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Abstract: Potential applications of quantum dots in the nanotechnology industry make these systems
an important field of study in various areas of physics. In particular, thermodynamics has a significant
role in technological innovations. With this in mind, we studied some thermodynamic properties in
quantum dots, such as entropy and heat capacity, as a function of the magnetic field over a wide range
of temperatures. The density of states plays an important role in our analyses. At low temperatures,
the variation in the magnetic field induces an oscillatory behavior in all thermodynamic properties.
The depopulation of subbands is the trigger for the appearance of the oscillations.

Keywords: quantum dot; chemical potential; magnetization; entropy; heat capacity; magnetocaloric
effect

1. Introduction

The study of the two-dimensional electron gas (2DEG) is crucial for understanding
physical phenomena in semiconductor materials, offering valuable insights into charge
transport [1], high-mobility phenomena [2], and quantum properties in nanostructures [3,4],
all pivotal for advancements in electronics and nanotechnological devices [5–7]. 2DEG has
been used to describe the physics of various mesoscopic models to study the properties
of quantum dots [8–11], quantum rings [12–16], and other effective theories [17–19]. Over
the years, extensive research has focused on the thermodynamics of a two-dimensional
electron gas and its dependence on magnetic fields. Experimental data reveal that equilib-
rium properties at low temperatures exhibit oscillations depending on the magnetic field
strength [20–22]. Theoretically, when a magnetic field is applied perpendicular to the 2DEG
plane, degenerate energy levels, the Landau levels, are formed [23]. This characteristic is
the basis for the oscillatory behavior of all thermodynamic properties, such as the oscilla-
tions observed in heat capacity, chemical potential, and de Haas–van Alphen oscillations
(dHvA effect) in magnetization [24–28]. Chemical potential plays an important role in
understanding oscillations. Hence, importance is given to the study of the dependence of
chemical potential on the magnetic field and temperature [29].

The investigation into the thermodynamic properties of semiconductor quantum dots,
as pursued in this study, plays an important role in comprehending the behavior of these
nanostructures under diverse conditions [30–37]. Exact energy spectra and wave functions
are obtained analytically when a parabolic potential models a quantum dot. In contrast
to the Landau levels, accidental degenerations occur when the magnetic field varies [38].
This behavior is responsible for much of the new physics uncovered in the quantum dot
systems [39]. Determining electronic states, internal energy, magnetization, Helmholtz free
energy, specific heat, and entropy contributes to the fundamental understanding required
for harnessing these materials in various technological applications. In this work, we offer
an alternative approach for exploring thermodynamic properties, relying on density of
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states (DOS) calculations rather than the grand partition function approach commonly
found in the literature (see, e.g., Ref. [40]). We employ the canonical ensemble, where
the number of particles in the quantum dot remains fixed while the system exchanges
energy with a thermal reservoir. This approach allows us to study temperature-dependent
thermodynamic properties without changing the number of electrons in the system.

The structure of our article is presented as follows. In Section 2, we present the model
that describes the motion of an electron with effective mass m∗ and electric charge confined
by a radial potential in the presence of a uniform magnetic field along the z-direction.
We derive the Schrödinger equation for the system and determine the eigenvalues of
energy and corresponding wave functions. Next, we present the density of the model’s
states. Section 3 is dedicated to studying the chemical potential of the system, particularly
considering the scenario of a semiconductor quantum dot with multiple electrons. We
explore the Fermi energy and its relationship with the physical parameters involved. In
Section 4, we examine the magnetization as a function of the magnetic field at different
temperatures. Section 5 is dedicated to the study of the system’s entropy. We take the
opportunity to present an important physical phenomenon, the magnetocaloric effect,
which consists of the variation in temperature as a function of the magnetic field. In
Section 6, we study the heat capacity of a two-dimensional electron gas in a quantum dot.
Our conclusions are given in Section 7.

