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Abstract: The accumulation of sea-surface debris around the coastal waters of Malta poses significant
ecological and environmental challenges, negatively affecting marine ecosystems and human activi-
ties. This issue is exacerbated due to the lack of an effective system tailored to predict surface-debris
movement specifically for the Islands of Malta. To address this gap, a pipeline that combines a
machine learning-based prediction system with a physics-based model is proposed. This pipeline
uses data on historical sea-surface current velocities to forecast future conditions and visualise debris
movement. Central to this system are two machine learning models trained to predict surface veloci-
ties for the next 24 h for a specific area. These predictions are then utilised in a Lagrangian model
to simulate and visualise the debris movement, providing insights into future dispersion patterns.
A comparative evaluation of both models using real-world data is made to determine which one
performs best in this application. This method offers a tailored approach to addressing sea-surface
debris around Malta by accurately predicting sea-surface current velocities and visualising debris
movement, improving cleanup operations and marine conservation strategies.

Keywords: machine learning; geosciences; Lagrangian simulation; prediction of sea-surface current
velocities; oceanography; environmental modelling; marine debris simulation; marine conservation

1. Introduction

Sea-surface debris around the coastal waters of Malta presents a significant environ-
mental issue. Predominantly composed of plastics, which constitute 82% of all man-made
floating materials encountered in the Mediterranean Sea [1], this debris endangers ma-
rine life, disrupts ecological balance, and compromises the ecological integrity of coastal
areas [2]. Studies reveal significant negative effects, ranging from harm to marine wildlife
due to ingestion and entanglement [3] to the disruption of natural habitats [4]. The im-
pact on coastal ecosystems extends beyond the environment, affecting economic sectors
reliant on marine health, such as tourism and fishing [4]. Further research covers the
long-term ecological consequences, highlighting the urgent need for effective management
and mitigation strategies, as discussed in [5]. This problem is further aggravated by the
lack of an effective system that can predict the movement of this surface debris since, as
of this writing, there exists no system that addresses this challenge for the coastal areas
around Malta.

Recent advances in predictive modelling for marine debris movement have integrated
various techniques to enhance the accuracy and applicability of forecasts. Studies such as
those by E. van Sebille et al. [6] have underscored the effectiveness of numerical simulations
in capturing the complex dynamics of marine debris dispersal, utilising comprehensive
data sets to model environmental interactions [7]. Additionally, the incorporation of deep
learning algorithms, as explored by W. R. Winans et al. [8], has proven instrumental in
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analysing extensive data sets to detect and categorise debris, which enhances the capabili-
ties of responding to marine pollution. Furthermore, advanced simulation tools like the
OceanParcels toolkit [9] have been pivotal in tracing debris pathways, with researchers
like M. Yuniarti et al. [10] demonstrating their utility in mapping microplastic distribu-
tion. These methodologies collectively offer a detailed understanding of debris behaviour,
establishing a robust framework for developing predictive models that are essential for
environmental management and conservation.

In this research, a machine learning (ML) technique and a physics-based Lagrangian
model [11] are proposed to address environmental issues of sea-surface debris. At the core
of this study is a pipeline that uses historical data to predict the next 24 h of sea-surface
current (SSC) velocities. These predictions serve as inputs to a Lagrangian model, enabling
it to simulate the movement of surface marine debris. In this study, long short-term memory
(LSTM) and gated recurrent unit (GRU) models are used due to their ability to deal with
the kind of time series data being considered [12]. Both models are then evaluated and
compared with a focus on their predictive accuracy and the quality of their visualisations.
This offers valuable insights into marine conservation efforts and enhances decision-making
processes for the management of marine debris around the Maltese Islands.

1.1. Motivation

The geological characteristics of the Mediterranean Sea make it difficult for surface
debris to escape the area naturally, resulting in it accumulating [13]. The current absence of
a predictive system tailored to the coastal regions of Malta impedes effective interventions
to mitigate environmental harm. This gap opens an opportunity for the implementation of
a system that aims to address an urgent ecological issue, which is widely recognised as a
global crisis [14]. By fulfilling this need, this research aims to provide accurate predictions
that can guide effective cleanup operations and inform strategies for long-term marine
conservation around the coast of Malta.

