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Abstract: Temperature is often an important variable influencing the vertical position of fish larvae
in the water column. The same species may show different vertical distributions in areas with a
strong near-surface seasonal thermocline compared to isothermal near-surface regions. In areas
with a strong surface thermocline, tuna larvae show a significant preference for the near-surface
warmer layers. Little is known regarding larval tuna vertical distribution in isothermal waters and
on the vertical distribution of the associated larval fish assemblages. We conducted vertical stratified
sampling using the same methodology and fishing device (MOCNESS) in the two major spawning
areas of Atlantic bluefin tuna (BFT): western Mediterranean Sea (MED), characterized by a surface
thermocline, and the Gulf of Mexico (GOM) which lacks thermal stratification. Tuna larvae occupied
the upper 30 m in both areas, but the average larval depth distribution was consistently deeper in the
GOM. In the MED, vertical distribution of larval fish assemblages was explained by temperature,
and species such as BFT, Thunnus alalunga, and Ceratoscopelus maderensis, among others, coexist above
the thermocline and are separated from species such as Cyclothone braueri and Hygophum spp. (found
below the thermocline). In the GOM, the environmental correlates of the vertical distribution of the
larvae were salinity and fluorescence. Mesopelagic taxa such as Ceratoscopelus spp. and Cyclothone
spp., among others, had a shallower average distribution than Lampanyctus spp., Hygophum spp.,
and Myctophum spp.
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1. Introduction

Biodiversity, ecosystem functioning, and abiotic factors are interrelated [1]. Com-
munities can be dominated by a few species with particular traits or by complementary
species that are differently adapted to the habitat [1,2]. The habitat frames relationships
among species. The species composition of marine fish larval communities has been usually
related to habitats in the “horizontal” dimension (e.g., the spatial distribution of species
regarding abiotic variables [3]). However, significant physical, chemical, and biological
gradients in the vertical dimension of the water column influence the vertical distribution
of fish larvae. The place where a larva is relative to these gradients profoundly influences
the development and success of the larval phase. The horizontal advection of fish larvae
from spawning to nursery areas also depends on the vertical position of the larvae in the
water column [4]. In general, the presence or absence of persistent clines in the open ocean
can influence the vertical distribution and composition of larval fish assemblages [5].

There has been an historical interest describing the species composition in tuna as-
semblages due to their economic and ecological importance as top predators. Juvenile
and adult tuna species dominate in particular areas worldwide and separate niches across
their vertical distribution when coexisting [6,7]. Early in their life cycle, a variety of tuna
species coexist in most spawning grounds worldwide with particular species dominating
in the different areas [8–11]. Temperature arises as a key variable explaining the presence
of tuna larvae in all areas [12–17]. As such, temperature is one primary variable explaining
the worldwide distribution of major tuna spawning areas [18,19] and recruitment variabil-
ity [20]. Other environmental variables such as salinity and fluorescence explain larval
spatial segregation of tuna species at a small spatial scale [8,14,21–23].

In contrast to the adult stage, niche segregation of tuna species with depth and
companion species during the early life stages has been little studied. Atlantic bluefin
tuna (BFT), as with other tuna species, reproduce in temperatures above 20 ◦C conducive
for survival and development of eggs and larvae [24,25]. Therefore, temperature is often
the primary variable used to explain the shallow depth distribution of tuna larvae in
environments with a strong seasonal thermocline where temperatures of 20 ◦C occur
at around 20 m depth (e.g., Pacific bluefin tuna in the Nansei area [26]; Albacore and
BFT in the NW Mediterranean [27]). However, tunas also reproduce in areas that lack a
strong near-surface seasonal thermocline and where temperatures above 20 ◦C are mixed
throughout the upper water column. Within these locations, little is known about the
vertical distribution of tuna larvae [9]. Pacific bluefin tuna larvae, Thunnus orientalis, is the
only species for which the vertical distribution has been compared across two spawning
areas with different scenarios showing a shallower and narrower distribution in areas with
a strong thermocline [28]. Laboratory experiments show that BFT and bonito larvae occupy
a wider depth range when temperatures are vertically homogeneous compared to when
waters are stratified, in which case BFT larvae are confined to the surface mixed layer [27].
Vertical temperature distributions may then play a major role on the vertical distribution of
tuna species and companion species, a task that has received little attention in the literature.

Among the different spawning areas for BFT and other tuna species, the Gulf of
Mexico (GOM) in the western Atlantic and the western Mediterranean Sea (MED) in the
eastern Atlantic are the ones with a longer time series of annual samplings to study the
horizontal distribution of larval fish assemblages, although using different methodolo-
gies [22]. Integrated sampling has been conducted from the surface down to the 70 m depth
in the MED [29–32] and from the surface down to 200 m depth in the GOM [33]. In both
areas, BFT coexists with other tuna species: Thunnus atlanticus, T. albacares, T. obesus, Auxis
spp., Euthynnus spp., and Katsuwonus spp., and the horizontal assemblages are dominated
mainly by mesopelagic larvae. For both areas, increasing densities of tuna larvae have been
reported since 2010; however, which taxa are increasing differs: BFT in the MED [34] and
Thunnus spp. in the GOM [33]. Differences in these integrated sampling methodologies
make the comparison between assemblages difficult and further complicate the under-
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standing of vertical processes that could enhance our understanding of the ecological role
of bluefin tuna larvae in the larval fish community.