2. Description of the Model

In this section, we describe the model of an electron with effective mass m∗ and charge
e confined by a radial potential V(r) and under the influence of a uniform magnetic field B
along the z-direction. The motion of the particle is governed by the Schrödinger equation
with minimal coupling[

1
2m∗ (p − eA)2 + V(r)

]
ψ(r, φ) = Eψ(r, φ), (1)

where p is the momentum operator and A denotes the vector potential. In this formulation,
we adopt the symmetric gauge vector potential given by

A =
Br
2

φ̂, (2)

where B represents the magnetic field strength. Additionally, the confinement potential is
given by [41]

V(r) =
a1

r2 + a2r2 − V0, (3)

where V0 = 2
√

a1a2. This potential has a minimum at r0 = (a1/a2)
1/4. Furthermore, it can

be shown that ω0 =
√

8a2/m∗, which defines the strength of the transverse confinement.
It is known that any variation in parameters a1 and a2 implies changes in the spatial
distribution of the electron. The radial potential is a model for the theoretical definition of a
ring of average radius r0 with finite width. However, it can also describe other systems, such
as a quantum dot with the condition a1 = 0. The radial potential creates an environment
where the electron’s quantum properties are highlighted, giving rise to phenomena such as
confinement and discrete energy level structures. Through the model of the interaction of
an electron with the magnetic field at a radial potential, we can explore phenomena such
as bound-state formation, discrete energy spectra, and spatial confinement effects. These
aspects are fundamental for understanding the physics of nanostructured systems and their
potential applications in quantum devices.

The energy eigenvalues and wavefunctions of Equation (1) are given, respectively, by

En,m =

(
n +

1
2
+

L
2

)
h̄ω− m

2
h̄ωc − V0, (4)
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and

ψn,m(r, φ) =
1
λ

√
Γ[n + L + 1]

2πn!(Γ[L + 1])2 eimφe−
r2

4λ2

(
r2

2λ2

) L
2

M
(
−n, 1 + L,

r2

2λ2

)
, (5)

where L =
√

m2 + 2a1m∗/h̄2 is the effective angular moment, n = 0, 1, 2, . . . is the radial
quantum number, which denotes a subband, m = 0,±1,±2, . . . is the magnetic quan-
tum number. Also, M(a, c, x) is the confluent hypergeometric function of the first kind,

ω =
√

ω2
0 + ω2

c is the effective cyclotron frequency, ωc = eB/m∗ is the cyclotron frequency,

and λ =
√

h̄/(m∗ω) is the effective magnetic length.
By using Equation (4), we can show that the minimum energy of a subband is given by

En,0 =

(
n +

1
2

)
h̄ω, (6)

and the separation energy between the bottoms of neighboring subbands is h̄ω.
In a ring, the number of states at energy E in a subband is given by

Nn =
∆N
h̄ω

√
(E + V0 − En,0)

2 − V2
0 Θ(E − En,0), (7)

where

∆N =

(
2ω

ω0

)2
, (8)

and Θ(E − En,0) is the Heaviside function. From this result, we compute the density of
states of a subband:

Dn(E) =
∆N
h̄ω

E + V0 − En,0√
(E + V0 − En,0)

2 − V2
0

Θ(E − En,0), (9)

The density of states of a two-dimensional quantum ring has poles at E = En,0, which
leads to the appearance of Van Hove singularities [42].

In this work, we focus on the case of a quantum dot. So, the density of states of a
subband is reduced to

Dn(E) =
∆N
h̄ω

Θ(E − En,0). (10)

The total density of states takes a ladder-like function. For a quantum dot, the param-
eter ∆N is the number of states in a subband in energy interval En,0 ≤ E < En+1,0. The
density of states is of fundamental importance in studies of a 2DEG. This parameter is
directly derivable from measurable properties such as magnetization, capacitance, and heat
capacity [21,28].

In the subsequent sections, we study the dependence of some thermodynamic prop-
erties of quantum dots on temperature and magnetic field. For numerical analysis, we
consider a sample made of GaAs with the effective mass of the electron m∗ = 0.067me,
where me is the electron mass. We also consider that there are N = 1400 spinless electrons.
The confinement energy parameter used for this purpose is h̄ω0 = 0.459 meV [43].

