Is It Possible to Create an “Ideal Endoprosthesis” for an “Ideal Total Hip Replacement”?
Abstract
:1. Introduction
- − ensuring a low friction moment between the contact pairs of endoprosthesis components (low friction arthroplasty);
- − the use of acrylic cement to fix the components of the endoprosthesis in the bone tissue of the host;
- − the use of ultra-high-density polyethylene as a material for the endoprosthesis modular cup.
2. Materials and Methods
2.1. Designs of Modern Endoprostheses for THR
- hard-on-soft bearings (metal-on-polyethylene (MOP) is a metal femoral head and a polyethylene acetabular liner, and ceramic-on-polyethylene (COP) is a ceramic femoral head and a polyethylene acetabular liner);
- hard-on-hard bearings (metal-on-metal (MOM), ceramic-on-ceramic (COC) and ceramic-on-metal (COM) are ceramic femoral head and a metal acetabular liner).
2.2. Complications following THA
- Bleeding;
- Wound complication;
- Thromboembolic disease;
- Neural deficit;
- Vascular injury;
- Dislocation/instability;
- Periprosthetic fracture;
- Abductor muscle disruption;
- Deep periprosthetic joint infection;
- Heterotopic ossification;
- Bearing surface wear;
- Osteolysis;
- Implant loosening;
- Cup-liner dissociation;
- Implant fracture;
- Reoperation;
- Revision;
- Readmission;
- Death.
- Dislocation/instability—a complication of THR in most cases associated with patient noncomplicance with post-operative precautions, implant malposition, or soft-tissue deficiency. However, a common cause of dislocation is wear of the acetabular cup liner in the medium term (about 5 years) after surgery [32,33];
- Periprosthetic fracture—a complication after THR which can occur due to trauma to the hip area, high-impact falls and in other cases. However, it may also be directly related to the implant, which contributes to the development of osteolysis and incorrect remodeling of the periprosthetic bone [34,35];
- Bearing surface wear—arises from local stresses that exceed the mechanical strength of the articulating materials. At the same time, wear rates increase with factors such as increased sliding distance in hard-on-soft bearings, or suboptimal fluid film lubrication in the case of hard-on-hard implants. Therefore, this complication of THR directly depends on the design of the implant [36,37,38,39,40];
- Implant loosening is one of the main complications following THR. Its nature is determined by patient factors (obesity, bone quality, activity level, patient genetics), surgical technique factors and implant factors (primarily the type of friction pair, method of fixation and the ability of the implant to osseointegrate) [47,48,49,50];
3. Results
3.1. Improving the Components Design for Total Hip Arthroplasty
3.2. Condition Monitoring and Perioperative Measures Aimed at Increasing the Lifespan of Total Hip Replacement
4. Discussion
5. Conclusions
6. Patents
- Patent RU 2 792 741 C1: Head of the hip endoprosthesis. Available online: https://patents.google.com/patent/RU2792741C1/ru (accessed on 16 August 2023).
- Patent UA 95 382 C2: Head of the hip endoprosthesis. Available online: https://uapatents.com/3-95382-golovka-endoproteza-kulshovogo-sugloba.html (accessed on 16 August 2023).
- Patent RU 2 303 962 C2: Spherical joint of the hip endoprosthesis. Available online: https://yandex.ru/patents/doc/RU2303962C2_20070810 (accessed on 16 August 2023).
- Patent RU 2 717 446 C1: Method for producing a brazed joint of alumina ceramics with titanium alloy WT1-0. Available online: https://yandex.ru/patents/doc/RU2717446C1_20200323 (accessed on 16 August 2023).
- Patent RU 2 163 106 C1: Endoprosthesis of the Acetabular Hollow. Available online: https://yandex.ru/patents/doc/RU2163106C1_20010220 (accessed on 16 August 2023).
- Patent RU 2 653 806 C2: Stem of the hip joint endoprosthesis. Available online: https://yandex.ru/patents/doc/RU2653806C2_20180514 (accessed on 16 August 2023).
- Patent RU 2 234 293 C2: Stem of the hip joint endoprosthesis. Available online: https://yandex.ru/patents/doc/RU2234293C2_20040820 (accessed on 16 August 2023).