The BFT spawning season comprises April to June in the GOM and June to July in the
MED [22]. In both spawning areas the horizontal larval habitat is characterized by warm
waters [22]; however, water column properties differ between the areas [9]. The vertical
distribution of chlorophyll during the BFT spawning periods is similar in both areas,
with maximum chlorophyll concentrations occurring around 80–90 m depth [9]. Although
salinity values are higher in the MED than in the GOM, the water column is isohaline in
both sites, which is typical of open ocean waters [9]. In contrast, the thermal stratification
differs between the two spawning areas with a strong thermocline at 20 m in the MED
and a deeper thermocline around 100 m in the GOM [9]. Comparison of the water column
properties in these two areas can help us understand how the thermal structure of the
water column influences larval fish ecology and community structure.

Until now, no comparable data on the vertical distribution of BFT and the associated
larval assemblages has been available. No studies have examined in detail how environ-
mental conditions influence the vertical distribution of BFT larvae and their associated
ichthyoplankton community in either the GOM or the MED. If temperature remains the
primary variable explaining the vertical distributions of larvae, then we would expect
tuna larvae to be found more deeply distributed in isothermal areas than in those that
are thermally stratified. The aim of this study was: (1) to test the influence of thermal
stratification on the vertical distributions of larval tuna, and (2) to determine whether the
association between the vertical distributions of larval fish assemblages in BFT spawning
grounds is influenced by environmental parameters.

2. Materials and Methods
2.1. Field Sampling

Two research surveys were conducted in 2012 in the GOM and MED (Figure 1;
Table S1) during the peak spawning of BFT in each area. Sampling in the GOM was conducted
from April 24 to May 28 aboard the NOAA research vessel R/V Gordon Gunter, and around
the Balearic Islands (MED) from July 9 to 14 on board of the R/V Ramon Margalef.
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diameter Bongo net equipped with 500 µm mesh (MED) over a systematic grid (see [22] 

Figure 1. Above: Map of primary Atlantic bluefin tuna spawning grounds GOM: Gulf of Mexico;
MED: Mediterranean Sea; SlopeS: Slope Sea. Study areas are highlighted with squares. Below: Detail
of the sampling stations (red dots). Date, time, and position details in Table S1.

In both areas, the first part of the cruise consisted of a series of surface ichthyoplankton
samplings using a ~1 mm mesh neuston net (GOM) and of oblique tows using a 90 cm
diameter Bongo net equipped with 500 µm mesh (MED) over a systematic grid (see [22] for
a detailed description of the systematic grid sampled in both areas). To identify stations
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with high density of tuna larvae, sampling devices in both surveys were deployed with
flowmeters to measure the volume of filtered water by the nets. Once an acceptable number
of tuna larvae was found, stratified vertical hauls were conducted at 6 stations in the GOM
and 9 in the MED respectively (Table S1). Samples were collected with a 1 m2 multiple
opening/closing net and environmental sensing system (MOCNESS), fitted with 505 µm
mesh. Samples were collected from depth ranges of 0–10 m, 10–20 m, 20–30 m, 30–40 m,
and 40–50 m. In the MED, the same depth ranges were sampled (0–10 m, 10–20 m, 20–30 m,
30–40 m, and 40–50 m) and a deeper range of 50–60 m was also sampled. The GOM
samples were preserved in 95% ethanol. The MED samples were preserved immediately in
a solution of ~4% borax-buffered formaldehyde and seawater. At each station, a CTD was
deployed to obtain vertical profiles of temperature (◦C), salinity, fluorescence (mg·m−3)
and dissolved oxygen (mL·L−1). A Sea-Bird Electronics SBE 9plus CTD was used in the
GOM and a Sea-Bird Electronics SBE 9 CTD in the MED.

2.2. Description of Assemblages: Taxa and Groups by Adult Habitat

In the laboratory, vertically stratified samples were sorted and identified to the lowest
taxonomic level possible. In the GOM survey, the Polish Plankton Sorting and Identification
Center in Szczecin, Poland processed the fish larvae. In the MED, larvae were processed
at the Centro Oceanográfico de Baleares (COB) by experts in larval fish taxonomy using
identification guides for the area [35,36]. The number of larvae captured in each depth
range in both areas was standardized to number of larvae per 1000 m3.

The weighted mean depth (WMD) in the water column was calculated for each taxon
at each area following [37]. For the common taxa in both areas, the WMDs were compared
visually to search for evidence of differences in the vertical position of larvae.

For descriptive purposes and taking into account the high number of taxa found, taxa
were grouped in 5 categories based on their adult habitat following [38]: bathypelagic, de-
mersal, mesopelagic, ocean pelagic, and coastal pelagic. The percentage of total abundance
of these groups was also calculated for each spawning ground.

2.3. Influence of Environment on the Vertical Distribution of the Assemblages

The influence of environmental variables on the vertical structure of the larval fish
assemblage was studied using a combination of the nonmetric multi-dimensional scaling
(NMDS) and generalized additive models (GAM). The combination of multi-dimensional
scaling (MDS) and GAM is not new as it was applied for the first time to terrestrial
ecology [39] and currently extending its applications in other environmental sciences [40].
In marine sciences, Siddon [41] was the first to apply this method to describe gradients in
fish larvae species composition relative to environmental drivers in the Southeastern Bering
Sea. Recent studies extended its use to other meroplankton species and megafauna [42,43].
The effectiveness of this approach depends on how likely the community structure can
be summarized in several gradients regarding the physiographical, hydrographical and
biological components of the seascape [42]. In such cases, this combination of methods has
proven to be a powerful tool in analyzing gradients in species composition in relation to
environmental gradients.