3. Chemical Potential

The Fermi energy corresponds to the energy of the topmost filled level in the N electron
system [42]. Furthermore, a subband at the Fermi energy is only partially occupied. With
that in mind, we can define the Fermi energy as

EF =

(
nmax +

1
2

)
h̄ω + δh̄ω. (11)
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In this equation, nmax corresponds to the highest occupied subband at the Fermi
energy, and 0 ≤ δ < 1. These parameters are given, respectively, by

nmax ≡ [x], x =

√
1
4
+ 2ν − 1

2
, (12)

where [x] denotes the largest integer less than or equal to x, ν = N/∆N, and

δ =
ν

nmax + 1
− nmax

2
. (13)

By using the results above, we can also express the Fermi energy as a function of the
parameter δ and the filling factor ν as

EF = h̄ω

√(
1
2
− δ

)2
+ 2ν. (14)

It is worth noting that an expression for Fermi energy as a function of the square root
of number electrons N and the frequencies ω and ωc was obtained in Ref. [44], where
the authors use a geometric approach to study some physical properties of quantum
dots. Such a result corresponds to the case when δ = 0 in Equation (14). Comparing
Equations (6) and (11), this particular case tells us that the Fermi energy is located at the
bottom of the subband, i.e., when the subband is nearly depleted. These are the points at
which the model from Ref. [44] coincides with the exact results.

So far, we have considered the ideal case of zero temperature. However, from the
density of states, given by Equation (10), we can obtain the chemical potential and mag-
netization at any temperature. In addition, other thermodynamic properties that depend
on temperature can be accessed, such as the heat capacity of electrons and the system’s
entropy. In that case, the number of electrons is computed as [22,42]

N =
∞

∑
n=0

∫ ∞

0
f (E, µ)Dn(E)dE. (15)

In this equation, Dn(E) is given by Equation (10), and f (E, µ) is the Fermi–Dirac
distribution function, given by

f (E, µ) =
1

1 + exp
(

E−µ
kBT

) , (16)

where µ is chemical potential and kB is the Boltzmann constant. In a system at temperature
T containing N electrons, the chemical potential is calculated from Equation (15). In the
limit T = 0, the chemical potential corresponds to the Fermi energy given by Equation (11).

Figure 1 shows the dependence of the chemical potential on the magnetic field at
different temperatures. In Figure 1a, the black and brown lines correspond to the Fermi
energy computed from Equation (11) and self-consistently [45], respectively. As we can
see, our approach leads to an excellent agreement on the exact result. Nevertheless, our
model considers a continuous density of states of a subband, meaning some results are
not observed. In Section 4, we will return to this question. The oscillations, consisting of a
series of almost parabolas with cusps pointing upward, are attributed to the depopulation
of energy subbands when the magnetic field increases. Peaks occur when the Fermi energy
is at the bottom of a subband, which, as noted above, occurs with the condition δ = 0. Thus,
Equation (13) provides