- Patent RU 2 671 081 C2: Method for increasing bending rigidity of hip joint endoprosthesis and stem design for its implementation. Available online: https://yandex.ru/patents/doc/RU2671081C2_20181029 (accessed on 16 August 2023).
- Patent RU 2 163 107 C1: Hip joint endoprosthesis. Available online: https://yandex.ru/patents/doc/RU2163107C1_20010220 (accessed on 16 August 2023).
- Patent RU 2 653 273 C2: Biarticular anatomically adaptable fluid hip joint endoprosthesis. Available online: https://yandex.ru/patents/doc/RU2653273C2_20180507 (accessed on 16 August 2023).
- Patent RU 2 662 599 C2: Simulator for wear testing of hip joint endoprostheses. Available online: https://yandex.ru/patents/doc/RU2662599C2_20180726 (accessed on 16 August 2023).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef]
- Popov, V.L.; Poliakov, A.M.; Pakhaliuk, V.I. Synovial Joints. Tribology, Regeneration, Regenerative Rehabilitation and Arthroplasty. Lubricants 2021, 9, 15. [Google Scholar] [CrossRef]
- Wiles, P. The surgery of the osteoarthritic hip. Br. J. Surg. 1958, 45, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Charnley, J. Arthroplasty of the hip. A new operation. Lancet 1961, 1, 1129–1132. [Google Scholar] [CrossRef]
- Shan, L.; Shan, B.; Graham, D.; Saxena, A. Total hip replacement: A systematic review and meta-analysis on mid-term quality of life. Osteoarthr. Cartil. 2014, 22, 389–406. [Google Scholar] [CrossRef]
- Wellauer, H.; Heuberger, R.; Gautier, E.; Tannast, M.; Steinke, H.; Wahl, P. The history of the development of the regular straight stem in hip arthroplasty. EFORT Open Rev. 2023, 8, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.; Jung, E.; Levine, B.R. Modularity of the femoral component in total hip arthroplasty. J. Am. Acad. Orthop. Surg. 2012, 20, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, W.G.; Calendine, C.L.; Beykirch, S.E.; Hopper, R.H., Jr.; Engh, C.A. Acetabular fixation options: First-generation modular cup curtain calls and caveats. J. Arthroplasty 2007, 22 (Suppl. 1), 75–81. [Google Scholar] [CrossRef]
- Powers, C.C.; Ho, H.; Beykirch, S.E.; Huynh, C.; Hopper, R.H., Jr.; Engh, C.A., Jr.; Engh, C.A. A comparison of a second- and a third-generation modular cup design: Is new improved? J. Arthroplasty 2010, 25, 514–521. [Google Scholar] [CrossRef]
- Vajapey, S.P.; Fideler, K.L.; Lynch, D.; Li, M. Use of dual mobility components in total hip arthroplasty: Indications and outcomes. J. Clin. Orthop. Trauma 2020, 11 (Suppl. 5), S760–S765. [Google Scholar] [CrossRef]
- Aguado-Maestro, I.; de Blas-Sanz, I.; Sanz-Peñas, A.E.; Campesino-Nieto, S.V.; Diez-Rodríguez, J.; Valle-López, S.; Espinel-Riol, A.; Fernández-Díez, D.; García-Alonso, M. Dual Mobility Cups as the Routine Choice in Total Hip Arthroplasty. Medicina 2022, 58, 528. [Google Scholar] [CrossRef] [PubMed]
- Manson, T.T.; Adrados, M.; Gililland, J.M.; Mahmood, B.M.; Samuel, L.T.; Moskal, J.T. The Role of Dual-Mobility Components in Total Hip Arthroplasty. J. Bone Jt. Surg. 2023, 105, 250–261. [Google Scholar] [CrossRef]
- Tankut, O.V. Substantiation of Hip Arthroplasty Using Single Crystal Sapphire in the Joint of Hip Prosthesis. Ph.D. Thesis, Sytenko Institute of Spine and Joint Pathology, Kharkiv, Ukraine, 2010. [Google Scholar]
- Pakhaliuk, V.I.; Polyakov, A.M.; Kalinin, M.I.; Bratan, S.M. Evaluating the impact and norming the parameters of partially regular texture on the surface of the articulating ball head in a total hip joint prosthesis. Tribol. Online 2016, 11, 527–539. [Google Scholar] [CrossRef]
- Patent Prosthesis Ball-Joint. Available online: https://patents.google.com/patent/EP0406040A2/en (accessed on 16 August 2023).