For each spawning ground, a NMDS (“vegan” library in R) was used to summarize
the multispecies density data onto two major axes [44]. Prior to analysis, data were 4th-
root transformed to reduce the weight of taxa with very high densities in the analyses.
Bray–Curtis similarity matrices were calculated, followed by an ordination using NMDS
for both stations and depth strata. The procedure was performed with 100 random starts
to find the final stable solution. We then developed a GAM using each of the NMDS axes
as the dependent variable to understand the influence of environmental variables on the
structure identified in the community [42]. In addition, spearman rank correlations were
also used to identify which species were most strongly related to the first 2 ordination
axes of the NMDS. The species whose index of correlation was significant (either positive
or negative correlation, p < 0.001) were most closely related to the correlation axes of
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the NMDS analysis and therefore were considered the most representative species of the
distribution patterns [41,42].

The environmental variables considered for each area were: sea water temperature
(◦C), sea water salinity, sea water fluorescence (mg m−3) and dissolved oxygen (mL L−1).
Environmental data from CTD cast recorded at 1 m depth bins were transformed to one
data per depth stratum by calculating the mean value of each considered variable for each
of the depth strata sampled by the MOCNESS device (0–10 m, 10–20 m, 20–30 m, 30–40 m,
and 40–50 m). Prior to the model selection, collinearity among environmental covariates
was tested by applying a variance inflation factor (VIF). A cut-off VIF value of 3.3 was used
to get the final set of covariates [45]. Next, we adopted a backwards stepwise procedure
from a first initial GAM model including all the non-colinear covariates, removing 1 non-
significant covariate at a time. To obtain the final model, model selection was based on the
Akaike’s information criterion (AICc).

The GAM model formulation for each area was:

Axisi,w = a +
j=m

∑
j

sj(E) + ε

where Axis represents the score of the NMDS axis i (1 or 2) at each spawning ground w.
The term a represents the intercept, E a vector of m environmental covariates, s the one-
dimensional non-parametric smoothing functions (cubic splines with up to a maximum of
3 df) and ε a Gaussian error term.

Variance contribution of each covariate was explored for each final model to assess
the most relevant covariate(s) to be plotted.

3. Results
3.1. Environmental Scenario

No thermal stratification was observed in the upper 200 m of the water column in the
GOM (Figure 2a–d). The vertical temperature profile was characterized by a temperature
maximum of 26.4 ± 0.4 ◦C at the surface. Temperatures linearly decreased to 20 ◦C at
around 95 m depth reaching a minimum temperature of 15.5 ± 0.7 ◦C at 200 m depth
(Figure 2a). Salinity values were around 36 throughout the water column ranging from
36.07 ± 0.34 at the surface and 36.04 ± 0.11 at 200 m depth (Figure 2b). A slight maximum
salinity (36.47 ± 0.05) was observed at 120 m depth. The fluorescence maximum was
located around 80 m depth with a value of 1.18 ± 0.17 mg m−3. Surface and 200 m
depth fluorescence values were 0.21 ± 0.01 mg m−3 and 0.13 ± 0.01 mg m−3 respectively
(Figure 2c). Oxygen values were higher in the upper portion of the water column with
values from the surface to the 50 m around 6.4 ± 0.28 mL L−1 (Figure 2d). Values strongly
dropped to 4.5 ± 0.45 mL L−1 at 120 m depth and reached values of 4.03 ± 0.26 mL L−1 at
200 m depth.

The MED was characterized by strong thermal stratification (Figure 2e–h). Tempera-
tures ranged from maximum values of 25.5 ± 0.8 ◦C at the surface to a minimum value
of 13.24 ± 0.02 ◦C at 200 m depth with a pronounced gradient at around 20 m (Figure 2e).
Salinity values were lowest at the surface (37.76 ± 0.13), slightly increasing with depth
(38.37 ± 0.04 at 200 m depth, Figure 2f). Fluorescence values were generally low, 0.1 ± 0.01
and 0.03 ± 0.01 mg m−3 at the surface and 200 m depth respectively, with maximum values
of 0.86 ± 0.2 mg m−3 around 80 m depth (Figure 2g). Oxygen values were highest around
40 m depth, 5.57 ± 0.02 mL L−1, with the lowest values measured both at the surface and
at 200 m depth (4.2 ± 0.01 and 4 ± 0.21 mL L−1 respectively; Figure 2h).

3.2. Description of Assemblages: Taxa and Groups by Adult Habitat

Using the MOCNESS, a total of 6281 fish larvae were collected and identified in the
GOM and 7977 larvae in the MED. A total of 64 taxa were identified in the GOM, 19 to
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family level, 25 to genus, and 20 to species level. In the MED, a total of 32 taxa were
identified, 5 to family level, 2 to genus and 25 to species level (Table 1).Oceans 2020, 1, FOR PEER REVIEW 6 
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Table 1. Alphabetical list of larval fish families collected in the Gulf of Mexico (GOM) and the Mediterranean (MED); NMDS Code
used to shorten taxa names in Figure 5; Habitat of the Adult (AH); Total Abundance (TA, individuals (i) 1000 m−3); taxon relative
abundance (TA, %); Weighted Mean Depth (WMD, in m). AH Code: Bathypelagic (B); Coastal Pelagic (CP); Demersal (D); Mesopelagic
(M) and Ocean Pelagic (OP).