Bpeaks =
m∗ω0

e

√
N

2n(n + 1)
− 1, n ̸= 0, (17)
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which corresponds to the magnetic field values for the oscillations to take maximum
value. This result was also obtained in Ref. [44]. Another result that we can obtain
from Equation (17) is that increasing the confinement intensity h̄ω0 leads to the shift of
the peaks to higher magnetic fields. However, there is no increase in the number of
oscillations. We can verify this result by noting that the number of oscillations depends on
the number of subbands occupied when B = 0, which we can obtain from Equation (12).
Therefore, increasing the confinement energy leads to a reduction in the magnetic field
effects. Increasing the confinement energy also increases the Fermi energy. The shift of
peaks to higher magnetic fields also occurs if the number of electrons N increases. In this
case, there is also an increase in the number of oscillations. Equation (8) shows that ∆N
increases with the square of the magnetic fields. The ∆N parameter is small for weak
magnetic fields, so many occupied subbands are required to accommodate 1400 electrons.
Furthermore, the depopulation of subbands is rapid. For strong magnetic fields, it is
the opposite; namely, ∆N is large such that few occupied subbands are needed, and
depopulation occurs over a larger magnetic field range. This explains both the increase in
the amplitude and the increased period of the oscillations. Exactly when the subband with
n = 1 is completely depopulated, ∆N = 1400 such that all electrons can be fitted into the
subband with n = 0. In this case, there are no more oscillations. The quantum dot states
tend to the usual Landau quantization in the range of strong magnetic fields.
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Figure 1. (a) The black line corresponds to the chemical potential at T = 0 computed from
Equation (11). To compare with exact results, we also plot the Fermi energy computed self-
consistently (line brown). In (b,c), the red and blue lines correspond to the chemical potential
at finite temperatures obtained from Equation (15). We plot the chemical potential at T = 0 (black
line) to better visualize the temperature effect. The dashed lines in (a–c) show the position at which
subbands with n = 1, 2, 3, 4, 5 are depopulated. The corresponding magnetic fields are obtained from
Equation (17).
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For finite temperatures, Figure 1b,c show that the oscillations are softened and washed
out. Furthermore, we can observe the decrease in chemical potential at finite temperatures.
Indeed, as the number of electrons N must remain constant, the chemical potential must
decrease with increasing temperature. In the high-temperature regime, the role played by
subband depopulation is less important.

4. Magnetization

At zero temperature, the magnetization of a system containing a fixed number N
of electrons is given by M = −∂U/∂B, where U is the total internal energy, which is
computed from

U =
nmax

∑
n=0

∫ EF

0
EDn(E)dE. (18)

Since the density of states is independent of the energy range considered, the total
internal energy is easily calculated:

U =
1
2

nmax

∑
n=0

(
E2

F − E2
n,0

)
Dn(E). (19)

Consequently, we can show that the magnetization is given by

M = −M0

(ωc

ω

)(6U − 4NEF
h̄ω

)
, (20)

where M0 = h̄e/2m∗.
For magnetic fields in which only the subband with n = 0 is occupied, we can show

from Equation (20) that the magnetization is given by

M = −NM0

(ωc

ω

)
(1 − δ). (21)

For strong magnetic fields, ω → ωc, while δ → 0. Consequently, the absolute value of
magnetization tends to NM0.

The magnetization for non-zero temperatures is given by

M = − ∂F
∂B

, (22)

where F, the free energy, is computed as

F = Nµ − kBT
∞

∑
n=0

∫ ∞

0
ln
[

1 + exp
(

µ − E
kBT

)]
Dn(E)dE. (23)

Figure 2 shows the dependence of magnetization on the magnetic field at different
temperatures. The oscillations correspond to the dHvA effect. In Figure 2a, the black
line corresponds to the magnetization computed from Equation (20). The brown line
corresponds to the exact magnetization results. Here, we understand the question raised
in Section 3 about the density of states. It is a well-known result in the literature that in
addition to dHvA-type oscillations, there is also a second oscillation in the magnetization
of low-dimensional systems. These oscillations are associated with crossing states and
are defined as AB-type oscillations [43]. For low magnetic fields, where ωc ≪ ω0, the
AB-type oscillations superimpose on the dHvA-type oscillations. For strong magnetic fields,
where ωc > ω0, it is the opposite; AB-type oscillations are suppressed by increasing the
magnetic field, while the amplitude of dHvA-type oscillations increases. This is precisely
the situation presented by the brown line in Figure 2a. In our model, the density of states is
a continuous parameter. As a result, AB-type oscillations are not observed. We emphasize
the small amplitudes of these oscillations, particularly in the regime of strong magnetic
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fields. As a consequence, the amplitude of these oscillations decreases at temperatures
lower than those shown in Figure 2b,c [16].
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Figure 2. (a) The black line corresponds to the magnetization at T = 0 computed from Equation (20).
We also plot the exact magnetization results (brown line) for comparison. In (b,c), the red and
blue lines correspond to the magnetization at finite temperatures obtained from Equation (22). The
dashed lines in (a–c) show the position at which subbands with n = 1, 2, 3, 4, 5 are depopulated. The
corresponding magnetic fields are obtained from Equation (17).

