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Abstract: In this article, I start with a general presentation of the ideas behind sigma models and
higher gauge theories and introduce the possibility of a higher entanglement structure. Using a
higher categorial interpretation of entanglement involving gauge theories and σ-models instead of
qubits, one recovers T-duality as a form of ancilla aided entanglement generation. This opens the
way towards new dualities in gauge theories and σ-models produced by means of analogies with
quantum circuits of various types.
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1. Introduction

Both special and general relativity are pillars of our modern understanding of real-
ity. They were fundamentally classical theories, as quantum mechanics has only been
introduced decades after their construction. Being constructed without the constraints of
quantum consistency, they became also particularly difficult to reconcile with the quantum
structures. Special relativity has been successfully reconciled with quantum mechanics
via quantum field theory and the process of renormalisation. General relativity resisted
a similar approach due to its non-renormalisability and its ill UV behaviour [1–4]. How-
ever, various dualities have shown that classical gravitational solutions precisely encode
properties of quantum field theories in different regimes. One can therefore ask if there is
some quantum “remnant” in general relativity that makes such descriptions possible. The
ER = EPR proposal links two black holes connected via a wormhole to quantum entangle-
ment [5]. The AdS/CFT duality links a classical anti-de-Sitter solution of general relativity
to a highly quantum conformal field theory in a different regime. Lacking a proper axioma-
tisation of quantum mechanics, one has to rely on the most common quantum properties
that differ from classical physics in order to derive what the quantum “remnants” could be
that can be found in general relativity. There are several ways in which quantum mechanics
differs from classical mechanics. First of all, observables are expanded to the status of
operators acting on a Hilbert space of states. The outcome of measurements is not anymore
one single possible result, but instead one has to consider all possible outcomes and to
propagate them accordingly via a wavefunction or, further on, in quantum field theory, via
a path integral quantisation prescription. As observables become operators, one can define
a notion of compatibility between them, and hence a notion of commutativity. Incompatible
observables will not commute, leading to what we understand as quantum fluctuations.
The state of the system is described by means of a state of maximal knowledge [6], through
a wavefunction, and not by means of a state of complete absolute knowledge, as was the
case in classical mechanics. Perfect knowledge was assumed in classical mechanics even
at the statistical level, where fluctuations were caused by subjective limitations and not
by fundamental uncertainty. Finally, probably one of the main properties of quantum me-
chanics that I believe will resist most reductionist attempts implicit to axiomatisation is the
non-Cartesianity of the spaces of states. While in classical physics, an object is constructed
from individual separated pieces that are placed in a whole and allowed to interact in a
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rather Newtonian way, and we can always separate the system back into its individual
pieces without losing any information, this becomes impossible in quantum mechanics,
where the global wavefunction of the whole system encodes more information than any
individual wavefunction associated with any of the pieces. While other forms of quantum
mechanics exist, as far as the physical measured reality is concerned, entanglement plays
a fundamental role in the description of quantum systems. Moreover, the informational
difference between the state space of the combined system and that of the individual pieces
put together in a Cartesian way grows exponentially, forcing us to use the tensorial pairing
available in quantum mechanics. In essence, we have a tension between a local and a
global interpretation of physics, local referring to the underlying subsystems, and global
referring to the overarching combined system. Moving between scales, as carried out in
the prescriptions of the renormalisation group, does something similar. We integrate over
small distance degrees of freedom, producing effective theories depending only on larger
distance degrees of freedom. This type of decoupling the small scale degrees of freedom
does not completely eliminate the effects of the small degrees of freedom. In fact, their
existence manifests itself in the requirement of seeing the couplings of the theory as variable,
depending on the scale at which we perform the measurement. However, from this point of
view, we do obtain a consistent effective theory if we insist to perform measurements at a
given energy scale. More interesting things happen if we have relevant degrees of freedom
(say a scalar particle like the Higgs boson) that are fundamentally dependent on the physics
at or beyond the cut-off scale of the theory. Moreover, the renormalisation group may also
have topological features leading to global structures connecting different scales, making
an easy decoupling impossible. The fact that the apparent decoupling between scales that
appears in usual quantum field theories occurs is in a sense still quite mysterious, although
of course we can see it happening by performing the calculations. We do however have
to remember that the decoupling between scales is never absolute, and in reality we can
never really completely forget about the physics of the lower-length (higher-energy) scales
unless we decide to ignore certain questions, particularly those related to naturalness, the
hierarchy problem, the values of various particle (or resonance) masses, coupling constants,
the cosmological constant problem, etc.

From the discussion above, an important aspect emerges: the concept of maximal
knowledge. This is encoded by the wavefunction, as mentioned by Schrodinger in his
original discussion on the state of quantum mechanics [7], and is a very general idea that
must take into account information in all its possible forms. For a long time, starting
with the ideas of Turing and Shannon, information has been regarded in a practical sense
as certain “markings” made on a substrate. The markings were usually assumed to be
objects with two possible states, like 0 and 1, and the substrate was always considered
to be some physical structure, from the classical example of a tape, a magnetic tape, or
a disk, to the more elaborate states of quantum systems where superpositions between
the two possible states were also allowed and the substrate became more fundamental,
quantum states of atomic or nuclear spins [8], topological states [9], etc. In all these
cases, however, the assumption was the same: information is represented as “markings”
on a “tape”. However, category theory teaches us that often “maximal knowledge” (to
use Schrodinger’s terminology) can be extracted without direct reference to the object
about which we wish to extract knowledge. In fact, category theory allows for a perfect
characterisation of objects by means of so-called “universal properties” that refer to their
“surroundings” and not to the objects themselves [10]. Much information can be assigned to
objects by looking at their context instead of the information that could be encoded “inside”
them. This makes sense in category theory, where objects themselves can be regarded as
devoid of inner structure and yet carry significant properties.