Family Taxa NMDS
Code AH

GOM MED

TA (i ×
103 m−3) TA (%) WMD

(m)
TA (i ×

103 m−3) TA (%) WMD
(m)

Acropomatidae Acropomatidae NI D 20.9 0.12 38.7
Anguilliformes Anguilliformes Ang D 8.5 0.05 25.6 79.1 0.03 10.95

Apogonidae Apogon imberbis Aim D 42.8 0.02 15.00
Apogonidae Apogon spp D 20.6 0.11 5.0

Bothidae Arnoglossus spp Arn D 43.3 0.02 35.00
Bothidae NI D 36.9 0.20 28.3
Bothus podas Bpo D 43.9 0.02 15.00
Bothus spp D 66.2 0.36 23.1

Engyophrys senta Ese D 75.7 0.42 24.7
Trichopsetta spp D 52.2 0.29 28.0

Bramidae Bramidae NI OP 17.4 0.10 18.2
Bregmacerotidae Bregmaceros spp Bre CP 443.8 2.44 34.3

Carangidae Caranx spp Car CP 1796.8 9.87 9.0
Elagatis bipinnulata CP 43.9 0.24 15.0

Selar
crumenophthalmus CP 28.4 0.16 10.6

Seriola durmerilii Sdu CP 42.8 0.02 15.00
Ceratioidei Ceratioidei NI B 66.3 0.36 29.5

Chlorophthalmidae Chlorophthalmus
agassizi D 30.2 0.17 24.1

Chlorophthalmus brasiliensis D 21.9 0.12 18.5
Congridae Congridae NI D 50.3 0.28 24.6

Coryphaenidae Coryphaena hippurus OP 58.3 0.32 8.0
Cynoglossidae Symphurus spp D 41.3 0.23 24.8

Engraulidae Engraulis encrasicolus Een CP 2579.7 1.04 7.05

Gempylidae Diplospinus
multistriatus M 39.7 0.22 44.1

Epinnula magistralis M 26.8 0.15 24.0
Gempylidae M 18.0 0.10 45.0

Gempylus serpens M 36.0 0.20 10.2
Gobiidae Gobiidae Gob D 290.2 1.59 26.6 46.5 0.02 45.00

Gonostomatidae Cyclothone spp Cyc M 3266.8 17.94 18.2
Gonostomatidae NI M 29.5 0.16 29.4

Cyclothone braueri Cbr M 77407.8 31.08 25.31
Cyclothone pygmaea Cpy M 4560.6 1.83 12.75
Lestidiops jayakari Lja B 778.2 0.31 41.80

Lestidiops sphyrenoides Lsp B 121.9 0.05 48.28
Howellidae Howella spp How B 100.6 0.55 27.7

Labridae Coris julis Cju D 397.2 0.16 28.99

Lutjanidae Pristipomoides
aquilonaris D 58.2 0.32 15.3

Mugilidae Mugilidae NI Mug D 45.1 0.02 5.00
Myctophidae Benthosema glaciale Bgl M 142.4 0.06 41.79

Benthosema spp M 31.4 0.17 26.1
Ceratoscopelus

maderensis Cma M 558.4 3.07 13.5 24786.9 9.95 17.84

Ceratoscopelus spp Ces M 823.7 4.52 23.0
Diaphus holti Dho M 42.7 0.02 25.00
Diaphus spp Dis M 4671.0 25.65 21.6

Diogenichthys
atlanticus M 32.5 0.18 40.2
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Table 1. Cont.

Family Taxa NMDS
Code AH

GOM MED

TA (i ×
103 m−3) TA (%) WMD

(m)
TA (i ×

103 m−3) TA (%) WMD
(m)

Hygophum spp Hyg M 196.1 1.08 41.7 68444.3 27.48 34.17
Lampadena spp Lam M 335.3 1.84 9.0
Lampanyctus

crocodilus Lcr M 1474.5 0.59 35.67

Lampanyctus pusillus Lpu M 5026.7 2.02 32.94
Lampanyctus spp Las M 313.2 1.72 34.7

Lobianchia dofleini Ldo M 204.7 0.08 46.68
Myctophidae NI M 64.4 0.35 35.4

Myctophum
punctatum M 39.6 0.02 55.00

Myctophum spp Mys M 303.9 1.67 39.9
Notolychnus valdiviae M 22.0 0.12 32.9

Symbolophorus
veranyi M 40.6 0.02 55.00

Nettastomatidae Nettastomatidae NI B 26.1 0.14 33.1
Nomeidae Psenes spp OP 19.9 0.11 32.0

Ophichthidae Ophichthidae D 22.9 0.13 25.0
Ophichthidae Ophichthus gomesi D 20.4 0.11 12.2

Ophididae Ophididae Oph D 42.8 0.02 15.00
Paralepididae Paralepididae NI Par M 498.0 2.73 30.8

Paralepis coregonoides Pco M 1086.7 0.44 38.78
Sudis spp M 21.1 0.12 40.2

Paralichthyidae Cubiceps spp Cub D 800.6 4.40 12.5
Etropus spp D 25.0 0.14 18.5

Syacium papillosum D 69.1 0.38 25.0
Phosichthyidae Vinciguerria attenuata Vat M 2.9 0.02 45.0 2604.6 1.05 43.81

Vinciguerria nimbaria Vni M 259.3 1.42 28.8
Vinciguerria spp Vis M 97.3 0.53 32.3