5. Entropy

The entropy of the system is computed from S = −∂F/∂T. Using F given by
Equation (23), we write the entropy as

S = kB

∞

∑
n=0

∫ ∞

0

ln
(

1 + e
µ−E
kBT

)
+

E−µ
kBT

e
E−µ
kBT + 1

Dn(E)dE. (24)

Figure 3 shows entropy as a function of the magnetic field in different temperatures.
From Figure 3a, we can see that the entropy oscillations are almost perfectly sawtoothlike
for lower temperatures. The vertical dashed lines, which correspond to the B values given
by Equation (17), show that at each dHvA period, the entropy is pinned to its value at zero
magnetic fields. Entropy is assigned to the states of a subband within an energy range kBT
of the chemical potential that can be thermally excited to higher levels. Far from the bottom
of a subband, in the ranges of magnetic fields where the chemical potential is equivalent to
the Fermi energy, the entropy is approximately given by [46].
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Figure 3. Entropy (Equation (24)) as a function of the magnetic field in a wide range of temperatures.
The dashed lines in (a–c) show the position at which subbands with n = 1, 2, 3, 4, 5 are depopulated.
The corresponding magnetic fields are obtained from Equation (17). In (d), temperatures vary
from 1.0 K to 30.0 K, with a range of 1.0 K. The curves highlighted in red and blue correspond to
temperatures of 1.0 K and 5.0 K, respectively.

S ≃ 1
3
(nmax + 1)π2Dn(E)k2

BT. (25)

As T → 0, S → 0, in accordance with the third law of thermodynamics. On the other
hand, near the bottom of a subband, the contribution of thermally excited states of the
subband that is being depopulated decreases, which implies a reduction in the system’s
entropy. When the contribution from the lower subbands prevails, the entropy increases
again with the increase in the magnetic field. Although entropy is an increasing function
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of temperature, the dependence is not always linear. For example, in strong magnetic
fields, the rate of entropy change is high at low temperatures; at high temperatures, it is the
opposite. This result can be seen in Figure 3c.

In a thermally isolated system, there is no exchange of energy, and any process
that occurs must be carried out adiabatically, i.e., the entropy must remain constant. As
described above, entropy presents a complex pattern as a function of the magnetic field
in different temperature regimes. In this context, for entropy to remain constant for all
magnetic field values, the temperature must be a function of the magnetic field; this is
the definition of the magnetocaloric effect [25,35]. The magnetocaloric effect is said to be
normal when the temperature increases with the magnetic field. Figure 4 shows that this
scenario occurs when the chemical potential is close to the bottom of a subband. On the
other hand, when the temperature decreases with an increase in the magnetic field, we
have the inverse magnetocaloric effect. Figure 4 shows that this scenario occurs when
the chemical potential is far from the bottom of a subband. In particular, the inverse
magnetocaloric effect occurs in the range of strong magnetic fields occupied by a single
subband. This is also the case when the initial temperature is very high, as we can infer
from Figure 3c. In Refs. [47,48], Reis addressed the connection of oscillations found in
thermodynamic quantities of diamagnetic materials with potential applications due to its
inverse and normal magnetocaloric effect at low temperatures. Furthermore, quantum dots
stimulate theoretical and experimental research, given the variety of applicability of these
heterostructures. This information reinforces our results as a basis for future applications.
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Figure 4. Temperature as a function of the magnetic field. The dashed lines in (a,b) show the position
at which subbands with n = 1, 2, 3, 4, 5 are depopulated. The corresponding magnetic fields are
obtained from Equation (17).