Another situation where this approach could be of major importance is the inner struc-
ture of field theories or of “particles”. The existence of spacetime symmetries associated
with a certain system, in particular, a point-like particle, is well known since Einstein,
and is represented in the form of the so-called Poincare group (in the case in which the
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spacetime is assumed flat and one can assume to a certain degree of accuracy the existence
of translation invariance). The existence of “inner” symmetries however appeared as a
necessity due to various discoveries in the early 20th century [11–13]. For one, the existence
of a semi-integer spin (fermions) required the assumption of an interesting inner structure
which had to be associated with higher homotopy groups. In fact, the existence of spinors
or a spin structure on a manifold depends on the triviality of the Stiefel Whitney class of the
manifold. A non-trivial such class implies an obstruction to the existence of a spin structure.
In effect, a point-like particle is assumed to behave under rotations in a way that retains the
memory of the type of rotations that have been performed on it, particularly whether the
paths followed in the rotation group can be continuously deformed into each other. Even
if the end result of two rotations is the same, this can be achieved through inequivalent
combinations of rotations, resulting in an overall change in sign. Our point-like particle has
a “memory” of those particular rotations performed on it and can ultimately tell whether
one went on one of the paths or the other by its overall sign. Simply put, this means that
the spin group is a double cover of the rotation group, as obviously each rotation can be
produced in two inequivalent ways as the final outcome of a group path. While vector or
tensor quantities cannot detect such double cover, and hence the end position of a set of
rotations represented by a path in the rotation group will not depend on the path itself,
in the case of spinors, we have sensitivity to such rotation group paths, and hence to the
homotopy class of the rotation path. This sensitivity implies the fact that our point-like
fermions perceive the topological structure of the rotation group in the manifold where they
exist. To be more precise, a point-like object detects global topological features associated
with an extended object or at least an object that should have some form of “inner structure”.
This is of course not the only example where this “inner structure of a point” becomes
significant. In fact, quite a bit of “inner symmetry” has been discovered in various theories,
particularly in the standard model of elementary particles. Historically, a series of no-go
theorems have shown how the inner symmetries of a point are impossible to be combined
in a non-trivial way with the Poincare symmetry. This amounted to the development of
the so-called Coleman–Mandula theorem [14], which claimed that the only way in which
the Poincare algebra can be combined with the other inner symmetries is by means of a
direct product. The consideration was of course that the only symmetry algebras are Lie
algebras. This theorem was famously superseded by the Haag–Lopuszanski–Sohnius [15]
theorem which was a generalisation of the Coleman–Mandula theorem to Lie superalge-
bras. It introduced Lie superalgebras as the only new spacetime dependent symmetry
that allows for a non-trivial combination of spacetime symmetries and inner symmetries.
This is a result of the inclusion of commuting and anti-commuting generators, where the
anti-commuting, fermion generators are key in allowing for non-trivial combinations of
spacetime and inner symmetries. We noticed, however, that the fermion structure (or spin
structure) appears as a gained sensitivity to a higher homotopy group of the rotation group.
If additional sensitivity to such global structures can be associated with point-like objects,
then further extensions of the ways in which inner symmetries and Poincare symmetries
can be combined should emerge.

String theory is based on the idea that an extended object would clearly have such
properties. However, the same can be achieved by considering “external memory” or an
“external record” of how the path in the rotation group was performed. This could be seen
by means of the so-called belt trick, and its interesting application is by linking our point
particle via one (or several) such “belts” to fixed external references. What is essential here
is that the “memory” of the path in the rotation group does not have to be the object itself,
but can also be represented in all possible ways in which it can be connected to outside
regions (say, an external memory). Designing a categorical construction, it would mean
that by certain universal structures, properties of objects can be inferred (and attached to
the objects) that would remain point-like and would not be able to determine any inner
structure. A metaphorical but simple example would be the information about the content
of a book. That information could be retrieved by reading the book, but a significant
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amount of information could be obtained by looking at the section of the library where the
book has been placed, the year of its writing, the style of the author, the title, the cover, the
literary style, the predominant theme of the period, etc. All in all, much information can
be obtained without even reading the book (following symbols on a tape) if the book is
properly placed in its context.