Pomacentridae Chromis chromis Cch D 99.2 0.04 12.67
Scombridae Auxis rochei Aro OP 45.1 0.02 5.00

Auxis spp Aus OP 74.7 0.41 17.1
Euthynnus alletteratus Eal OP 10.5 0.06 20.5 103.7 0.04 5.00
Katsuwonus pelamis Kpe OP 343.8 1.89 19.6 32.1 0.01 5.00
Thunnus alalunga Tal OP 354.8 0.14 9.56

Thunnus spp Ths OP 411.7 2.26 12.3
Thunnus thynnus Tth OP 417.5 2.29 7.2 58052.2 23.31 8.07

Scorpaenidae Scorpaenidae NI D 20.0 0.11 26.5
Serranidae Anthias spp D 30.5 0.17 17.9

Epinephelinae NI D 62.1 0.34 16.1
Hemanthias spp D 58.0 0.32 20.8

Serranus spp Ser D 145.4 0.80 16.6
Stomiatidae Stomias boa Sbo M 200.8 0.08 33.31
Stomiidae Melanostomiinae NI M 53.1 0.29 21.5

Synodontidae Synodontidae D 20.7 0.11 13.0
Tetraodontidae Tetraodontidae D 24.2 0.13 26.1

Triglidae Triglidae Tri D 18.0 0.10 20.9 44.7 0.02 5.00

Tuna species in the Scombridae family were the main taxa contributing to the ocean
pelagic category in both areas, although in the GOM Coryphaena spp. and Psenes spp. were
also captured (Table 1). The abundance of BFT in the MED was one order of magnitude
higher than in the GOM and two orders of magnitude higher than the abundance of any
other scombrid within the MED assemblage. In the GOM, the abundances of Thunnus
spp. and Katsowonus pelamis were similar and one order of magnitude higher than any
other ocean pelagic taxa in the area. The contribution of the ocean pelagic taxa to the total
larval fish abundance was relatively low in the GOM, 7.7% of the total abundance of larvae,
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whereas in the MED the ocean pelagic group was the second most important group, after
the mesopelagic group, representing around 23.5% of the total abundance. The mesopelagic
group dominated the assemblages in both areas accounting for 64.5% and 74.7% of the total
larval fish abundance for the GOM and the MED, respectively. The number of mesopelagic
taxa was higher in the GOM (23 taxa) than in the MED (14 taxa, Table 1). The most abundant
taxa in both areas belonged to the Myctophidae and Gonostomatidae families. Taxa from
the genus Diaphus, Ceratoscopelus, Lampadena, and Lampanyctus were the most abundant
Myctophidae in the GOM and Hygophum, Ceratoscopelus, and Lampanyctus genus were the
most abundant Myctophids in the MED. The genus Cyclothone was the primary taxa of
Gnosmostomatidae in both areas.Oceans 2020, 1, FOR PEER REVIEW 10 
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Figure 3. (a–c) Differences among the Weighted Mean Depth (WMD, in m) for the common taxa in
the Gulf of Mexico (GOM) and the Mediterranean Sea (MED) grouped by the adult habitat of the
taxa (Table 1). (a) Ocean pelagic Taxa, (b) Mesopelagic Taxa and (c) Demersal Taxa. The dotted line
represents equal WMD at both scenarios.
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In the GOM, the taxa belonging to the demersal and coastal pelagic groups contributed
similarly to the total abundance of larvae (13.1% and 12.9%, respectively), whereas there
was almost no contribution of the bathypelagic taxa to the overall larval fish abundance
(1.1%). In contrast, in combination, the coastal pelagic, demersal and bathypelagic groups
represented less than 2% of the total larval abundance in the MED.

3.3. Vertical Distribution of Assemblages

Most scombrids were deeper in the GOM than the MED. The genus Thunnus were
observed at similar depth ranges between 7 and 12 m in both areas (Figure 3a, Table 1) and
the vertical distribution of BFT was very similar in both areas (Figure 3a). This species was
distributed from the surface to 30 m depth, with most of the individuals found in the top
10 m (Figure 4). Individuals from the genus Thunnus spp. were found at all depths in the
GOM (Figure 4), although most larvae were found at depths ranging from 0 to 20 m, which
is the same range where all the Thunnus alalunga in the MED were found (Figure 4). In the
MED, the rest of the scombrids were found in the upper 10 m of the water column, whereas
in the GOM abundances peaked at 15–25 m, depending on the species (Figures 3a and 4).Oceans 2020, 1, FOR PEER REVIEW 11 

 

 
Figure 4. Vertical distribution of the Scombrid taxa in the Gulf of Mexico (GOM, light grey) and the Mediterranean Sea 
(MED, dark grey). Thunnus spp. refers to all individuals from the genus Thunnus except for T. thynnus in the GOM and 
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relation to the total abundance of the taxa in all the water depths. 
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data onto two major axes with acceptable stress values (0.20 for the GOM and 0.11 for the 
MED, Figure 5). Spearman rank correlations among taxa and the first NMDS axes for each 
area were calculated (Figure 5). The best-fit GAM models for the first axis (Axis 1) of the 
GOM and MED NMDSs explained, respectively, 44 and 66.9% of the variance (Tables 2 
and 3). The best-fit model for the second axis (Axis 2) in GOM explained 9.66% of the 
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Figure 4. Vertical distribution of the Scombrid taxa in the Gulf of Mexico (GOM, light grey) and the Mediterranean Sea
(MED, dark grey). Thunnus spp. refers to all individuals from the genus Thunnus except for T. thynnus in the GOM and
refers to T. alalunga larvae in the MED. Perc. of taxa ab.: Percentage of the abundance of the taxa in the depth stratum in
relation to the total abundance of the taxa in all the water depths.