- D’Antonio, J.; McCarthy, J.C.; Bargar, W.L.; Borden, L.S.; Cappelo, W.N.; Collis, D.K.; Steinberg, M.E.; Wedge, J.H. Classification of femoral abnormalities in total hip arthroplasty. Clin. Orthop. Relat. Res. 1993, 296, 133–139. [Google Scholar] [CrossRef]
- Dossick, P.H.; Dorr, L.D.; Gruen, T.M.; Saberi, M.T. Techniques for preoperative planning and postoperative evaluation of noncemented hip arthroplasty. Tech. Orthop. 1991, 6, 1–6. [Google Scholar] [CrossRef]
- Brady, O.H.; Garbuz, D.S.; Masri, B.A.; Duncan, C.P. The reliability and validity of the Vancouver classification of femoral fractures after hip replacement. J. Arthroplasty 2000, 15, 59–62. [Google Scholar] [CrossRef]
- Toom, A.; Fischer, K.; Märtson, A.; Rips, L.; Haviko, T. Inter-observer reliability in the assessment of heterotopic ossification: Proposal of a combined classification. Int. Orthop. 2005, 29, 156–159. [Google Scholar] [CrossRef]
- Gómez, L.F.U.; Gaitán-Lee, H.; Duarte, M.A.; Halley, P.D.; Jaramillo, A.R.; García, E.L. Precision and accuracy of pre-surgical planning of non-cemented total hip replacement with calibrated digital images and acetates. J. Orthop. Surg. Res. 2021, 16, 431. [Google Scholar] [CrossRef]
- Di Martino, A.; Rossomando, V.; Brunello, M.; D’Agostino, C.; Pederiva, D.; Frugiuele, J.; Pilla, F.; Faldini, C. How to perform correct templating in total hip replacement. Musculoskelet. Surg. 2023, 107, 19–28. [Google Scholar] [CrossRef]
- Colombi, A.; Schena, D.; Castelli, C.C. Total hip arthroplasty planning. EFORT Open Rev. 2019, 4, 626–632. [Google Scholar] [CrossRef]
- Poliakov, A.M.; Pakhaliuk, V.I.; Popov, V.L. Current Trends in Improving of Artificial Joints Design and Technologies for Their Arthroplasty. Front. Mech. Eng. Sec. Tribol. 2020, 6, 4. [Google Scholar] [CrossRef]
- Pala, E.; Mavrogenis, A.F.; Angelini, A.; Henderson, E.R.; Douglas, L.G.; Ruggieri, P. Cemented versus cementless endoprostheses for lower limb salvage surgery. J. BUON 2013, 18, 496–503. [Google Scholar]
- Szypuła, J.; Cabak, A.; Kiljański, M.; Boguszewski, D.; Tomaszewski, W. Comparison of Biocompatibility of Cemented vs. Cementless Hip Joint Endoprostheses Based on Postoperative Evaluation of Proinflammatory Cytokine Levels. Med. Sci. Monit. 2016, 22, 4830–4835. [Google Scholar] [CrossRef]
- Mäkelä, K.T.; Eskelinen, A.; Pulkkinen, P.; Paavolainen, P.; Remes, V. Total hip arthroplasty for primary osteoarthritis in patients fifty-five years of age or older. An analysis of the Finnish arthroplasty registry. J. Bone Jt. Surg. Am. 2008, 90, 2160–2170. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P.M.; Khan, F.J.; Feathers, J.R.; Lewis, M.H.; Morris, K.H.; Waddell, J.P. Uncemented total hip arthroplasty can be used safely in the elderly population. Bone Jt. Open 2021, 2, 293–300. [Google Scholar] [CrossRef]
- Thomsen, M.; von Strachwitz, B.; Mau, H.; Cotta, H. Survey of materials in hip endoprosthes. Z. Orthop. Ihre Grenzgeb. 1995, 133, 1–6. [Google Scholar] [CrossRef]
- Khalifa, A.A.; Bakr, H.M. Updates in biomaterials of bearing surfaces in total hip arthroplasty. Arthroplasty 2021, 3, 32. [Google Scholar] [CrossRef]
- Popov, V.L.; Poliakov, A.M.; Pakhaliuk, V.I. Improving the Endoprosthesis Design and the Postoperative Therapy as a Means of Reducing Complications Risks after Total Hip Arthroplasty. Lubricants 2022, 10, 38. [Google Scholar] [CrossRef]