Another aspect that is common to quantum computation but not so much to classical
computation is the concept of reversibility. Quantum processes need to be reversible. In
classical mechanics, a bit of memory can be turned on or off (flipped) without considering
its history. This is impossible in quantum mechanics as the qubit operations need to be
reversible. We find this in another situation in classical physics, namely in the construc-
tion of spacetime worldsheets or worldlines and in the cobordism category that defines
their interaction [16]. This is why a potential functorial relation between the category of
worldsheet cobordisms and the category of Hilbert spaces with their operations has been
postulated. In quantum information, we will need ancilla qubits to encode certain states
with desired properties. This is necessary because in general we cannot act on a qubit while
ignoring its history or “un-doing” actions on qubits. This property will become important
in what follows. Quantum information encoded globally has a significant impact on various
technological applications [17,18]. There are at least three domains where the global vs.
local tension becomes interesting. First, it is renormalisation. The idea of renormalisation is
based on the decoupling of scales. Basically, an attempt at renormalisation is an attempt
at systematically decoupling the different scales of energy such that one can construct a
meaningful theory at a certain scale, while incorporating the other scales in some effective
manner. The effective contribution of the smaller scales usually manifests itself as flow
equations in the parameters of the effective theory. That is also why we need to apply
certain operations to the couplings of our theory as we move from one scale to the next (the
well-known renormalisation (semi)-group equations). The redefinitions of parameters and
terms in the case of the standard model interactions are finite and preserve the predictive
power of the theories. They do represent an elegant way of connecting different scales,
and of combining subsystems and constituents into a larger global system. The problem of
describing strongly entangled/coupled systems in this way is not fully resolved in more
than one dimension [19]. The origin of this problem resides in the exponential complexity
of the many body wave function. I discussed previously the various results emerging
from a topological analysis of the renormalisation group; the problem of whether a fibre
bundle approach to the RG transformation could be a suitable approach is still open [20].
In any case, the main problem originates from the fact that indeed the transition between
scales is not as simple as one may think. While we can renormalise all interactions of
the standard model, adding gravity to the system makes the renormalisation procedure
ill-defined. Indeed, as is well known, the renormalisation group is not actually a group, it is
more like a semi-group, as its inverse is not defined. Indeed, in that sense, if one takes into
account topological features of renormalisation, one is well advised to consider principal
bundles where a preferred choice of identity is non-existent. The topological non-triviality
of such a scale transformation would imply the non-existence of a trivial Cartesian product
between domains of scale, and hence would lead to scale interference, which is expected in
string theory due to the T-duality and in the standard model via the flow of couplings [21].
Of course the two effects are apparently rather different. In any case, they are unified by
the idea that the global structure cannot directly be unpaired into constituent pieces. In fact,
the relation between scales induced by T-duality has an impact on cosmology, as deduced,
for example, in [22]. The other domain where the local/global tension emerges is of course
quantum mechanics itself, where we have entanglement which is a property of a combined
super system, which has information on the subsystems that cannot be recovered when
analysing the subsystems separately. The third domain where we have a local/global
problem is gauge theory. There, we try to develop theories with consistent interactions,
only to find that the interactions emerge from a fibre bundle approach based on a structure
group which we associate with gauge symmetry, and that this bundle encodes significant
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global information. In fact, a measure of curvature is what makes interactions possible;
hence, a global property, which cannot be detected at each point in space, separately lies at
the foundation of gauge interactions. Indeed, one of the first principles of general relativity
is that a transformation always exists that makes the spacetime locally flat; hence, a freely
falling observer, unless having access to some global information, would not know it is in
free fall. In order to obtain a theory of gravity, one has to incorporate this global information
by means of curvature, and this has to be defined by means of a connection on the fibre
bundle. Indeed, curvature and topology cannot be fundamentally separated. Curvature
influences topology and vice versa.

2. Sigma Models, a Pedagogical Review

It comes at no surprise that quantum wavefunctions and quantum fields also have
fibre bundle interpretations; however, they are less often used due to us being accustomed
with other tools through which we link local and global structure, for one, the partition
function and its path integral approach to quantisation, and the combination of phases of
wavefunctions. Wavefunctions interpreted in a fibre bundle context rely on the prescription
of geometric quantisation. Given the phase space and a symplectic form, the line bundle
over the phase space equipped with a U(1) connection is defined such that the curvature
of this connection is the symplectic form. A choice of polarisation over the phase space
produces a split between the coordinates and momenta, leaving the quantum wavefunctions
to be the sections of this line bundle that depend only on the position, therefore are constant
on the surfaces of constant coordinates. The evolution is given by the unitary Hamiltonian
encoded in the symplectic structure acting on the space of states. However, if we admit that
an essential property of quantum mechanics is that it takes into account non-Cartesianity
and hence that separation of a quantum system in local subsystems is often incomplete due
to entanglement, we have to also admit that both the other problems also have a quantum
nature. We therefore have an additional bundle structure that encodes the entanglement
properties, and this is the subject of our discussion here. Indeed, not any wavefunction is
entangled. Entanglement emerges from the non-separability of the constituent states after
the larger system is formed from the separate subsystems. After the quantisation has taken
place, or, if we already have a quantum theory, it is this non-Cartesianity amounting to the
impossibility of simply describing a composed quantum system in terms of Cartesian pairs
of its subjacent structure, that plays the important role in defining the bundle structure I
will consider next.

While nobody questions the idea that renormalisability is a feature of quantum field
theory, the fact that general relativity incorporates a similar tension between local and
global structures as the one found in quantum mechanics did not seem to have occurred
until now. If this is accepted, then general relativity already has a property of quantum
mechanics, namely non-Cartesianity, incorporated in its construction: one cannot infer the
same information from local measurements as one can from global ones. Also, one cannot
operate on a qubit (say flip it) while neglecting its history, in the same way in which one
cannot act upon a worldline event disregarding its history. It simply so happens that the
mathematics chosen to describe this tension was based on fibre bundles with connections,
and this geometric approach is used more often in a general relativity context, albeit trying
to solve the same problem as the partition function and what the path integral quantisation
tries to solve in quantum field theory.

This property is of course not the sole property an axiomatisation of quantum mechan-
ics would contain. Indeed, in quantum mechanics, we have to expand our observables from
objects that can take one single possible outcome and hence imply absolute knowledge
to operator-valued observables which rely on several possible outcomes having various
probabilities emerging at different times when the experiment is repeated. But this is
also a method through which one gains access to the global structure of the state space,
where different potential outcomes combine to generate a statistic that takes such potential
events into account. Hence, even this construction was required because one had to expand
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from a local viewpoint of outcomes to one that involved several successive repetitions
that contribute and interfere to produce the overall outcome. Such observables may not
commute, meaning the information they encode globally is not locally compatible. But a
very similar aspect occurs in general relativity. In fact, the connection is used to compare
spacetime-separated objects in a consistent way, while the curvature of a space defined by a
non-commuting property of covariant derivatives results from the existence of a non-trivial
connection. We use the non-commuting property of connections (or covariant derivatives)
to obtain a measure for some global property, namely curvature. This is surely not the
sole global property one can consider, but if one considers only point particles, one is less
sensitive to more interesting non-local properties of spacetime. There should be analogues
of such non-local properties also in quantum mechanics. So, here we have yet another
property that general relativity shares with quantum mechanics, and it also originates from
the local/global tension that appears in both domains. One attempt would be to construct
two categories, one of quantum physics, and the other of general relativity, and to notice
how both could be related and what functors one could develop to relate them. Indeed, this
would show that the two are in many ways similar. One could therefore say that general
relativity is already quantum to some extent, or that it preserves some quantum remnants
from its overarching quantum sibling, potentially string theory. One may be surprised
therefore at the difficulty of completing the UV domain of quantum gravity. After all, other
theories that share similar properties have a well-defined UV limit, for example, quantum
chromodynamics (where of course the problems appear in the low-energy limit where the
couplings are strong, but that is another subject not to be discussed here, however, when
thinking of asymptotic freedom and asymptotic safety). The solution to the UV problem of
quantum gravity comes from incorporating extended objects instead of points. Of course,
extended objects would make the connection between local and global properties more
amenable to a construction that is based on quantum mechanics. Once this is realised, one
can continue with the tools and methods of string theory and describe quantum gravity.
However, various limits in string theory give us links between so-called classical general
relativity solutions and non-stringy quantum field theories. This can only be possible if
general relativity retains some of the quantum properties of string theory.