Most of the common mesopelagic taxa occupied similar depth ranges in the GOM and
the MED except for Hygophum spp. (deeper in GOM) and Benthosema glaciale (deeper in
MED, Figure 3b). Finally, the depth distribution of three families in the demersal group
(Triglidae, Anguillidae and Apogonidae) differed between the GOM and MED (Figure 3c).
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Given that coastal pelagic and bathypelagic families from the GOM and the MED did not
overlap, comparison of the vertical distribution between regions was not possible.

3.4. Influence of Environment on the Vertical Distribution of the Assemblages

The NMDS allowed us, at each area separately, to summarize the multi-taxa density
data onto two major axes with acceptable stress values (0.20 for the GOM and 0.11 for
the MED, Figure 5). Spearman rank correlations among taxa and the first NMDS axes for
each area were calculated (Figure 5). The best-fit GAM models for the first axis (Axis 1)
of the GOM and MED NMDSs explained, respectively, 44 and 66.9% of the variance
(Tables 2 and 3). The best-fit model for the second axis (Axis 2) in GOM explained 9.66% of
the variance and no best-fit model was found for the MED Axis 2.Oceans 2020, 1, FOR PEER REVIEW 12 
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Figure 5. Nonmetric multi-dimensional scaling (NMDS) performed for the Gulf of Mexico and Mediterranean scenarios
separately. Taxa codes as in Table 1. Only taxa with abundances > of 0.4% of the Total Abundance are represented in the
GOM. Taxa with higher values (both positive and negative) of significant Spearman correlations following Bonferroni
correction are shown for each group: in blue for those taxa correlated with Axis 1 and in green for those correlated with
Axis 2. Please note that in the MED, V. attenuata (Vat), L. pusillus (Lpu) and E. encrasicolus (Een) are significantly correlated
with both axes.

In the GOM, the covariates that explained Axis 1 of the vertical distribution of the
species were a combination of water salinity and fluorescence (Table 2, Figure S1). Specifi-
cally, we found negative relationships with both.

The taxa significantly correlated with Axis 1 in the GOM were meso- and ocean pelagic
species except for the coastal Caranx spp. (all tests p < 0.01, Figure 5). Most individuals
from the ocean pelagic group were positively correlated with Axis 1 (e.g., Katsuwonus
pelamis, T. thynnus, Coryphaena hippurus) whereas taxa from the mesopelagic group were
both positively and negatively correlated with Axis 1 (e.g., Lampadena spp., Ceratoscopelus
spp., Lampanyctus spp.). Most taxa positively correlated with Axis 1 were found in the
upper portion of the water column (Figures 4 and 6), except for Ceratoscopelus spp., which
was present in all the depth strata. Conversely, taxa negatively correlated with Axis 1
showed deeper vertical distributions (Figure 6).
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Table 2. Best-fit general additive models (GAMs) obtained for each nonmetric multi-dimensional scaling
(NMDS) axis (in italics) and results of each GAM model test for the Gulf of Mexico. a = intercept, s
= smoothing functions, ε = error term. Std. Error: Standard error; edf: degrees of freedom; Ref.df:
reference degrees of freedom used in computing test statistic and the p-values F: F-test values. Covariates
for the models are plotted in Figure S1. Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1.

Axis 1
GOM_Axis1 = a + s1 (Salinity) + s2 (Fluorescence) + ε

Parametric coefficients Estimate Std. Error

a (Intercept) 0.003 0.029
Smooth terms edf Ref.df F p-value

s1 (Salinity) 1.875 1.984 10.54 5.97 × 10−5 ***
s2 (Fluorescence) 1.883 1.986 19.56 8.39 × 10−8 ***

R-sq.(adj) = 0.418 Deviance explained = 44%

Axis 2
GOM_Axis2 = a + s1 (Salinity) + s2 (Fluorescence) + ε

Parametric coefficients Estimate Std. Error

a (Intercept) 0.012 0.034
Smooth terms edf Ref.df F p-value

s1 (Salinity) 1.884 1.986 4.1 0.027 *
s2 (Fluorescence) 1 1 4.90 0.029 *

R-sq.(adj) = 0.07 Deviance explained = 9.66%

Table 3. Best-fit general additive models (GAMs) obtained for the first nonmetric multi-dimensional
scaling (NMDS) axis (in italics) and results of each GAM model test for the Mediterranean. a = intercept,
s = smoothing functions, ε = error term. Std. Error: Standard error; edf: degrees of freedom; Ref.df:
reference degrees of freedom used in computing test statistic and the p-values F: F-test values. Covariate
for the model is plotted in Figure S2. Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1.

Axis 1
MED_Axis1 = a + s1 (Temperature) + ε

Parametric coefficients Estimate Std. Error

a (Intercept) −2.5 × 10−11 0.06
Smooth terms edf Ref.df F p-value

s1 (Temperature) 1 1 76.75 <2 × 10−12 ***

R-sq.(adj) = 0.66 Deviance explained = 69.2%

In the MED, the covariate in the GAM that best explained Axis 1 was temperature.
An optimum was observed in the partial effect of temperature on the vertical distribution
of larvae at ~25.5 ◦C (Figure S2). No significant covariates were found for the GAM of the
Axis 2.
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Figure 6. Vertical distribution of some of the taxa correlated with the NMDS Axis 1 in the Gulf of
Mexico (p < 0.001; Figure 5). Perc. of taxa ab.: Percentage of the abundance of the taxa in the depth
stratum in relation to the total abundance of the taxa in all the water depths.