- Healy, W.L.; Iorio, R.; Clair, A.J.; Pellegrini, V.D.; Della Valle, C.J.; Berend, K.R. Complications of Total Hip Arthroplasty: Standardized List, Definitions, and Stratification Developed by The Hip Society. Clin. Orthop. Relat. Res. 2016, 474, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Brooks, P.J. Dislocation following total hip replacement. Bone Jt. J. 2013, 95-B, No 11_Supple_A, 67–69. [Google Scholar] [CrossRef]
- Werner, B.C.; Brown, T.E. Instability after total hip arthroplasty. World J. Orthop. 2012, 3, 122–130. [Google Scholar] [CrossRef]
- Young, S.W.; Pandit, S.; Munro, J.T.; Pitto, R.P. Periprosthetic femoral fractures after total hip arthroplasty. ANZ J. Surg. 2007, 77, 424–428. [Google Scholar] [CrossRef]
- Patsiogiannis, N.; Kanakaris, N.K.; Giannoudis, P.V. Periprosthetic hip fractures: An update into their management and clinical outcomes. EFORT Open Rev. 2021, 6, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, S.; Reza, H.; Eajazi, A.; Sina, A. The Bearing Surfaces in Total Hip Arthroplasty—Options, Material Characteristics and Selection. In Recent Advances in Arthroplasty; Intech Open: London, UK, 2012. [Google Scholar] [CrossRef]
- Paxton, E.W.; Inacio, M.C.; Namba, R.S.; Love, R.; Kurtz, S.M. Metal-on-conventional Polyethylene Total Hip Arthroplasty Bearing Surfaces Have a Higher Risk of Revision Than Metal-on-highly Crosslinked Polyethylene: Results from a US Registry. Clin. Orthop. Relat. Res. 2015, 473, 1011–1021. [Google Scholar] [CrossRef]
- Urban, J.A.; Garvin, K.L.; Boese, C.K.; Bryson, L.; Pedersen, D.R.; Callaghan, J.J.; Miller, R.K. Ceramic-on-polyethylene bearing surfaces in total hip arthroplasty. Seventeen to twenty-one-year results. J. Bone Jt. Surg. Am. 2001, 83, 1688–1694. [Google Scholar] [CrossRef] [PubMed]
- Bierbaum, B.E.; Nairus, J.; Kuesis, D.; Morrison, J.C.; Ward, D. Ceramic-on-ceramic bearings in total hip arthroplasty. Clin. Orthop. Relat. Res. 2002, 405, 158–163. [Google Scholar] [CrossRef]
- Silverman, E.J.; Ashley, B.; Sheth, N.P. Metal-on-metal total hip arthroplasty: Is there still a role in 2016? Curr. Rev. Musculoskelet. Med. 2016, 9, 93–96. [Google Scholar] [CrossRef]
- Vallés, G.; Vilaboa, N. Osteolysis after Total Hip Arthroplasty: Basic Science. In Acetabular Revision Surgery in Major Bone Defects, 1st ed.; García-Rey, E., García-Cimbrelo, E., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–31. [Google Scholar] [CrossRef]
- Howie, D.W.; Neale, S.D.; Haynes, D.R.; Holubowycz, O.T.; McGee, M.A.; Solomon, L.B.; Callary, S.A.; Atkins, G.J.; Findlay, D.M. Periprosthetic osteolysis after total hip replacement: Molecular pathology and clinical management. Inflammopharmacology 2013, 21, 389–396. [Google Scholar] [CrossRef]
- Xing, D.; Li, R.; Li, J.J.; Tao, K.; Lin, J.; Yan, T.; Zhou, D. Catastrophic Periprosthetic Osteolysis in Total Hip Arthroplasty at 20 Years: A Case Report and Literature Review. Orthop. Surg. 2022, 14, 1918–1926. [Google Scholar] [CrossRef]
- Beck, R.T.; Illingworth, K.D.; Saleh, K.J. Review of periprosthetic osteolysis in total joint arthroplasty: An emphasis on host factors and future directions. J. Orthop. Res. 2012, 30, 541–546. [Google Scholar] [CrossRef]
- Noordin, S.; Masri, B. Periprosthetic osteolysis: Genetics, mechanisms and potential therapeutic interventions. Can. J. Surg. 2012, 55, 408–417. [Google Scholar] [CrossRef]