An important result of string theory and compactification is the fact that the couplings
of a specific quantum field theory may have a flow that is determined by the equation of
motion of the moduli of a string compactification. In this sense, we may discuss sigma
models in which the couplings of the theory are represented as tensorial quantities (or
spinorial quantities for that matter) that exist in a so-called target space M. In what follows,
I will cover some very well-known material related to σ-models. I followed the path
of established understanding and considered one good reference for this path to be [7].
There are of course several other books and articles on this topic, as the subject is, as said,
well-established. I, however, used ref. [7] and I found it very suitable for the tasks of this
paper, hence I followed it in considerable detail for this introduction. The target space
of a σ-model has the properties of a topological and metric space and the coefficients
represent transformations of the fields of our theory. In there, the fields of the theory
represent coordinates, while the couplings represent transformations of such coordinates
with different properties. In this space, if string models are accepted and compactifications
are performed, the parameters describing such geometric and topological structures are in
fact determining the dynamics of such tensor couplings. Therefore, the equations of motion
of the geometric parameters of the target space are to be associated with flow equations
of the couplings. It was therefore assumed in the compactification program that such
geometric properties will ultimately determine the parameters of the initial quantum field
theory. However, this unfortunately did not come to be, not because this approach was
wrong, in fact the idea of providing a topological and metric representation of the couplings
may help in understanding many of their properties, but because physics seems to have
some properties even at the level of the “target space” that are not known. It is of course
not only the target space itself that plays a role. The target space M has, as coordinates,
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only the scalar fields of our theory. However, in this space, various bundle structures exist.
In fact, all non-scalar fields live in a bundle on top of this target space

V → M (1)

If we consider only a scalar field theory with D spacetime dimensions and denote the
scalar fields ϕi, i = 1, 2, ..., n, and we write a local, Hermitian, Poincare invariant Lagrangian
with at most two derivative terms, then we obtain [7]

L = −1
2

gij(ϕ)∂µϕi∂µϕj + ... (2)

where the dots indicate terms with no derivative. The Greek indices go over spacetime
and the Latin indices go over the “coordinates” in the field space (namely our scalar fields).
The coupling of derivative terms is a real symmetric field-dependent matrix gij(ϕ). Due
to unitarity, the kinetic terms must be positive, and hence our matrix must be a positive
definite. Physical quantities should not depend on field reparametrizations

ϕi → ϕ̃i(ϕ) (3)

and the Lagrangian becomes

L = −1
2

g̃ij(ϕ̃)∂µϕ̃i∂µϕ̃j + ... (4)

with

g̃ij(ϕ) =
∂ϕk

∂ϕ̃i gkl
∂ϕl

∂ϕ̃j (5)

We can therefore regard gij as a Riemannian metric on the field space (manifold) M.
A classical field configuration would then appear as

Φ : Σ → M (6)

where Σ is the spacetime, which we may consider to be Minkowski (but that is not neces-
sary), and the target space M is a more complicated space that could even have non-trivial
topology, and on which the scalar fields are coordinates. The Lagrangian then appears as
the trace with respect to the spacetime metric of the pullback of the metric Φ∗g. If we want
to construct the renormalisation group beta functions in a theory with action defined as

S = − 1
2h̄

∫
d2z

∞

∑
l=2

gi1i2...il ϕ
i3 ϕi4 ...ϕil ∂µϕi1 ∂µϕi2 (7)

(considering the Taylor coefficients of the metric gij(ϕ)), we can construct an infinite set
of beta functions which we can assemble in a symmetric tensor βij(ϕ) associated with the
couplings gi1i2.... The RG equations are therefore

µ
∂

∂µ

gij(ϕ)

h̄
= βij(ϕ) (8)

The beta function is expected to be made up of the metric on the field space and its
derivatives. However, we know that the beta function vanishes when the QFT is free, and
hence when the metric is flat. Because of this observation, we can write the beta function as
an expansion in terms of the Riemann tensor and its covariant derivatives. Also considering
some scaling properties with respect to the volume, we obtain

βij = c1Rij + c2gijR (9)



Quantum Rep. 2024, 6 500

In the case of compactification, the geometry and the topology of the field space will
become highly non-trivial and the equations governing the variations in the parameters
describing such compactifications will enter in the equation as dynamical objects with
equations of motion. This definition is purely geometrical and of course also involves
topological features. However, there are additional properties that can be associated
with such dynamical objects. In fact, supersymmetry implies that the couplings are not
independent as they would appear in a Lagrangian that contains scalar and fermion
degrees of freedom. Supersymmetry would make certain selections of the specific bundles
(associated with fermions) that can be constructed over the field space. In supersymmetric
theories, SUSY relations between different couplings are associated with relations between
different geometric structures on our manifold M. In all theories, the associated couplings
are related to various geometric structures and objects that can be associated with or
constructed over our manifold M. What supersymmetry does is define certain main
geometrical structures that can exist on M and introduce new connections between those
structures. It is probably important to briefly describe in this introduction how such
structures come to be. This is so because the main goal of this article is to show that such
geometric structures can be naturally related in ways that do not imply supersymmetry but
in fact imply a higher form of entanglement (and/or correlation) between such geometric
structures and their dynamical parametrizations. An entanglement at this level, which
I call “higher entanglement”, clearly produces a series of new dualities and relations
between geometric structures that were not visible previously. In fact, the introduction of
entanglement is a physical requirement, as nature seems to behave quantum mechanical in
most contexts, and hence would not be visible from a purely geometrical and/or topological
view of the manifold M.

