrum is shown in Figure 4.
Although H is the same, the new spectrum looks visibly different from that of the linear
schedule in Figure 2. The anti-crossings have shifted to a different range of s. Thus, unlike
in the previous case, annealing back to s ≈ 0.8 will most likely not work and a different
value of s ≈ 0.4 appears more appropriate.
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Figure 3. Annealing schedule used by D-Wave quantum annealers. The parameter s goes from 0 to 1
during forward annealing, whereas it goes from 1 to some middle non-zero value and then back to 1
for reverse annealing.
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given in Equation (4).

In summary, the energy spectrum reveals that some paths that lead to the ground state
and excited states have a low minimum gap between them, even for a very small graph
coloring problem. Additionally, the value of s, where the minimum gaps come closest,
depends strongly on the annealing schedule. Finally, the appropriate choice of the reverse
distance combined with the quality of the input initial state can be decisive factors in our
ability to reach the ground state.

Although the above example gives us a theoretical understanding, it must be remem-
bered that this spectrum is the ideal case at zero temperature. Temperatures in an actual
device, e.g., from D-Wave, can be around 20 mK. Such low but finite temperatures can be
expected to induce effects not accounted for in the theoretical zero-temperature case for
annealing times considered in this work.

We fix the total annealing time for both forward and reverse annealing to 100 µs.
The RA path defines the way in which the lowest reverse distance is reached and scaled
back. We include a small pause in the schedule, which has been suggested to lead to better
results [45]. Three examples are shown in Figure 5. The D-Wave annealers take a maximum
of 12 inputs for the values of s. We use the same anneal path for all our experiments and
from now on will only refer to the reverse distance, which is the lowest s on the path.
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Figure 5. Reverse annealing paths for three different reverse distances: 0.25, 0.50, and 0.75. A
maximum of 12 points are allowed to be defined, which are labeled on the x-axis.

4. Results

In this section, we thoroughly test RA for a variety of different cases for the graph
coloring problem. We show the results obtained when feeding the bitstrings from forward
annealing as the initial state of reverse annealing. We obtain 103 forward annealing samples
for each case in this section. If forward annealing finds one valid solution, this is taken as
the initial classical state for the reverse annealing process. If forward annealing finds more
than one valid solution, then one of the solutions is randomly chosen. This allows us to test
if RA still works if a valid solution is used as an initial state. If forward annealing fails to
find a valid solution, the sample with the lowest energy is chosen.

We divide the results into two sections. First, we study the quality of solutions
obtained from reverse annealing as a function of the reverse distance. Second, we compare
the scaling analysis of obtaining valid solutions using reverse and forward annealing
for different problem sizes. We also use another device to illustrate that our proposal is
device-independent. We always use the iterated version of reverse annealing where the
total number of samples equals the number of iterated cycles.

4.1. Reverse Distance

In order to demonstrate our idea, we create 500 random graphs generated according to
the Erdős–Rényi model [46], and the number of vertices is set to 15. The value of k is obtained
from the greedy algorithm. To test assisted reverse annealing, the reverse distance is decreased
from 0.93 to 0.30 in a total of 10 equally spaced steps. For each value of the reverse distance,
we obtain 103 samples. We analyze the total number of valid solutions as well as the total
number of unique valid solutions. Since the initial state of the RA process can itself either be a
valid or an invalid solution, depending on whether the forward annealing process was able to
find at least one valid solution out of 103 samples, we then have four cases:

A. Valid RA solutions; valid solution initial state. See Figure 6.
B. Unique RA solutions; valid solution initial state. See Figure 7.
C. Valid RA solutions; invalid solution initial state. See Figure 8.
D. Unique RA solutions; invalid solution initial state. See Figure 9.

4.1.1. Case A

Shown in Figure 6 are the total numbers of valid solutions obtained at different values
of the reverse distance. Plotted are only 41 out of 500 problems because forward annealing
was able to find a valid solution only in these cases. Since we start from a valid solution
obtained from forward annealing, we observe that almost all obtained samples are valid
solutions at larger values of the reverse distance. This behavior is expected between a
reverse distance range of 0.75 and 1.0. One explanation arises from the fact that the function
B(s) changes only negligibly between 0.75 and 1.0 in the annealing schedule of the D-Wave
annealer shown in Figure 3. Due to this, the H in Equation (1) has Hp as the dominant
component. Therefore, upon reverse annealing, no major contribution is expected from the
mixing term Hi and the annealer is expected to stay in the provided initial state.
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Figure 6. Total number of valid solutions obtained as a function of the reverse distance. A valid
solution from forward annealing was used as an initial state to the RA process. The graph represents
a total of 41 out of 500 problems. Green (Red) lines represent that there was at least one valid solution
at all values (at least one value) of the reverse distance.

Figure 7. Same as Figure 6 except the y-axis shows total number of unique valid solutions. Each
problem is given by a random color.