Taxa from the meso- and ocean pelagic groups were correlated with Axis 1 (all tests
p < 0.01, Figure 1). Ocean pelagic taxa (BFT and T. alalunga) were positively correlated
with Axis 1, whereas mesopelagics were both positively and negatively correlated. As in
the GOM, taxa positively correlated with the Axis 1 in the MED were distributed more
towards the surface (Figures 4 and 7) and those negatively correlated were more deeply
distributed (Figure 7).

In the GOM, Axis 2 was explained by a negative linear relationship with fluorescence
and a range (~36.1–36.45) of salinity values (Table 2, Figure S2). The taxa significantly
correlated with this axis were members of the coastal pelagic, demersal and bathypelagic
groups (p < 0.01; e.g., Bregmaceros spp., Serranus spp., Nettastomatidae). In the MED, taxa
correlated with the Axis 2 were a mix of mesopelagic, bathypelagic and coastal pelagic
(e.g., Vinciguerria attenuata, Lestidiops jayakari, Engraulis encrasicolus).
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4. Discussion

This study finds that temperature influences vertical distribution of larvae in the MED
and a combination of salinity and fluorescence values in the GOM. Our findings support
previous work that has demonstrated that temperature is the primary variable explaining
vertical distribution of fish larvae in regions where the water column is characterized by
a strong thermocline [5,26,46]. The strong thermal gradient in the MED also drives the
composition of the larval fish assemblage where there is a clear faunal shift from above
to below the thermocline (0–25 m). Our results are unique in that they show tuna larvae
also inhabit the upper water layers in the GOM, where there is no thermal stratification
and where the temperatures greater than 20 ◦C persist to depths of 80–100 m. The vertical
distribution of the larval fish assemblage in the GOM is correlated with a combination
of environmental variables including salinity and fluorescence values characteristic of
surface waters.

The composition of the larval fish assemblage associated with BFT larvae in both
spawning areas is strikingly similar, despite evidence that different environmental drivers
influence the vertical structure of the assemblages. BFT larvae co-occur in the upper water
layer with other tuna and specific mesopelagic species in both ecosystems. Co-occurrence
of multiples species of tuna larvae in the first upper 20 m of the water column has been
reported throughout the world [16,17,21,26,47–50]. Our results corroborate these findings.
In the MED, all tuna inhabited the upper 20 m, whereas in the GOM, tuna were found
down to depths of 30 m, though most (66%) were in the upper 20 m. The WMD of Thunnus
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larvae was almost same between GOM and MED however the WMD of the other scomber
larvae in the MED was clearly shallower than that in the GOM (Figures 3a and 4). In the
MED, the thermocline is a sharp temperature boundary layer for the scombrid larvae,
and they are forced to coexist in the first 20 m, whereas the optimal temperatures for
scombrid larvae can be found from surface down to 100 m depth in the GOM. Under those
conditions, scomber larvae can avoid coexistence among them by selecting a wider range
of depths. Anyway, in the GOM, their condition of visual predators might also limit their
vertical expansion. Horizontal habitat segregation in scombrid larvae has already been
documented in the Pacific [8], in the GOM [23] and in the MED [51]. It is to be expected
that the same segregation can occur in the vertical distribution of taxa if the environmental
conditions are within the taxa specific limits.

We found striking similarities in the depth distribution of the mesopelagic group
between the two study areas. We hypothesize that the depth distribution of these individu-
als is influenced by the availability of their prey [52]. In the GOM, more than half of the
zooplankton biomass is found in the upper 200 m, with the majority of that occurring in
the upper 50 m [53]. In the MED, during the stratified period (when tuna spawning season
takes place), zooplankton exhibits a very structured vertical pattern, with some groups
presenting daily vertical migrations (copepods and ostracoda), whereas others remain both
night and day at upper (cladocera) or deeper (appendicularia) layers [54].

In contrast with the mesopelagic group, the demersal group exhibited quite different
vertical distributions in the GOM and MED. Since the dispersal phase of a demersal fish
must result in the fish returning to the benthic adult habitat, the dispersal trajectory of
the larvae must be more precise than for pelagic individuals [55]. As vertical distribution
strongly influences horizontal advection, it is not surprising that the vertical distribution of
these species differs between regions, as the oceanographic processes influencing circula-
tion differ. In the MED, only the Labridae family was found deeper than the thermocline
barrier (~20m) whereas families that show the ability to choose deeper distributions in the
GOM (Triglidae and Anguillidae) remain in shallow waters in the MED. Apart from the
abiotic variables included in the analysis, competition and other ecological interactions
might be the cause of differences in the assemblage’s vertical distribution. In the MED,
the shallow strong thermocline acts as a boundary layer for most of the taxa vertical dis-
tributions. The different groups must combine their physiological requirements in terms
of abiotic tolerance, with the food availability and with the ecological interactions with
other taxa such as competition or predation in a very narrow vertical layer. The absence of
that shallow boundary layer in the GOM allows the assemblage to be more expanded in
the vertical. In a transect crossing the tropical to equatorial Atlantic Ocean, with strong
thermal stratification down to ~100 m, larval fish assemblages were found also occupying
different vertical positions in relation to the physiological and ecological constraints [5].
The relative distribution in the vertical among taxa was very similar to the one found in
the GOM.