We return therefore to our RG flow equation and analyse them more carefully. The
fixed points of the RG flow are not necessarily zeros of the beta function, and in fact can
correspond to a flow that acts on the metric as a diffeomorphism which would imply that
the action is scale-independent up to field redefinitions. In order to achieve this, we write

βij = Lgij (10)

where Lv denotes a Lie derivative along the vector field v on M. If the invariance of
our Lagrangian field theory is represented as a continuous symmetry group G acting on
the field space, it should leave the metric invariant. Therefore, G should be a subgroup
of the isometry group of our field manifold Iso(M). We can introduce corresponding
infinitesimal symmetries

ϕi → ϕi + ϵAKi
A(ϕ) (11)

which are generated by the vector fields Ki
A∂i with A = 1, 2, ..., dim(G), satisfying the

Killing condition

LKA gij = ∇iKAj +∇jKAi = 0 (12)

and the algebra

LKA KB = [KA, KB] = f C
ABKC (13)

where we use the standard terminology and call f C
AB the structure constants of the Lie

algebra of group G. The Killing vectors Ki
A∂i, defining the geometry of M also prescribe

the minimal coupling of the gauge vector fields AA
µ to the scalars. To gauge the symmetry

produced by subgroup G of the isometry group, we replace in the Lie derivative L the
ordinary derivative with the covariant one

∂µϕi → Dµϕi = ∂µϕi − AA
µ Ki

A (14)

then we obtain infinitesimal gauge transformations
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δϕi = ΛAKi
A

δAA
µ = ∂µΛA + f A

BC AB
µΛC

(15)

The parameters ΛA are arbitrary spacetime functions. We obtain as a consequence the
transformation rule of the covariant derivative as

δDµϕi = ΛA(∂jKi
A)Dµϕj

+AB
µΛC[K j

B∂jKi
C − K j

C∂jKi
B]−

f A
BC AB

µΛCKi
A =

ΛA(∂jKi
A)Dµϕj

(16)

The closure of the gauge algebra implies the covariance of the covariant derivative.
At the same time, the invariance of the kinetic term gijDµϕiDµϕj demands L(ΛAKA)

gij = 0,
and we obtain

δ(gijDµϕiDµϕj) = ΛA(∇iKAj +∇jKAi)DµϕiDµϕj (17)

We can see that the physics of a gauge σ-model is given to a large extent by the
geometry of the target manifold M. The target space seems to have similar properties
with the spacetime manifold, namely it recovers the property of general reparametrisa-
tion invariance and we can therefore identify a target space equivalence principle. Any
physical quantity, local in M and depending only on the metric and its first derivative,
is computed using a flat target space. The couplings of the scalar fields to gauge vectors
are determined by a set of vector fields KA on the target manifold satisfying differential
geometric constraints. In fact, all couplings in the Lagrangian can be associated with
differential geometric structures on the target manifold. If we consider a theory with scalars
ϕi and fermions ψa, with the indices i = 1, 2, ..., n and a = 1, 2, ..., m and we consider a
two-dimensional case (say worldsheet theories), we can construct a general Lagrangian of
the form

L = − 1
2 gij(ϕ)∂muϕi∂µϕj + bij(ϕ)ϵ

µν∂µϕi∂νϕj + V(ϕ)

+ihab(ϕ)ψ̄
aγµ∂µψb + ih̃ab(ϕ)ψ̄

aγ3γµ∂muψb

+kabi(ϕ)ψ̄
aγµψb∂µϕi + k̃abi(ϕ)ψ̄

aγµγ3ψb∂µϕi

+yab(ϕ)ψ̄
aψb + ỹab(ϕ)ψ̄

aγ3ψb

sabcd(ϕ)ψ̄
aψcψ̄bψd + ...

(18)

with each coupling being a function of the scalar fields (coordinates) ϕi. The important
aspect of this representation is that every term and hence every coupling in this Lagrangian
is seen as a geometric structure on the target manifold. The function gij(ϕ) is a Riemannian
metric, the coupling bij(ϕ) is a differential 2-form b = 1

2 bij(ϕ)dϕi ∧ dϕj, and V(ϕ) is just a
scalar field on M. If we go to the Majorana–Weyl representation, the chiral fermions ψa

±
are sections of vector bundles over the spacetime Σ given a field configuration Φ : Σ → M.
They are pullbacks Φ∗V± of real vector bundles V± → M with fibre metrics h±ab. In general,
fields with non-zero spins can be seen as sections of vector bundles of the form

SR ⊗ Φ∗V → Σ (19)
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where SR → Σ is regarded as a vector bundle associated with the spin representation R of
the respective field, and V is a target space bundle that characterises the interaction of that
field with the scalars. The derivative couplings are determined by the covariant derivatives
with the associated connection being the natural connection on the bundle. We therefore see
that in all theories, the couplings are described by geometric objects and that such objects
are a priori independent of each other. Supersymmetry acts as a selector of the specific
geometric structures that are compatible with it, and moreover, due to supersymmetry, new
connections between such geometric structures are implied. However, and this is the main
subject of this article, there are other types of connections, not initially represented in a form
of symmetry, but rather in the form of a correlation between such geometric structures;
in particular, if a wavefunction description is understood on this target space, a higher
form of entanglement that correlates geometric structures can in fact exist. The existence
of such a new higher form of quantum correlations is what this article constructs by first
identifying potential entanglement between auxiliary or ghost fields. As it is clear that such
fields would not appear as exterior fields associated with some measurable particles, I am
not however concluding that because of that, there is no quantum structure and higher
correlation to be found among those fields. In fact, there should be, and such entanglement
should be associated with some dualities in ways that were not known previously.