Figure 8. Total number of valid solutions obtained as a function of the reverse distance. An invalid
solution with the lowest energy from forward annealing was used as an initial state to the RA process.
The graph represents a total of 262 out of 500 problems.
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Figure 9. Same as Figure 8 except that the y-axis shows the total number of unique valid solutions.

The number of valid solutions decreases drastically as the reverse distance is decreased
further below 0.75. The mixing term Hi also becomes relevant and the annealer is no longer
able to sample only the initial state it was provided, leading to a decrease in the number of
valid solutions.

We also observe that there are cases in which at least one valid solution was obtained
for each value of the reverse distance, shown in green. However, in most cases, not all
values of the reverse distance yield at least one valid solution, as shown by the red (dotted)
lines. The fact that forward annealing was able to find a valid solution in only 8.2% of
the total cases is an indication that the problem size is appropriate to test whether reverse
annealing can obtain valid solutions for the rest of the cases.

4.1.2. Case B

Deterministic greedy algorithms find one of all possible valid solutions if the solution
space is degenerate. A quantum annealer may offer the advantage that one may obtain
different unique solutions by no additional effort than sampling more often than once. We
study this case by filtering out the number of unique valid solutions obtained from Case A
and plot the results in Figure 7.

We observe that at large reverse distances, all problems converge to the value of one
unique solution. The unique solution is clearly separate for each problem. This solution
is the same one that we use as the initial state, which was in turn obtained from forward
annealing. Thus, from Figures 6 and 7, we discern that we exclusively sample the initial
state input to the RA process for larger annealing distances.

The results take an exciting turn at lower reverse distances. We observe a novel pattern
where unique solutions start to emerge below a reverse distance of 0.60, reach a peak at 0.44,
and then decline again at 0.30. This result is interesting because we showed previously in
Figure 4 that the anti-crossings appear close to 0.4, albeit for a smaller problem size. Thus, it is
possible to sample more unique solutions simply by choosing an appropriate reverse distance.

4.1.3. Case C

The most interesting test for reverse annealing is when forward annealing finds no
valid solutions. This was the case for 459 out of 500 problems. We take the lowest energy
bitstring as the initial state and plot the total number of valid solutions obtained as a
function of the reverse distance. The results are shown in Figure 8.

In contrast to Case A, we observe no valid solutions for all problems at larger reverse
distances. This behavior is expected since, at large values, the annealer outputs the same
invalid bitstring input as the initial state. Valid solutions start to appear for reverse distances
less than 0.7, and the highest total of these valid solutions tends to decrease as the reverse
distance decreases.

At smaller reverse distances, we were able to obtain at least one valid solution for 262
out of 500 problems. Figure 8 only shows these 262 problems; we omit those for which
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reverse annealing also found no valid solution. The peak number of total solutions obtained
differs for each problem across the reverse distance. From Case C, we conclude that reverse
annealing is able to find valid solutions in about 57% of problems where forward annealing
does not.

4.1.4. Case D

We plot the unique solutions obtained in Case C in Figure 9. We observe that the
number of unique solutions first increases as the reverse distance is decreased, peaks at
0.44, and then decreases when further decreasing the reverse distance. A majority of the
problems had the maximum number of unique solutions at a reverse distance of 0.44. In
contrast to Case B, there are no valid solutions at larger reverse distances; hence, all lines
converge to the value 0.

4.2. Scaling Analysis

In the previous section, we observed that reverse annealing is able to find valid
solutions where forward annealing fails. In this section, we perform an analysis across
different problem sizes. In addition to the data for the 500 graphs with 15 vertices shown
in the previous section, we generate 100 new random graphs, each with 7, 10, 17, and
20 vertices.

Since all the graphs are generated randomly, it is not necessary that all of them having
the same node size can be colored using the same number of colors. The number of
qubits required is also dependent on the number of colors needed. Hence, there will be a
distribution of different number of qubits used across the 100 (or 500) random graphs of
a given node size. Therefore, we chose the node sizes such that we sufficiently cover all
relevant qubit numbers for our scaling analysis. The software from D-Wave automatically
creates chains of physical qubits to form logical qubits to accommodate larger problems.
We fix the reverse distance to 0.44 for all problems. This choice is inspired from the results
of Case B from Section 4.1.

We calculate the average number of valid solutions obtained for all problems that
needed the same logical qubit count. The data are plotted in Figure 10. The number of
problems per qubit number differs between different qubit numbers.

We observe that the frequency of success vanishes exponentially in problem size for
both forward and reverse annealing. For small problem sizes, given by the corresponding
small number of logical qubits required (i.e., <40), we observe that both forward and reverse
annealing work almost equally well. In the next region between 40 and 80 qubits, the
frequency of finding valid solutions using forward annealing drops further exponentially
to below 1. Beyond 80 qubits, forward annealing completely fails to find valid solutions
on average. In contrast, reverse annealing is able to find more valid solutions on average
in all cases up to 80 qubits. The most interesting cases happen beyond 80 qubits where
reverse annealing is able to find at least one valid solution on average in contrast to forward
annealing. The average number of valid solutions for reverse annealing drop further until
119 qubits.