- Dattani, R. Femoral osteolysis following total hip replacement. Postgrad Med. J. 2007, 83, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Desy, N.M.; Abdel, M.P. Aseptic Implant Loosening. In Complications after Primary Total Hip Arthroplasty; Abdel, M., Della Valle, C., Eds.; Springer: Cham, Switzerland, 2017; pp. 183–194. [Google Scholar] [CrossRef]
- Cherian, J.J.; Jauregui, J.J.; Banerjee, S.; Pierce, T.; Mont, M.A. What Host Factors Affect Aseptic Loosening after THA and TKA? Clin. Orthop. Relat. Res. 2015, 473, 2700–2709. [Google Scholar] [CrossRef]
- Toni, A.; Viceconti, M.; Sudanese, A.; Baruffaldi, F.; Giunti, A. Bone remodelling after total hip arthroplasty. J. Mater. Sci. Mater. Med. 1996, 7, 149–152. [Google Scholar] [CrossRef]
- Dapunt, U.; Prior, B.; Kretzer, J.P.; Hänsch, G.M.; Gaida, M.M. The effect of surgical suture material on osteoclast generation and implant-loosening. Int. J. Med. Sci. 2021, 18, 295–303. [Google Scholar] [CrossRef]
- Beckmann, N.A.; Schonhoff, M.; Bastian, J.D.; Renkawitz, T.; Jaeger, S. Dissociation of liner from cup in THA: Does liner damage affect the risk of dissociation? Arch. Orthop. Trauma Surg. 2023, 143, 2747–2754. [Google Scholar] [CrossRef] [PubMed]
- Ciolli, G.; Silva, R.; Giovannetti de Sanctis, E.; Proietti, L.; Mocini, F.; Corona, K.; Mazzoleni, M.G.; Romanini, E.; Marescalchi, M.; Brancaccio, V.; et al. Liner dissociation in total hip arthroplasty: A systematic review. Eur. Rev. Med. Pharmacol.Sci. 2022, 26 (Suppl. 1), 138–150. [Google Scholar] [CrossRef]
- De Martino, I.; D’Apolito, R.; Soranoglou, V.G.; Poultsides, L.A.; Sculco, P.K.; Sculco, T.P. Dislocation following total hip arthroplasty using dual mobility acetabular components: A systematic review. Bone Jt. J. 2017, 99-B (Suppl. 1), 18–24. [Google Scholar] [CrossRef] [PubMed]
- Sadoghi, P.; Pawelka, W.; Liebensteiner, M.C.; Williams, A.; Leithner, A.; Labek, G. The incidence of implant fractures after total hip arthroplasty. Int. Orthop. 2014, 38, 39–46. [Google Scholar] [CrossRef]
- Tallarico, M.; Meloni, S.M.; Park, C.-J.; Zadrożny, Ł.; Scrascia, R.; Cicciù, M. Implant Fracture: A Narrative Literature Review. Prosthesis 2021, 3, 267–279. [Google Scholar] [CrossRef]
- Polyakov, A.; Pakhaliuk, V.; Kalinin, M.; Kramar, V.; Kolesova, M.; Kovalenko, O. System analysis and synthesis of total hip joint endoprosthesis. Proc. Eng. 2015, 100, 530–538. [Google Scholar] [CrossRef]
- Eingartner, C. Current trends in total hip arthroplasty. Ortop. Traumatol. Rehabil. 2007, 9, 8–14. [Google Scholar]
- Shubnyakov, I.I.; Riahi, A.; Denisov, A.O.; Korytkin, A.A.; Aliyev, A.G.; Veber, E.V.; Muravyeva, Y.V.; Sereda, A.P.; Tikhilov, R.M. The Main Trends in Hip Arthroplasty Based on the Data in the Vreden’s Arthroplasty Register from 2007 to 2020. Traumatol. Orthop. Russia 2021, 27, 119–142. [Google Scholar] [CrossRef]
- Pakhaliuk, V.I.; Poliakov, A.M. Modeling deformation of the polymeric liner of the hip joint acetabulary component in couple with the head. Fundam. Appl. Probl. Eng. Technol. 2021, 4, 87–96. [Google Scholar] [CrossRef]
- Evangelista, I.; Wencel, D.; Beguin, S.; Zhang, N.; Gilchrist, M.D. Influence of Surface Texturing on the Dry Tribological Properties of Polymers in Medical Devices. Polymers 2023, 15, 2858. [Google Scholar] [CrossRef]