3. Auxiliary Fields

Auxiliary fields are essential in formulating a series of theories, from supersymmetric
theories to gauge theories, in the context of quantum mechanics. The reason why these
auxiliary fields are important is because they are literally used to keep track of certain
properties that do not appear in instances where the theory is naively realised. To be
more specific, we need to introduce auxiliary fields in order to keep track of the chiral
components of on-shell Weyl fermions. Why do we need that? Simply put, off shell, the
Weyl fermions are not really Weyl fermions anymore. They gain additional fermionic
degrees of freedom and are described by a Dirac fermion with four degrees of freedom, not
by the two degrees of freedom of the Weyl fermions. Because of this, if we tried to describe
a new symmetry (say, accidentally supersymmetry) on shell, we will notice that its algebra
will not close. Therefore, we are required to modify our initial symmetry transformations to
account for the additional off-shell degrees of freedom by introducing auxiliary fields that
vanish by the equation of motion on shell. The same situation happens for gauge degrees
of freedom and in other situations, for example, in the case of BRST quantisation. A more
general situation is the Batalin–Vilkoviski method of quantisation or the field–anti-field
approach. Given that such fields are essentially non-dynamical (from the perspective of
on-shell physics) and they do in fact have no effect once they are eliminated by integration
(and by specifying the equation of motion on shell, depending on the case), we often
call this prescription as “a trick”. Such a “trick”, however, is not as inoffensive as one
may think. It works fine, by all means, but it is an indicator of additional global effects
that happen off shell and do in fact impact our on-shell analysis, even if it just amounts
to transformations of the presupposed algebras by means of the auxiliary fields (I am
thinking at the F-fields in supersymmetry, for example). What happens is that additional
degrees of freedom, vectorial, fermionic, etc., happen to have an impact on how we have
to define our symmetries (if we want to define them), although the fields themselves are
irrelevant on shell. In this article, I take those auxiliary fields more seriously and ask
whether they have additional quantum properties that the simple Lagrangian formulation
of our theories does not immediately take into account. In fact, I consider that such auxiliary
fields may in fact not only have quantum properties, but may even be entangled, and this
entanglement, while not obviously manifested or visible off shell, produces effects that are
non-local in nature, coupled, with several or any scales, and are extremely important in
our theories; however, they are lost simply because our theories are relying on simple or
semi-simple compact groups and their unique associated Lie algebras. Entanglement effects
of degrees of freedom that appear off shell only amount to modifications of the associated
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group structure, making it potentially not even a group, but a formal group, with a totally
different and non-trivial global structure. Beyond this approach, the off-shell structure may
involve higher gauge symmetry and the associated categorification may imply the existence
of higher field forms coming together with their entanglement. The main idea is to present,
side to side, two constructions, one in which we create an entangled system, bringing that
discussion up to the point of obtaining an entangler gate by means of a series of ancillas,
and the other is one in which we obtain T-duality by means of the use of auxiliary fields
and the integration over them. The parallelism between those two constructions leads
us to the conclusion that something similar to entanglement is expected to occur at the
level of the auxiliary (off-shell realised) degrees of freedom. Given such off-shell quantum
properties, it is interesting to consider whether the off-shell region does not act in a more
than trivial way on the constructions that can be realised on shell, in particular by means of
global effects and non-perturbative phenomena originating in quantum information theory.

4. T-Duality as a Result of a Higher-Entangled State

We expect to have a functorial relation between general relativity and quantum me-
chanics, although it is not fully understood what exactly the functor should be. We do
understand, following J. Baez and his categorial approach to the two theories, that the
non-Cartesianities of the two categories, that of the Hilbert spaces and the linear operators
between them, and that of smooth manifolds and cobordisms, are linked by some functor
that allows us to interpret operations in one theory by means of analogue operations in
the other. This approach leads us to the understanding that there is a deeper connection
between the two that we did not fully explore until now. However, what seems to be par-
ticularly intriguing is how the two theories deal with global structure and particularly how
they transition from local to global structures. While it is true that both do this and hence
their structures are linked precisely by this, the mathematical tools used to link local and
global structures are so different that a unification is still lacking. String theory, surprisingly,
has one component that makes this connection apparent, namely, T-duality, which in some
flux compactifications indeed links two string theories with different topologies, and in
particular, also links scales, transforming the trajectory of scale transformations from a
straight line to a circle. In fact, string theory solves many of the conundrums of quantum
gravity, so much so that it has convinced many (and certainly this author) that if it is not
the final theory of quantum gravity, it certainly walks the right path. In general, T-duality
links a theory with a large spacetime radius with another with a small radius. In the case of
one single compactified dimension with radius R, all physical properties of an interacting
theory remain unchanged if one replaces

R → α

R
(20)

Of course, this works if the dilaton field is transformed by

ϕ → ϕ − log(R/
√

α′) (21)

This can be expanded to the case of toroidal compactifications for a constant metric
and an antisymmetric tensor as

(g + b) → (g + b)−1

ϕ → ϕ − 1
2 log(det(g + b))

(22)