At 120 qubits, both forward and reverse annealing yield no valid solution for any of
the problems. These problems have our largest node size of 20. Our obtained data for 160
and 180 qubits yield also zero valid solutions for all tested problems [47].

We now move to analyzing average unique solutions obtained. The data are shown
in Figure 11. We observe that, at first, the number of average unique solutions increases,
reaches a peak, and then decreases. This is explained by the fact that for small problem
sizes, there does not exist a large number of degenerate solutions and the quantum annealer
is able to find all possible unique solutions using both forward and reverse annealing.
For large problem sizes, neither forward nor reverse annealing are able to find all unique
solutions. Increasing the problem size further then shows an exponential decline in the
average number of unique solutions found. Here, the plot exhibits the same features as the
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plot in Figure 10. In summary, reverse annealing is able to find more unique solutions on
average than forward annealing for the problem sizes we tested.
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Figure 10. Average valid solutions obtained when using forward and reverse annealing with a reverse
distance of 0.44 across 900 randomly generated problems.
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Figure 11. Same as Figure 10 except the y-axis shows average of unique valid solutions.

In conclusion, from Figures 10 and 11, we infer that there exists a range of problem
sizes for which one can expect forward annealing to find no valid solutions, but feeding the
results to reverse annealing yields valid solutions. It is in this sense that reverse annealing
extends the computational reach of quantum annealers for the graph coloring problem.

4.3. Random Initial State

Since reverse annealing accepts any bitstring as initial state, one may question the
need for first performing forward annealing as outlined in our algorithm. We now compare
our idea of using the lowest-energy bitstring against using a random bitstring as an initial
state. Additionally, we repeat our experiments on a different device to confirm that the
algorithm is not device dependent.

For each of the 262 problems from Section 4.1.3 Case C, we repeat the experiment only
for those values of the reverse distance for which reverse annealing was able to find at least
one valid solution with a slight change that the initial state is now a random bitstring. This
allows us to save significant computing time on the real hardware. The data are shown in
Figure 12. We plot the average number of valid solutions obtained for cases when using
a random initial state in red circles. Next, we plot the average number of valid solutions
when using the lowest energy (invalid solution) bitstring from forward annealing in green
squares. Next, we repeat the green squares case with 3000 samples on a different annealer,
Advantage System 6.2.
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Figure 12. Average valid solutions obtained for 262 problems as a function of the reverse distance.
Squares represent the case of using the lowest-energy bitstring from forward annealing as the initial
state. Triangles represent the use of another device. Circles represent the case where the initial state
was a random bitstring.

We observe that in a small number of cases, starting from a random initial state,
the device is still able to find a valid solution for small reverse distances. In contrast,
starting from the lowest energy bitstring from forward annealing yields significantly higher
averages over a wider region of reverse distances. Additionally, we observe that a different
annealer is able to reproduce some results but does not perform better despite a higher
number of samples.

The lower performance of a different device can be explained as follows. In solving a
given problem, several device parameters are involved, e.g., the annealing time, connectivi-
ties between the qubits, embedding, as well as chain strength. One set of such parameters
that yields higher frequency of valid solutions on one device need not necessarily yield
similar results on another device. We used the same parameters for both devices; thus, there
may exist other parameters for the second device that yield a higher frequency of valid
solutions. However, finding these parameters is beyond the scope of the current work.

In summary, we learned that there is a significant benefit in first performing forward
annealing and choosing the lowest energy bitstring compared to using a bitstring created
at random.

5. Conclusions

Finding appropriate initial states for reverse annealing to improve is, in general,
an important and difficult task. We proposed a heuristic where the output of forward
annealing was used as input for reverse annealing. We found that this setup is particularly
useful for the graph coloring problem. We demonstrated our approach by solving randomly
generated graph coloring problems. We found that reverse annealing is able to find valid
solutions using this technique in about 57% of the cases where forward annealing fails.
Thus, one is able to solve many more problems outside the reach of conventional forward
annealing with the same quantum annealer.

We performed a scaling analysis where we increased the problem size and used
both forward and the new forward-assisted reverse annealing to solve the same problem.
Our results showed an exponential decay in the probability to sample valid solutions
for both approaches. However, the new approach decayed slower and, thus, is able to
extend the computational reach of the overall heuristic of quantum annealing. The new
heuristic proposed in this work is general and can be used for any problem that uses
forward annealing.

While we showed the working of the new approach, our results do not reflect best
effort, which would include finding the most optimal annealing times, reverse distances,
chain strengths, embeddings, annealing schedules, and other relevant parameters. These
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should help obtain valid solutions in those cases where reverse annealing was also not able
to find a valid solution. This can be explored in future works.
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