1.2. Aims and Objectives

This study aimed to create a system that simulates and predicts the movement of
marine debris in the coastal waters of Malta, thereby supporting marine conservation
efforts. To achieve this, several objectives were identified. The sea-surface current (SSC)
velocity data sets obtained from the HF Radar Network, operated and maintained by the
Department of Geosciences at the University of Malta, was preprocessed and organised to
ensure compatibility and consistency for input into the ML and Lagrangian models. The ML
models were necessary to predict future SSC velocities, and the Lagrangian physics model
was used to accurately simulate debris movement and dispersal. Following extensive
experimentation, it was found that LSTM and GRU models hold the most promise in terms
of accuracy and real-time performance. Both models were evaluated to determine which
one is able to predict sea-surface currents better. Beyond an assessment of the accuracy
of both models, a detailed geospatial analysis was performed to better understand the
conditions which make one model perform better than the other. The source code and data
sets used in this study are publicly accessible on GitHub (https://github.com/markdingli1
8/FYP_Mark_Dingli, accessed on 29 August 2024).

2. Materials and Methods

The approach taken in this study started out with the management and preprocessing
of the SSC data set to ensure data integrity and accuracy. Following this, ML models were
implemented that were capable of predicting SSC velocities with high precision. The final
phase of the methodology involved developing a physics-based Lagrangian model that
integrated the predicted SSC data. This model was used to simulate and visualise the
movement and dispersion patterns of sea-surface debris around the Maltese Islands.

https://github.com/markdingli18/FYP_Mark_Dingli
https://github.com/markdingli18/FYP_Mark_Dingli
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2.1. The SSC Data Set

In this study, a data set provided by the Department of Geosciences at the University
of Malta was used (https://www.um.edu.mt/science/geosciences, accessed on 29 August
2024). This data set consists of data on SSC velocities recorded in hourly increments across
four years, spanning from January 2020 to December 2023. These data points were derived
from high-frequency (HF) radar systems [15], located in the northern regions of the Maltese
Islands and southern Sicily. The locations of these radar systems, depicted in Figure 1,
provide a temporal snapshot of the SSC movements.
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Figure 1. High-frequency radar locations highlighted in orange.

The data are composed of several variables, including longitude, latitude, time, and
SSC velocities denoted as west–east velocity (u) and north–south velocity (v). The data’s
geographical scope was defined within the boundaries of 14.15° E to 14.81° E in longi-
tude and 35.79° N to 36.30° N in latitude. This coverage translated into a grid totalling
180 data points, as shown in Figure 2. The data set is in the Network Common Data
Form (NetCDF) format [16], a commonly used format for climate and meteorological data,
ensuring compatibility with the Lagrangian model.
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Figure 2. Locations of radar data points.

https://www.um.edu.mt/science/geosciences
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2.2. The Lagrangian Model

The practice of tracking ocean surface movements in a Lagrangian framework dates
back to the earliest days of oceanography. Early methods involved observing the drift of
ships or the paths of specially designed floats to document sea-current movements, as out-
lined by [17]. The Lagrangian model [11] plays a pivotal role in environmental simulations.
By offering a dynamic method to trace individual particle trajectories within fluid medi-
ums, the model ensures the precise tracking of the particle’s spatiotemporal movement. Its
broad applicability spans from localised studies to global-scale systems. This is evident in
its varied applications, such as tracking oil-spill diffusion [18], mapping floating plastic
debris [19], and simulating jellyfish migrations [20], and smoke dispersion [21].

The Lagrangian model operates by representing particles within a fluid medium,
tracking their position and properties as they move with the fluid’s flow. The model
calculates each particle’s trajectory by integrating the fluid’s velocity field, which may
vary in time and space. This approach enables the simulation of the dispersal patterns of
particles, such as marine debris, by accounting for both advection and diffusion processes.
Advection represents the movement of particles through the flow of a fluid [22]. Diffusion,
on the other hand, models the dispersion of particles through random motion [22]. This
is done by applying techniques such as random walks or Gaussian distributions. This
inclusion of randomness enhances the realism of simulations.

To facilitate these Lagrangian simulations, several Python toolkits like OceanParcels [9],
PyGnome [23], and Flexpart [24] have been developed. These toolkits enable the customi-
sation and execution of particle-tracking simulations, leveraging data on ocean currents,
wind fields, and other environmental phenomena. OceanParcels is distinguished by several
features that make it suitable for this work. One of its notable capabilities is custom kernels.
These are user-defined functions that allow for tailored simulation scenarios at each time
step. Through custom kernels, users can implement complex behaviours and interactions
of particles within a fluid, such as particle reflection or the response to environmental vari-
ables like temperature and wind. Another significant feature is particle initialisation. This
feature enables the creation of particles at specific locations and times, and with distinct
properties, allowing for more detailed and accurate simulations.