Diel changes in the vertical position of fish larvae have not been addressed in this
work. Sampling in GOM and in the MED was equally distributed throughout the 24 h of
the day (Table S1). No day-night differences were found among catches at the different
depth strata. Previous studies in the GOM found no day-night differences in vertical
positions or abundances of tuna larvae [56]. In the MED, winter and summer diel vertical
distributions of fish larvae from the surface to 200 m depth were systematically studied
during intensive 48 h sampling periods [54]. Most of the taxa that were found during
summer at depth > 50 m did not show differences greater than 10 m in their day or night
vertical positions. In the Atlantic Ocean, no day-night differences were found in the vertical
pattern of most fish larvae [5]. However, transforming stages of some mesopelagic taxa
exhibited diel vertical migration. Very few transforming-stage individuals were found in
our catches and they were not included in the analyses. Due to the narrow vertical range
inhabited by tuna larvae, the study of ontogenetic diel migrations would require sampling
with greater vertical resolution (<10 m) tows.
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Water temperatures above 20 ◦C are related to suitable larval habitats for tuna
species [18,19]. In scenarios characterized by having a strong thermocline, this mini-
mum temperature limit for the larval distribution (20 ◦C) has been linked to the vertical
distribution of tuna larvae above the thermocline (e.g., [26,46]), but it does not explain the
vertical distribution of the tuna larvae found in the GOM, where the 20 ◦C limit is found to
95m deep and most of tuna larvae (80.6%) inhabit the upper 30 m.

Behavioral rearing experiments simulating vertical temperature gradients have demon-
strated that BFT and bonito larvae are distributed throughout the water column in isother-
mal conditions as opposed to occupying specific depths when there is a sharp temperature
gradient [25]. In our study, regardless of thermal conditions, tuna larvae were primarily
found in surface waters, suggesting another abiotic or biotic factor influences their vertical
distribution. We hypothesize light level is the additional variable that influences the vertical
distribution of tuna larvae. Along with temperature, light is among the most common of
vertical cues for larvae in the ocean [57]. BFT larvae are visual predators, feeding mainly
during daylight hours [58]. We propose that the vertical habitat of BFT larvae is defined by
water masses with a combination of suitable temperature, high forage biomass, clear water
and sufficient light level to observe prey [59]. Unfortunately, no reliable light or turbidity
data were available for the present work, but the coexistence with other ichthyoplankton
groups in the first meters of the water column, where incident light is maximum, is com-
patible with the idea of where a visual predator should be positioned in the vertical to
maximize foraging possibilities.

In recent years, the annual densities of BFT larvae have been increasing in both the
MED and GOM [33,34]. MED densities are significantly higher than those reported in
the GOM. Knowledge of which species comprise the larval fish assemblages in major
tuna spawning grounds is key to understand the ecological role of tuna larvae within the
community. For BFT larvae, finding larval prey at the right place in the right time improves
larval growth and survival [19]. Rearing experiments have demonstrated selective piscivory
in tuna larvae [60]; however, we still know very little about the prey ingested by tuna in
the wild. The narrow available vertical habitat for all the larval fish assemblage in the MED
might force the coexistence of tuna larvae with its potential prey, unless horizontal niche
segregation is possible. That could be one of the reasons behind the high tuna fish larvae
densities found in the MED. Using common methodology is crucial when comparing larval
fish assemblages between regions. The use of similar nets, sampling methodologies and
environmental variables can help to compare spawning areas while avoiding significant
methodological issues [56,61]. Studies such as this one improve our knowledge about
the composition of the larval fish community and expand our knowledge of the detailed
vertical distribution of prey and tuna in their spawning grounds. One example is the high
abundances of specific species of mesopelagic larvae found together with tuna that may
ensure the availability of prey for the tuna larvae.

5. Conclusions

Our results emphasize that tuna larvae occupy the upper portion of the water column
regardless of whether the water column is stratified. Furthermore, we find that regardless of
spawning ground, multiple species of tuna coexist. Finally, there are striking similarities in
the species compositions between the two areas despite the thermal and regional differences.
In the future, we propose that models of prey encounter be developed to disentangle the
effects of light and temperature on the vertical distribution of the larva. Work such as
this is only possible with standardized methodologies, and comparative studies such as
this one provide important insights on the larval ecology of tuna and associated species.
Furthermore, they allow researchers to understand which trends they observe are local
subpopulation dynamics and which are population level responses, a key to effective
fisheries management.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2673-1
924/2/1/4/s1.Figure S1: Best-fit covariates of the GAM analysis performed on the Gulf of Mexico
NMDS Axis 1 (a,b) and (c,d) Axis 2 as response variables (c,d). Fitted lines (solid line), 95% confidence
intervals (grey shaded areas) and partial residuals are shown. Figure S2: Best-fit covariate of the GAM
analysis performed on the Mediterranean NMDS Axis 1. Fitted lines (solid line), 95% confidence
intervals (grey shaded areas) and partial residuals are shown. Table S1: Location and date information
for the stations sampled. GOM: Gulf of Mexico; MED: Western Mediterranean Sea. Latitude and
longitude are presented in decimal degree system and dates expressed as month/day/year.
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