- Korpela, T.; Suvanto, M.; Pakkanen, T.T. Friction and wear of periodically micro-patterned polypropylene in dry sliding. Wear 2012, 289, 1–8. [Google Scholar] [CrossRef]
- Korpela, T.; Suvanto, M.; Pakkanen, T.T. Wear and friction behavior of polyacetal surfaces with micro-structure controlled surface pressure. Wear 2015, 328–329, 262–269. [Google Scholar] [CrossRef]
- Kragelsky, I.V.; Dobychin, M.N.; Kombalov, V.S. Fundamentals of Calculations for Friction and Wear; Mashinostroenie: Moscow, Russia, 1977; p. 526. (In Russian) [Google Scholar]
- Sobol, I.M.; Statnikov, R.B. Choice of Optimal Parameters in Problems with Many Criteria; Science: Moscow, Russia, 1981; p. 110. (In Russian) [Google Scholar]
- Ruggiero, A.; Sicilia, A. Lubrication modeling and wear calculation in artificial hip joint during the gait. Tribol. Int. 2020, 142, 105993. [Google Scholar] [CrossRef]
- Ruggiero, A. Milestones in Natural Lubrication of Synovial Joints. Front. Mech. Eng. 2020, 6, 52. [Google Scholar] [CrossRef]
- Ruggiero, A.; Sicilia, A. Implementation of a Finite Element Deformation Model within an Elasto-Hydrodynamic Lubrication Numerical Solver for a Ball in Socket Tribopair. Front. Mech. Eng. 2022, 8, 909156. [Google Scholar] [CrossRef]
- Ruggiero, A.; Sicilia, A.; Affatato, S. In silico total hip replacement wear testing in the framework of ISO 14242-3 accounting for mixed elasto-hydrodynamic lubrication effects. Wear 2020, 460–461, 203420. [Google Scholar] [CrossRef]
- Pakhaliuk, V.I.; Vasilets, V.N.; Poliakov, A.M.; Torkhov, N.A. Reducing the Wear of the UHMWPE Used in the Total Hip Replacement after Low-Pressure Plasma Treatment. J. Appl. Comp. Mech. 2022, 8, 1035–1042. [Google Scholar] [CrossRef]
- Lyons, B.J.; Johnson, W.C. Irradiation of Polymeric Materials: Processes, Mechanisms, and Applications, 3rd ed.; Reichmanis, E., Frank, C.W., O’Donnell, J.H., Eds.; American Chemical Society Publication: Washington, DC, USA, 1993; p. 346. [Google Scholar]
- Pakhaliuk, V.I.; Poliakov, A.M.; Fedotov, I.V. The ceramic modular head improvement in the design of a total hip replacement. Facta Univ. Ser. Mech. Eng. 2021, 19, 67–78. [Google Scholar] [CrossRef]
- Ledet, E.H.; D’Lima, D.; Westerhoff, P.; Szivek, J.A.; Wachs, R.A.; Bergmann, G. Implantable sensor technology: From research to clinical practice. J. Am. Acad. Orthop. Surg. 2012, 20, 383–392. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Fregly, B.J.; Colwell, C.W. Implantable sensor technology: Measuring bone and joint biomechanics of daily life in vivo. Arthritis Res. Ther. 2013, 15, 203. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Jayakumar, T.; Jeyaraman, N.; Nallakumarasamy, A. Sensor Technology in Fracture Healing. Indian J. Orthop. 2023, 57, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.D.; Wilson, S.L.M.; Holdsworth, D.W. Development of a Wireless Telemetry Sensor Device to Measure Load and Deformation in Orthopaedic Applications. Sensors 2020, 20, 6772. [Google Scholar] [CrossRef]
- Shiying, H.; Taylor, S. A closed-loop inductive power control system for an instrumented strain sensing tibial implant. In Proceedings of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 6553–6556. [Google Scholar] [CrossRef]
