Do Sand Smelt (Atherina presbyter Cuvier, 1829) Larvae Discriminate among Conspecifics Using Different Sensory Cues?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Handling of Sand Smelt Larvae
2.2. Experimental Tanks
2.3. Experimental Protocol
2.4. Video Analysis
2.5. Data Analysis
3. Results
3.1. Overall Preferences
3.2. Sensory Modalities
3.2.1. Visual Cues
3.2.2. Chemical Cues
3.2.3. Chemical and Visual Cues Simultaneously
4. Discussion
4.1. Visual Cues
4.2. Chemical Cues
4.3. Chemical and Visual Cues Simultaneously
4.4. Overall Insights into Marine Fish Larval Ecology
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, A.; Webster, M.S. Sociality: The Behaviour of Group-Living Animals; Springer International Publishing: Basel, Switzerland, 2016; pp. 1–276. [Google Scholar]
- Darden, S.K.; Croft, D.P. Male harassment drives females to alter habitat use and leads to segregation of the sexes. Biol. Lett. 2008, 4, 449–451. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.J.W.; Krause, J. Body length assortative shoaling in the European minnow, Phoxinus phoxinus. Anim. Behav. 2001, 62, 617–621. [Google Scholar] [CrossRef] [Green Version]
- Varma, V.; Singh, A.; Vijayan, J.; Binoy, V.V. Social decision making is influenced by size of shoal but not personality or familiarity in Deccan Mahseer (Tor khudree). Mar. Freshw. Behav. Physiol. 2020, 53, 231–250. [Google Scholar] [CrossRef]
- Engeszer, R.; Barbiano, L.; Ryan, M.; Parichy, D. Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Anim. Behav. 2007, 74, 1269–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, I.; Hoare, D.; Krause, J. Effects of parasites on fish behaviour: A review and evolutionary perspective. Rev. Fish. Biol. Fish. 2000, 10, 131–165. [Google Scholar] [CrossRef]
- Jolles, J.W.; Fleetwood-Wilson, A.; Nakayama, S.; Stumpe, M.C.; Johnstone, R.A.; Manica, A. The role of social attraction and its link with boldness in the collective movements of three-spined sticklebacks. Anim. Behav. 2015, 99, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrmann-Godel, J.; Gerlach, G.; Eckmann, R. Kin and population recognition in sympatric Lake Constance perch (Perca fluviatilis L.): Can assortative shoaling drive population divergence? Behav. Ecol. Sociobiol. 2006, 59, 461–468. [Google Scholar] [CrossRef]
- Barber, I.; Ruxton, G.D. The importance of stable schooling: Do familiar sticklebacks stick together? Proc. R. Soc. B Biol. Sci. 2000, 267, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Thünken, T.; Hesse, S.; Bakker, T.C.M.; Baldauf, S.A. Benefits of kin shoaling in a cichlid fish: Familiar and related juveniles show better growth. Behav. Ecol. 2016, 27, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Hesse, S.; Anaya-Rojas, J.M.; Frommen, J.G.; Thünken, T. Kinship reinforces cooperative predator inspection in a cichlid fish. J. Evol. Biol. 2015, 28, 2088–2096. [Google Scholar] [CrossRef]
- Chivers, D.P.; Brown, G.E.; Smith, R.J.F. Familiarity and shoal cohesion in fathead minnows (Pimephales promelas): Implications for antipredator behavior. Can. J. Zool. 1995, 73, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, S.W.; Brockmark, S.; Höjesjö, J.; Johnsson, J.I. Coping with divided attention: The advantage of familiarity. Proc. R. Soc. B Biol. Sci. 2004, 271, 695–699. [Google Scholar] [CrossRef]
- Utne-Palm, A.C.; Hart, P.J.B. The effects of familiarity on competitive interactions between threespined sticklebacks. Oikos 2000, 91, 225–232. [Google Scholar] [CrossRef]
- Millinski, M.; Kulling, D.; Kettler, R. Tit for tat. Behav. Ecol. 1990, 1, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Swaney, W.; Kendal, J.; Capon, H.; Brown, C.; Laland, K.N. Familiarity facilitates social learning of foraging behaviour in the guppy. Anim. Behav. 2001, 62, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Olsén, K.H.; Grahn, M.; Lohm, J. Influence of MHC on sibling discrimination in arctic char, Salvelinus alpinus (L.). J. Chem. Ecol. 2002, 28, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Barber, I.; Wright, H.A. How strong are familiarity preferences in shoaling fish? Anim. Behav. 2001, 61, 975–979. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, S.W.; Magurran, A.E. Schooling preferences for familiar fish vary with group size in a wild guppy population. Proc. R. Soc. B Biol. Sci. 1997, 264, 547–551. [Google Scholar] [CrossRef]