6. Heat Capacity

The heat capacity of the electron gas is given in general as

Ce =
∞

∑
n=0

∫ ∞

0

d f (E, µ)

dT
Dn(E)(E − µ)dE. (26)

Following the same procedures as in Ref. [25], we can show that the heat capacity can
be written as

Ce = kB

(
L2 −

L2
1

L0

)
, (27)
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where we define the parameter Lr as

Lr =
∞

∑
n=0

∫ ∞

0

exp
(

E−µ
kBT

)
[
1 + exp

(
E−µ
kBT

)]2

(
E − µ

kBT

)r
Dn(E)dE. (28)

Figure 5 exhibits the effect of the interplay between temperature and magnetic fields
on the heat capacity. Figure 5a shows that, in the low-temperature regime, heat capacity
has a similar pattern to entropy, as we can see by comparing Figures 3a and 5a. Indeed,
at low temperatures, Ce ≃ S, with S given by Equation (25). Therefore, we recover the
results from the literature, namely, the heat capacity is proportional to both the density of
states and the temperature [42]. However, we can see that additional oscillations appear
when a subband is depopulated. Figure 5b,c show this behavior more clearly. Oh et al. also
observed this oscillatory behavior when studying the heat capacity of quantum wires and
spherical dots [31]. In a subband, the excited states in a thickness kBT below the chemical
potential and the upper levels above the chemical potential contribute separately to the
heat capacity. When the chemical potential approaches the bottom of a subband, there is a
reduction in the number of states below the chemical potential, which implies a decrease in
heat capacity. In this process, the number of available states above the chemical potential
does not decrease. Consequently, as soon as the contribution of these states prevails, the
heat capacity increases again. However, as the magnetic field increases and the chemical
potential moves away from the bottom of a subband, the number of available states above
the chemical potential also decreases. This, again, leads to a decrease in heat capacity.
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Figure 5. Cont.
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Figure 5. Heat capacity (Equation (27)) as a function of the magnetic field in a wide range of
temperatures. The dashed lines in (a–c) show the position at which subbands with n = 1, 2, 3, 4, 5 are
depopulated. The corresponding magnetic fields are obtained from Equation (17). In (d), temperatures
vary from 1.0 K to 30.0 K, with a range of 1.0 K. The curves highlighted in red and blue correspond to
temperatures of 2.0 K and 5.0 K, respectively.

As the temperature increases, Figure 5d shows another very interesting behavior in
the heat capacity of quantum dots in the range of strong magnetic fields, namely, the heat
capacity presents a bump followed by a decrease until an apparent saturation value. The
saturation value corresponds to NkB, where N is the number of electrons in the sample. At
lower temperatures, the saturation value NkB is reached in very strong magnetic fields. On
the other hand, for a fixed magnetic field value, we also verified (although not shown here)
that at very high temperatures, the heat capacity tends to the value 2NkB. Therefore, there
is a competition between the magnetic field and temperature. This behavior is in agreement
with what has been found in Ref. [35], where the authors use the partition function to
explore the thermodynamic properties of quantum dots as a temperature function for
different magnetic field values.

7. Conclusions

In this study, we have developed a model from which we extract the density of states
of a 2DEG confined in a quantum dot. To test the model’s validity, we compared our
approach with known results from the literature and verified great accuracy.

One of the key observations of this study is the richness of phenomena observed in the
thermodynamic properties of the quantum dot. We found that the presence of a magnetic
field leads to distinct oscillations in the system’s chemical potential, magnetization, entropy,
and heat capacity, resulting from the depopulation of energy subbands as the magnetic field
is increased. These oscillations reveal important information about the system’s energy
structure and are crucial for understanding the physics of nanostructured systems.

Furthermore, we observed that temperature plays a significant role in the thermo-
dynamic properties of the system. Temperature variation influences the distribution of
electrons in different energy subbands, directly affecting the entropy and heat capacity of
the system. We observed phenomena such as the magnetocaloric effect, where the applied
magnetic field modulates the system’s temperature. In addition, two interesting aspects
are observed in the heat capacity. First is the appearance of additional oscillations as the
temperature increases. The second is the behavior of the heat capacity of a quantum dot
when subjected to strong magnetic fields. These aspects suggest complex behaviors in the
distribution of energy of confined electrons.

In summary, this study provides valuable insights into the effects of temperature
and magnetic field on the thermodynamic properties of quantum dots. Additionally, the
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observations and results obtained here may be useful for developing new technologies
in quantum devices and for the fundamental understanding of the physics of nanostruc-
tured systems.
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