The T-duality is generally regarded as somewhat mysterious. However, considering
the connection between the fibre bundle construction of gauge theories and of gauge con-
nection on one side, and the quantum mechanical entanglement as well as the emergence
of spacetime (and in general geometry) from entanglement, the idea that small and large
scales of a theory with interactions should generate equivalent theories is not as surprising
anymore. If indeed we have a functorial connection between quantum mechanics and
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gauge theory, as I expect to be the case, T-duality linking vastly different metric scales
is just the reflection of the relation between long- and short-length entanglement. Being
fundamentally a correlation and taking into account the global structure of the base mani-
fold, entanglement should have the same properties, linking vastly different scales; hence,
T-duality should be nothing but a reflection of this nature of entanglement for sigma models.
Moreover, the causal structure, and hence the concept of spacetime interval, is altered by a
T-dual approach. Focusing on the nature of the pairing in quantum mechanics and gauge
theory and on the functorial connection between the two, it is interesting to try to analyse
T-duality from a quantum mechanics point of view, allowing for its quantum nature to
emerge. Let us focus on the quantum result that the state space of a composed system is
not reducible to the Cartesian product of the state spaces of its subsystems. This implies
that there is a global structure to be accounted for. The non-trivial fibre bundles describe
precisely how such a local Cartesian product fails to be replicated globally. Fascinatingly
enough, when deriving the T-duality, one obtains an exact analogue of quantum entan-
glement for gauge theories (or sigma models). Let us consider a manifold M with metric
gij with i, j = 0, ..., d − 1, the usual antisymmetric tensor bij and the dilaton field ϕ(xi).
The σ-model associated with it has at least one symmetry associated with an (in this case
abelian) isometry on the metric. The procedure of obtaining the T-duality is to first gauge
the isometry group, introducing the gauge field variables A. The field is required to be
flat by means of a Lagrange multiplier ξ · dA. We then perform two equivalent operations
differing simply through the order in which they are performed. First, we integrate over ξ
and obtain a δ function dA on the measure and the result of our constraint, namely that
A = dψ is a pure gauge and is being implemented. If we fix ψ = 0, we recover the original
model. Next, we first integrate the gauge field A. We do not have a gauge kinetic term;
hence, we simply perform a Gaussian integration and obtain a Lagrangian depending on
the original variables and the auxiliary variable ξ. We continue by fixing the gauge and
obtain the dual action. It is important to highlight the aspects that are based on a quantum
information understanding of the procedure leading to this duality. The novelty here lies in
the interpretation, namely that T-duality can be seen as an effect of quantum entanglement
in a categorial sense, applied to higher structures, leading to “entangled theories”. This in-
terpretation may shed new light on the origins of dualities in gauge and string theories. The
first step is to lift the field space to a higher space, incorporating the gauge fields associated
with the isometries of the metric. Then we require that for the resulting field, the gauge
connection is flat, this condition being implemented by an additional field introduced in
the Lagrange constrained as an auxiliary field, or an extended form of an ancilla quibit,
encoding a technique of fixing part of the global structure. We take the inspiration from
control ancilla-mediated quantum computation. In fact, the method generating T-duality
(at least for the abelian case) is analogous to the manipulation of registers via ancilla qubits,
leading to an entangled system. Basically, in the first part, we implement the construction
of an ancilla entangled with the first set of fields in our initial theory. Another ancilla comes
on the other side of the theory in the form of our condition having a pure gauge field and a
flat connection, implemented via another auxiliary field. Now, we integrate/measure the
ancillas erasing the information regarding what theory is “entangled” to what ancilla. We
obtain a fully entangled state between four objects. If next, we implement a “measurement”
on each ancilla separately, and we obtain an entangled state between the two regions. In
quantum information, the protocol is relatively simple. We construct the ancillas as∣∣C±

α

〉
= N (|α⟩ ± |−α⟩) (23)

with N± = 1√
2(1±e−2|α|2 )

. The two-qubit measurement process of the two ancillas generated

as a two-qubit measurement produces the global state, while the single-qubit ancilla
measurements make the entanglement manifest. What we obtain is an entangled state
between the two sides with unit probability. The procedure is as follows: First, we generate
local entanglement between two non-interacting qubits, using ancilla qubits. The four
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qubits are initialised, for example, in the |+⟩ state. Next, a CPHASE gate is applied to the
first qubit and its ancilla, followed by a Hadamard rotation of the first qubit. The same is
applied on the second qubit and its ancilla. This generates an entangled state of the first
qubit with its ancilla and the second qubit and its ancilla

|e1⟩ = 1√
2
(| f , f ⟩+ |a1, a1⟩)

|e1⟩ = 1√
2
(|s, s⟩+ |a2, a2⟩)

(24)

We then perform a two-qubit measurement on the two ancillas. The result is a four-
qubit entangled state that, according to the outcome of the measurement, is either

1√
2
(| f , f , s, s⟩+ |a1, a1, a2, a2⟩) (25)

or
1√
2
(| f , a1, s, a2⟩+ |a1, f , a2, s⟩) (26)

Performing single-qubit measurements on the ancillas, the first and second qubits
become projected onto a particular entangled state, for example, a Bell state,

|Ψ⟩ = 1√
2
(|+,+⟩+ p|−,−⟩) (27)

This has led to an entangled state between the first and the second qubit. The procedure
followed is represented in a parallel fashion in Figure 1. There, I show how the two
prescriptions are equivalent and strongly suggest that T-dual theories are functorially
related to entanglement creation and measurement via ancillas.

Figure 1. The paths leading to T-duality and the paths leading to entanglement via ancilla.

While this procedure is not fundamentally new, it is important to understand how it is
realised in a categorial interpretation of entanglement, looking at gauge theories instead of
quantum qubits.

First, gauge theories have an entanglement remnant from their construction as fibre
bundles that implement, generally non-trivial, topological structures that are not describ-
able globally by means of Cartesian products of local patches.