2.3. Time-Series Modelling

Time-series modelling is a technique used to predict future data points by analysing the
trends, cycles, and patterns in a series of data points collected over an interval of time [25].
The main focus is on analysing historical data to uncover the underlying structure of the
data, which can then be used to forecast future trends. This method is particularly powerful
due to its ability to incorporate the sequence and time dependence within a data set. By
examining how values are interconnected over time, time-series models can forecast future
values based on the inherent temporal dynamics present in historical data [26]. This form
of predictive modelling assumes that past patterns shape future behaviours, making it an
indispensable tool in various fields, ranging from weather forecasting [27] to stock-market
predictions [28].

While time-series modelling is a powerful tool for forecasting future data, it also
has its challenges and limitations. Time-series data often exhibit seasonality and trends,
which can complicate the forecasting process [29]. Outliers, missing sequences of data,
and anomalies can also significantly impact the accuracy of forecasting models, requiring
careful identification and handling. The capacity of these models to integrate external
influential factors and variables is also somewhat limited, often necessitating the integration
of additional features for enhanced predictive accuracy [30]. Additionally, time-series
models require significantly more data for training, which can be cumbersome in situations
where data are limited [30]. These challenges highlight the importance of adopting a
methodical approach to time-series modelling, emphasising the need to carefully consider
the specific context and characteristics of the data being analysed when utilising time-series
models for effective forecasting.
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In the context of this work, SSC velocities were predicted using time-series modelling.
Accurate predictions require a detailed analysis of data sequences to discern patterns that
could forecast future predictions. The historical hourly data of SSC form a time series,
which is inherently continuous but sampled at discrete intervals. To address this, LSTM
and GRU models are used due to their competence in handling vast amounts of sequential
data and their capacity to learn complex temporal patterns [31–33]. After training on past
SSC data, these models can predict future values with good accuracy.

2.4. Data Integration and Preprocessing

The raw data are split into multiple folders and sub-folders for each day, necessitating
a robust method to merge and preprocess the data without interfering with their temporal
and spatial dimensionality.

To address this, a utility was developed that allowed us to specify the start and end
dates for the merging of the SSC data. This then merged the individual files along the time
dimension, creating a single data set that encompassed all relevant data across the specified
interval. This merged data set was not only more manageable but also streamlined for any
subsequent processes. A key feature was the preservation of the geographical boundaries
and temporal aspects of the data. The data set maintained the latitude and longitude ranges,
ensuring that spatial integrity was uncompromised. Furthermore, checks were performed
to ensure that the time remained consistent, preserving the temporal integrity of the data.

When the data were analysed, a substantial number of missing values, represented
as not-a-number (NaN), were discovered. These NaNs were likely due to the proximity of
the data to the coast, where high-frequency radars often struggle to capture all the data
accurately. At this stage, NaN values were not addressed. Each objective required the
tailored handling of missing data, which will be discussed in the next sections.

2.5. The Lagrangian Model’s Development

Due to the strengths highlighted in Section 2.2, the OceanParcels toolkit [9] was chosen
for this study. The first step was to create the land–sea mask, as can be seen in Figure 3.
This effectively differentiates the land from the sea, ensuring accurate particle behaviour.
The mask was saved as a NetCDF [16] file and added within the grid boundaries to match
the boundaries of the data set. These coastal boundaries define the simulation area and
facilitate land–sea interactions.
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Figure 3. Land–sea mask of Malta.
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Subsequently, a FieldSet was created from the SSC data set. This served as the simula-
tion environment, defining the velocity fields that drive particle movement. Additionally,
the land–sea mask was integrated into the FieldSet, providing necessary data for handling
particles upon their reaching land. As depicted in Figure 4, simulation particles were
initialised near a specific geographic coordinate (36.0475° N, 14.5417° E) with random
offsets to simulate a dispersed release. The particles represent the objects of interest, such as
sea-surface debris, whose movements were to be simulated. Initially, the strategy involved
simulating numerous randomly placed particles across the entire area; however, to enhance
realism, a cluster of 50 particles was placed in close proximity. This configuration was
selected to accurately represent how debris navigates marine environments, with each
particle representing a cluster of debris.