- Ward, A.J.W.; Hart, P.J.B. The effects of kin and familiarity on interactions between fish. Fish Fish. 2003, 4, 348–358. [Google Scholar] [CrossRef]
- Ward, A.J.W.; Kent, M.I.A.; Webster, M.M. Social recognition and social attraction in group-living Fishes. Front. Ecol. Evol. 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.J.W.; Hart, P.J.B.; Krause, J. The effects of habitat- and diet-based cues on association preferences in three-spined sticklebacks. Behav. Ecol. 2004, 15, 925–929. [Google Scholar] [CrossRef] [Green Version]
- Morrell, L.J.; Hunt, K.L.; Croft, D.P.; Krause, J. Diet, familiarity and shoaling decisions in guppies. Anim. Behav. 2007, 74, 311–319. [Google Scholar] [CrossRef]
- Frommen, J.G.; Mehlis, M.; Brendler, C.; Bakker, T.C.M. Shoaling decisions in three-spined sticklebacks (Gasterosteus aculeatus)—Familiarity, kinship and inbreeding. Behav. Ecol. Sociobiol. 2007, 61, 533–539. [Google Scholar] [CrossRef]
- Arnold, K.E. Kin recognition in rainbowfish (Melanotaenia eachamensis): Sex, sibs and shoaling. Behav. Ecol. Sociobiol. 2000, 48, 385–391. [Google Scholar] [CrossRef]
- Ward, A.J.W.; Webster, M.M.; Magurran, A.E.; Currie, S.; Krause, J. Species and population differences in social recognition between fishes: A role for ecology? Behav. Ecol. 2009, 20, 511–516. [Google Scholar] [CrossRef]
- Krause, J.; Godin, J.J. Shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae): Effects of predation risk, fish size, species composition and size of shoals. Ethology 1994, 98, 128–136. [Google Scholar] [CrossRef]
- Jones, G.P.; Millcich, M.J.; Emsile, M.J.; Lunow, C. Self-recruitment in a coral fish population. Nature 1999, 402, 802–804. [Google Scholar] [CrossRef]
- Swearer, S.E.; Caselle, J.E.; Lea, D.W.; Warner, R.R. Larval retention and recruitment in an island population of a coral-reef fish. Nature 1999, 402, 799–802. [Google Scholar] [CrossRef]
- Green, A.L.; Maypa, A.P.; Almany, G.R.; Rhodes, K.L.; Weeks, R.; Abesamis, R.A.; Gleason, M.G.; Mumby, P.J.; White, A.T. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 2015, 90, 1215–1247. [Google Scholar] [CrossRef]
- Shima, J.S.; Swearer, S.E. Evidence and population consequences of shared larvae dispersal histories in a marine fish. Ecology 2016, 97, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, G.; Beldade, R.; Holbrook, S.J.; Schmitt, R.J. Full-sibs in cohorts of newly settled coral reef fishes. PLoS ONE 2012, 7, e44953. [Google Scholar] [CrossRef] [Green Version]
- Rueger, T.; Harrison, H.B.; Buston, P.M.; Gardiner, N.M.; Berumen, M.L.; Jones, G.P. Natal philopatry increases relatedness within groups of coral reef cardinalfish. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201133. [Google Scholar] [CrossRef]
- Lecchini, D.; Peyrusse, K.; Lanyon, R.G.; Lecellier, G. Importance of visual cues of conspecifics and predators during the habitat selection of coral reef fish larvae. Comptes Rendus Biol. 2014, 337, 345–351. [Google Scholar] [CrossRef]
- Coppock, A.G.; Gardiner, N.M.; Jones, G.P. Sniffing out the competition? Juvenile coral reef damselfishes use chemical cues to distinguish the presence of conspecific and heterospecific aggregations. Behav. Process. 2016, 125, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Bamber, R.N.; Henderson, P.A.; Turnpenny, A.W.H. The early life history of the sand smelt (atherina presbyter). J. Mar. Biol. Assoc. UK 1985, 65, 697–706. [Google Scholar] [CrossRef]
- Faria, A.M.; Borges, R.; Gonçalves, E.J. Critical swimming speeds of wild-caught sand-smelt Atherina presbyter larvae. J. Fish. Biol. 2014, 85, 953–959. [Google Scholar] [CrossRef]
- Vicente, P.; Martins-Cardoso, S.; Almada, F.; Gonçalves, E.; Faria, A. Chemical cues from habitats and conspecifics guide sand-smelt (Atherina presbyter Cuvier, 1829) larvae to reefs. Mar. Ecol. Prog. Ser. 2020, 650, 191–202. [Google Scholar] [CrossRef]
- Pitcher, T.J. Functions of Shoaling Behaviour in Teleosts. In The Behaviour of Teleost Fishes; Pitcher, T.J., Ed.; Springer: Boston, MA, USA, 1986; pp. 294–337. [Google Scholar]
- Halsey, L.G.; Curran-Everett, D.; Vowler, S.L.; Drummond, G.B. The fickle P value generates irreproducible results. Nat. Methods 2015, 12, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Atherton, J.A.; McCormick, M.I. Kin recognition in embryonic damselfishes. Oikos 2017, 126, 1062–1069. [Google Scholar] [CrossRef]