Indeed, if one considers the procedure of generating a gauge field, hence “gauging
a symmetry”, one basically defines a gauge connection on a fibre bundle, and in order
to do that, one requires the gauge group, which defines the global structure. This makes
the patches that one wishes to connect on the base manifold fundamentally impossible
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to decouple and decompose in separated, disjoint objects that would retain the global
information. This is where the tension between local and global structures emerges and
why we share the fibre bundle construction both in the case of gauge theories and in the case
of a geometrical interpretation of quantum wavefunctions. The fact that our basis manifold
in our derivation of T-duality has a gauge symmetry that we wish to gauge introduces
a global structure which we can use to create “entangled” theories, in a categorial sense.
In this case, however, we introduce a gauge field that is associated with a flat connection,
and in order to do that we also introduce another field that implements this constraint.
These are our ancilla constructions. We then perform two operations in different orders.
What those realise is that eliminating the information between the two regions of the
“entangled” theory is associated with each theory, and hence “entangles” the two sides of
our construction. Then, we integrate over the respective ancillas individually, obtaining two
theories that are dual. The two dual parts of the theory are represented by the two higher-
entangled theories; hence, it comes as no surprise that the resolution of one provides insight
on the solutions of the other. Let us rephrase: We have two qubits that are not entangled.
We bring in two ancillas, they represent two auxiliary fields in our construction, both
having the role of gauging a symmetry of the worldsheet and implementing a constraint
on the global structure (imposing a flat connection). By the way they are introduced,
they generate global information shared by the two sides of our to-be duality. Our flat
connection condition generates the globally shared information. Now we can decide to
integrate out and eliminate the two ancillas, each at a time, leading to two theories, which
continue to carry the global information shared by the previous conditions implemented
by the ancillas but now are directly entangled. This results in two theories that are said to
be T-dual. This therefore shows that, in this interpretation of the gauging procedure, the
resulting duality is basically a higher form of entanglement.

It is not trivial to construct this type of higher entanglement. We need to give a
pertinent definition of the operations we find in designing quantum information circuits
that play a role in the operations we can perform on gauge theories and σ-models. This
amounts to a consistent part of the argument being constructed by means of, what mathe-
maticians would call, abstract nonsense, and as is usually the case with abstract nonsense,
the results are deep and far-reaching. In general quantum algorithms, ancilla qubits are
required because they need to maintain some level of reversibility of the computation.
Indeed, quantum computation must be reversible, something that it has in common with
the category of cobordisms in the worldsheet description of spacetime. If one creates a
state, one cannot simply turn it off, as is the case in classical computation, where the effects
can be eliminated by simply setting a variable to its natural zero state. The same is valid
for spacetime worldsheets. Their history is preserved no matter what we decide to do
at some point, and hence one cannot simply “undo” the effects encoded in its history by
turning a spacetime worldsheet “off”. Ancilla qubits can be used to preserve the global
information over entangled states, while performing operations on the original states them-
selves, using local operations. Without such ancilla qubits, such operations would not be
allowed by means of local computation. In an analogous sense, let us consider what we are
performing in the construction of T-dual theories. Considering the process of introducing
the auxiliary gauge fields as analogues to ancillary qubits, we introduce them to encode
the gauge symmetry while enforcing a special global structure, namely that the overall
curvature vanishes. We prepare and preserve this by means of another auxiliary variable
(analogue to a second ancilla qubit). However, while we keep the curvature term zero, and
we expect the fields to be pure gauge, global information exists that has been encoded and
shared between the two dual partners. The ancilla qubits preserve it in a sense analogous
to entanglement, just applied at a higher level, between two dual theories. The process
of “measurement” is basically the result of integrating out the respective fields, hence the
process of “undoing” the local structures created before via the ancillas. While we undo
the local actions, we preserve the “entanglement” which is recovered globally as two dual
theories. Hence, T-duality appears to be some higher form of entanglement which can
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be interpreted by means of quantum circuits in some higher category where a functorial
relation between the quantum circuits and gauge theories manifests.

5. Conclusions

Quantum information theory has universal validity. By this, we usually mean that
we can create entangled states of objects and perform universal computations on them.
However, a more general notion of universality exists, one that is related to a categorial and
functorial interpretation of quantum information that remains valid not only at the level of
entangled photons or electrons, but also at a more abstract and hence more fundamental
level, for example, in the case of categories that have similar properties as quantum
mechanics and hence form an axiomatic point of view, and are already “quantum”. An
axiomatisation of quantum mechanics has not been performed, but is deeply desired. While
not having such a formulation, I assumed that the non-separability of spaces of states in
simple Cartesian products of states is a fundamental aspect of quantum mechanics, and it
is valid at the level of the fibre bundles which are also known to encode how a Cartesian
product fails to be Cartesian due to global information. In reality, entangled states are
exactly what remains if one eliminates from a quantum space of states all the states that
are separable. Hence, this property seems to be rather general. By using this admittedly
heuristic approach, one can implement quantum information operations on structures that
are more general than our usual quantum states. In fact, it is not known if there are other
physical systems except the quantum ones that exhibit such non-separability properties.
Hence, at least at the level of conjecture, one can assume this to be a fundamental aspect
of a system being quantum. On the other side, more axioms will most likely be needed to
properly define quantum mechanics. I expect, however, that this structure defined here
will be maintained even when such axioms are added in a consistent way. However, it
is also possible that by giving up on some or all of the other axioms, new more general
versions of “quantum mechanics” will emerge. I do not know whether those will be
relevant in any physical sense. Here, I used the analogue of ancilla qubits to explain a
well-known procedure of introducing auxiliary fields in a gauge theory and integrating
them away, in the same way in which we use ancillas in quantum mechanics to introduce
operations we wish to annihilate after their use. Of course, those operations will leave their
global, locally undetectable, traces on the combined system, which are here interpreted as
a T-duality. There is much work left. First, I did not discuss the non-abelian case of the
manifold isometry, which creates its own complications. Then, it is strongly desirable to
refine the concepts and give a proper definition of the respective operations carried out, as
well as a stronger connection between the gauge theory tricks involved and ancilla qubit
constructions in quantum information. At the same time, it would be desirable to show
some universal properties that would encode more general principles of dualities between
various σ-models and to properly encapsulate them in a categorial approach. If anything,
I hope this article will spark new research in the connection between gauge and string
theory dualities on one side and quantum information and its categorial interpretations on
another side.
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