N

5 km

Figure 4. Location of initial particles showing a cluster of debris.

Custom kernels were a critical component of the simulation, and they allowed us to
introduce specific behaviours into the simulation, thereby modelling realistic scenarios that
particles may encounter. The behaviours implemented include the following:

• Check out of Bounds, which deletes particles from the simulation if they move beyond
the defined boundaries. This is necessary because no data are available outside the
boundary, causing particles to get stuck.

• Check Error, which deletes particles encountering computational errors. This ensures
that the simulation proceeds without disrupted or incorrect particle data.

• Update Elapsed Time, which shows how long a particle has been in the simulation. This
tracks the duration of the particle within the environment.

• Update Previous Position, which captures the positions of particles before they move.
This is useful, as it allows us to save all the previous positions of the particles.

• Reflect on Land, which applies a reflection behaviour when particles encounter land,
as defined by the land–sea mask. It also introduces a probabilistic component when
there is a 15% chance that particles will ‘beach’ and be removed from the simulation,
while the remaining 85% chance allows particles to be reflected back into the sea. This
probabilistic distribution is justified by the geographic characteristics of Malta, where
the predominance of rocky coastlines over sandy beaches increases the likelihood of
debris being deflected back into the sea, rather than getting beached.

The simulation was executed, and the resulting particle movements and dispersion
patterns were visualised. These visualisations provide valuable insights into the trajectories
of particles and their interactions with the environment. The time-step for the Lagrangian
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simulation was set to 10 min, capturing the continuous dynamics of particle dispersion.
This interval provided a good balance between computational efficiency and accuracy. The
results were saved as an animated GIF file, offering a dynamic and easily interpretable
visual representation of the simulated particle dispersion over time.

Some challenges emerged during this part of the implementation. Initially, simulations
revealed that particles were getting stuck at the border boundaries. This issue was traced
back to the data set, which lacked data at the borders, rendering the particles unresponsive
to environmental variables in these areas. To address this, the boundary of the simulation
area was slightly reduced by 0.1° in longitude and latitude. The simulation was defined over
a seven-day period (longer periods were unreasonable and did not align with the research
goals). To achieve this, the preprocessing steps discussed in Section 2.4 were utilised to
merge the data from 1st to 7th January 2023. Wind was not considered in the simulation,
as the spatial distribution of microplastics does not appear to be significantly affected by
it. This intuition is supported by the research done by M. Erikson et al. [34]. Despite this,
it may still be possible that wind data may enhance the accuracy of the simulations in
depicting real-life scenarios, and they may provide an interesting improvement.

To deal with the missing data, an attempt was made to interpolate the missing values.
The visualisation results were noticeably different from those produced using the raw
data which included NaNs. Despite experiments with both linear and spline interpolation,
the outcomes of the interpolated simulations remained consistent across different time
frames, suggesting that the interpolation excessively homogenised the data. This uniformity
introduced via interpolation was misleading, as it failed to represent the true variability
and dynamics of the SSC, compromising the actual behaviour and movement patterns
of particles in the sea. Consequently, it was decided not to remove NaN values from the
data used in the Lagrangian simulations. This decision was based on the understanding
that removing or interpolating these values could lead to simulations that would not
accurately reflect real-world conditions. Preserving the integrity of the original data set,
including its inherent gaps, mean that the simulations were more likely to represent the
actual conditions and variations that marine debris would encounter in the sea. Examples
of the final visualisations are shown in Section 2.7.

2.6. Ml Model Selection

A pipeline was established to predict the SSC velocities. The initial phase involved
selecting appropriate models, with LSTM and GRU architectures identified as the optimal
choices. This decision was informed by their demonstrated effectiveness in processing
time-series data, rendering them particularly suitable for this task, as shown in studies by
A. M. Ali et al. [35] and I. I. Zulfa et al. [12]. Utilising these models allows the the dispersion
of marine debris around Malta’s coastal waters to be accurately predicted, addressing both
the temporal dynamics and spatial complexities inherent to SSC movements.

2.6.1. Data Preprocessing and Geospatial Filtering

While the initial plan was to train a model on a year’s worth of data in order to forecast
SSC for the next month, the complexity and four-dimensional nature of the data led to
sub-optimal predictions. Consequently, the strategy was revised to extend the data set
used for training, which spanned from 25 February 2020 to 1 August 2023. Given the
substantial volume of data points and the need for geospatial filtering, a decision was made
to concentrate on a smaller area of interest along the northern coast of Malta, as illustrated
in Figure 5. The method involved predicting the u and v components individually for each
longitude-and-latitude pair within the defined area. These individual predictions were
subsequently merged into a single file and finally input into the Lagrangian simulation.
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Figure 5. Data points and selected area of interest.