- Cote, J.; Fogarty, S.; Sih, A. Individual sociability and choosiness between shoal types. Anim. Behav. 2012, 83, 1469–1476. [Google Scholar] [CrossRef]
- Lecchini, D.; Nakamura, Y. Use of chemical cues by coral reef animal larvae for habitat selection. Aquat. Biol. 2013, 19, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Lecchini, D.; Shima, J.; Banaigs, B.; Galzin, R. Larval sensory abilities and mechanisms of habitat selection of a coral reef fish during settlement. Oecologia 2005, 143, 326–334. [Google Scholar] [CrossRef]
- Nunes, A.R.; Carreira, L.; Anbalagan, S.; Blechman, J.; Levkowitz, G.; Oliveira, R.F. Perceptual mechanisms of social affiliation in zebrafish. Sci. Rep. 2020, 10, 3642. [Google Scholar] [CrossRef] [PubMed]
- Larsch, J.; Baier, H. Biological motion as an innate perceptual mechanism driving social affiliation. Curr. Biol. 2018, 28, 3523–3532.e4. [Google Scholar] [CrossRef] [Green Version]
- Gerlach, G.; Hodgins-Davis, A.; Avolio, C.; Schunter, C. Kin recognition in zebrafish: A 24-hour window for olfactory imprinting. Proc. R. Soc. B Biol. Sci. 2008, 275, 2165–2170. [Google Scholar] [CrossRef] [Green Version]
- Mehlis, M.; Bakker, T.C.M.; Frommen, J.G. Smells like sib spirit: Kin recognition in three-spined sticklebacks (Gasterosteus aculeatus) is mediated by olfactory cues. Anim. Cogn. 2008, 11, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Steck, N. No sibling odor preference in juvenile three-spined sticklebacks. Behav. Ecol. 1999, 10, 493–497. [Google Scholar] [CrossRef]
- Seppä, T.; Laurila, A.; Peuhkuri, N.; Piironen, J.; Lower, N. Early familiarity has fitness consequences for Arctic char (Salvelinus alpinus) juveniles. Can. J. Fish. Aquat. Sci. 2001, 58, 1380–1385. [Google Scholar] [CrossRef]
- Ward, A.J.W.; Hart, P.J.B. Foraging benefits of shoaling with familiars may be exploited by outsiders. Anim. Behav. 2005, 69, 329–335. [Google Scholar] [CrossRef]
Shoal Preference | Shoal | Mean | SE |
---|---|---|---|
Control | |||
% time | Natal | 10.811 | 2077 |
Non-natal | 14.811 | 3.131 | |
% visits | Natal | 21.910 | 3.399 |
Non-natal | 27.000 | 3.267 | |
All cues together | |||
% time | Natal | 22.151 | 4.301 |
Non-natal | 12.604 | 2.739 | |
% visits | Natal | 22.755 | 2.616 |
Non-natal | 18.769 | 2.526 | |
Chemical cues | |||
% time | Natal | 4.390 | 2.535 |
Non-natal | 8.222 | 3.859 | |
% visits | Natal | 13.060 | 4.127 |
Non-natal | 21.278 | 4.375 | |
Visual cues | |||
% time | Natal | 34.278 | 8.830 |
Non-natal | 14.611 | 4.362 | |
% visits | Natal | 26.889 | 4.300 |
Non-natal | 20.222 | 4.370 | |
Chemical and visual cues simultaneously | |||
% time | Natal | 28.118 | 7.715 |
Non-natal | 15.117 | 5.996 | |
% visits | Natal | 28.647 | 4.457 |
Non-natal | 14.294 | 4.450 |
Shoal Preference | Test Value | N | p |
---|---|---|---|
Control | |||
% time | 1.067 | 11 | 0.286 |
% visits | 0.711 | 11 | 0.477 |
All cues together | |||
% time | 1.377 | 44 | 0.168 |
% visits | 0.915 | 49 | 0.360 |
Chemical cues | |||
% time | 0.489 | 11 | 0.625 |
% visits | 1.164 | 15 | 0.244 |
Visual cues | |||
% time | 1.219 | 18 | 0.222 |
% visits | 0.980 | 18 | 0.327 |
Chemical and visual cues simultaneously | |||
% time | 1.079 | 15 | 0.280 |
% visits | 1.474 | 16 | 0.140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicente, P.; Faria, A.M. Do Sand Smelt (Atherina presbyter Cuvier, 1829) Larvae Discriminate among Conspecifics Using Different Sensory Cues? Oceans 2021, 2, 675-687. https://doi.org/10.3390/oceans2040038
Vicente P, Faria AM. Do Sand Smelt (Atherina presbyter Cuvier, 1829) Larvae Discriminate among Conspecifics Using Different Sensory Cues? Oceans. 2021; 2(4):675-687. https://doi.org/10.3390/oceans2040038
Chicago/Turabian StyleVicente, Patrícia, and Ana M. Faria. 2021. "Do Sand Smelt (Atherina presbyter Cuvier, 1829) Larvae Discriminate among Conspecifics Using Different Sensory Cues?" Oceans 2, no. 4: 675-687. https://doi.org/10.3390/oceans2040038
APA StyleVicente, P., & Faria, A. M. (2021). Do Sand Smelt (Atherina presbyter Cuvier, 1829) Larvae Discriminate among Conspecifics Using Different Sensory Cues? Oceans, 2(4), 675-687. https://doi.org/10.3390/oceans2040038