- Hao, S.; Gorjon, J.; Taylor, S. SCIMITAR: Subject-carried implant monitoring inductive telemetric ambulatory reader for remote data acquisition from implanted orthopaedic prostheses. Med. Eng. Phys. 2014, 36, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, K.P.; Gowers, B.T.V.; Jain, V.K.; Ahluwalia, R.S.; Botchu, R.; Vaishya, R. Smart sensor implant technology in total knee arthroplasty. J. Clin. Orthop. Trauma 2021, 22, 01605. [Google Scholar] [CrossRef]
- Ledet, E.H.; Liddle, B.; Kradinova, K.; Harper, S. Smart implants in orthopedic surgery, improving patient outcomes: A review. Innov. Entrepreneurship Health 2018, 5, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Sauer, S.; Marschner, U.; Jettkant, B.; Fischer, W.-J.; Clasbrummel, B. A wireless integrated hip prosthesis loosening detection system—Influence of mechanical cross-sensitivities on resonance frequencies. Biomed. Eng. 2012, 57 (SI-1-Track-S), 869. [Google Scholar] [CrossRef]
- Damm, P.; Dymke, J.; Bender, A.; Duda, G.; Bergmann, G. In vivo hip joint loads and pedal forces during ergometer cycling. J. Biomech. 2017, 60, 197–202. [Google Scholar] [CrossRef]
- Damm, P.; Schwachmeyer, V.; Dymke, J.; Bender, A.; Bergmann, G. In vivo hip joint loads during three methods of walking with forearm crutches. Clin. Biomech. 2013, 28, 530–535. [Google Scholar] [CrossRef]
- Bergmann, G.; Graichen, F.; Rohlmann, A.; Bender, A.; Heinlein, B.; Duda, G.N.; Heller, M.O.; Morlock, M.M. Realistic loads for testing hip implants. Biomed. Mater. Eng. 2010, 20, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Graichen, F.; Bergmann, G.; Rohlmann, A. Hip endoprosthesis for in vivo measurement of joint force and temperature. J. Biomech. 1999, 32, 111–1117. [Google Scholar] [CrossRef] [PubMed]
- Damm, P.; Graichen, F.; Rohlmann, A.; Bender, A.; Bergmann, G. Total hip joint prosthesis for in vivo measurement of forces and moments. Med. Eng. Phys. 2010, 32, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Kelmers, E.; Szuba, A.; King, S.W.; Palan, J.; Freear, S.; Pandit, H.G.; van Duren, B.H. Smart Knee Implants: An Overview of Current Technologies and Future Possibilities. Indian J. Orthop. 2022, 57, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Moreo, P.; García-Aznar, J.M.; Doblaré, M. Bone ingrowth on the surface of endosseous implants. Part 1: Mathematical model. J. Theor. Biol. 2009, 260, 1–12. [Google Scholar] [CrossRef]
- Moreo, P.; García-Aznar, J.M.; Doblaré, M. Bone ingrowth on the surface of endosseous implants. Part 2: Theoretical and numerical analysis. J. Theor. Biol. 2009, 260, 13–26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, V.L.; Poliakov, A.M.; Pakhaliuk, V.I. Is It Possible to Create an “Ideal Endoprosthesis” for an “Ideal Total Hip Replacement”? Prosthesis 2023, 5, 1020-1036. https://doi.org/10.3390/prosthesis5040071
Popov VL, Poliakov AM, Pakhaliuk VI. Is It Possible to Create an “Ideal Endoprosthesis” for an “Ideal Total Hip Replacement”? Prosthesis. 2023; 5(4):1020-1036. https://doi.org/10.3390/prosthesis5040071
Chicago/Turabian StylePopov, Valentin L., Aleksandr M. Poliakov, and Vladimir I. Pakhaliuk. 2023. "Is It Possible to Create an “Ideal Endoprosthesis” for an “Ideal Total Hip Replacement”?" Prosthesis 5, no. 4: 1020-1036. https://doi.org/10.3390/prosthesis5040071
APA StylePopov, V. L., Poliakov, A. M., & Pakhaliuk, V. I. (2023). Is It Possible to Create an “Ideal Endoprosthesis” for an “Ideal Total Hip Replacement”? Prosthesis, 5(4), 1020-1036. https://doi.org/10.3390/prosthesis5040071