The data set was geospatially filtered to include only data points within the designated
area of interest, as shown in Figure 6. This filtering resulted in a focused data set consist-
ing of 37 data points. The data did not require any normalisation, as they had already
been scaled between −1 and 1 during the data-collection phase. Each coordinate pair
was then processed into individual comma-separated value (CSV) files. These files were
systematically named and organised according to the corresponding latitude and longitude
coordinate points. These CSV files served as the basis for training the AI models for every
individual data-point location.
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Figure 6. Filtered points within area of interest.

Areas closer to the coast had fewer data points (more NaNs), as illustrated in the heat
map in Figure 7. This lack of data near coastal regions can likely be attributed to several
factors. These include radar interference from nearby land or structures, the obstruction
of radar beams due to coastal terrain or buildings, and the refraction of radar waves at
the coast, all contributing to distorted data collection. Efforts to solve this issue included
experiments with data interpolation and filling missing values with the mean. However,
these methods yielded worse results compared to those obtained by eliminating the NaN
values. Due to this, the most effective strategy proved to be the removal of NaN values,
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a decision informed by testing and alignment with the methodologies applied for the
Lagrangian model, as discussed in Section 2.5.

N

5 km

Figure 7. Amount of data points per coordinate pair.

Prior to creating the pipeline, preliminary testing was conducted on a single model to
determine the most effective features and targets. Experimentation involved the integration
of both u and v as features, revealing marginally improved outcomes compared to using
each as a single feature, prompting a focus on using both features for the predictions.
Notably, the model yielded good results when predicting a single target, but the accuracy
of predictions noticeably diminished upon testing the model to predict both u and v as
targets. This observation led to the decision to develop separate models for each target
variable in order to maximise the accuracy of the results. Therefore, a series of 37 models to
predict the u component was implemented and repeated similarly for the v component,
ensuring precise and reliable predictions.

2.6.2. The Main Loop

Inspired by the approach of H.-M. Choi et al. [36], who developed a model for every
individual coordinate pair, a pipeline was established that iterated through each pair of
coordinates in the data set (total of 37) and trained a dedicated model for each individual
pair. This approach made possible predictions across the entire area of interest, which
were later utilised for the Lagrangian simulations. The u and v columns in the data files
prepared earlier were extracted as input features. The data set was then divided into
training, validation, and testing sets in a 70-15-15 split, respectively, a common split for
ensuring a balance between adequate model training and thorough evaluation. Given the
time-series nature of the data, it was necessary to sequence the data appropriately; this
was achieved using the TimeseriesGenerator library [37]. The iterative testing of different
parameter combinations revealed that a window size of 72 h, a batch size of 64, and a
sampling rate of 1 unit yielded the best overall results. This meant that the data were
sequenced into continuous blocks of 72 h of data as input and paired with the value
immediately following these 72 h as the target output. This step allowed the model to
predict the next hour based on the preceding 72 h of data.

TensorFlow [38] was used to implement the models. Various architectures and hy-
perparameters were tested to determine which ones yielded the best results, including
a partial grid search for hyperparameter tuning. To ensure a fair comparison, identical
hyperparameters and layer configurations were applied across both the LSTM and GRU
architectures. The most effective architecture involved ten hidden layers, composed of
four LSTM/GRU layers, three dropout layers, and two dense layers activated via ReLU,
followed by an additional dropout layer after each dense layer. The models were set up
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with a learning rate of 0.001, the ADAM optimiser, and the MSE loss function. Importantly,
the model was reinitialised in each iteration of the loop, ensuring that each data set was
trained on a fresh instance without any residual weights from previous iterations. This
approach is crucial when dealing with multiple data sets to avoid any data leakage or
influence from previously trained models (clean-slate training). It also helps maintain the
integrity of the learning process for each distinct data set. Early stopping with a patience
of 8 epochs was implemented to halt training and prevent overfitting. Model checkpoints
were utilised to save the best-performing epoch automatically. After each training epoch,
plots comparing training versus validation loss were generated to monitor the performance
of each model. To ensure that each model was trained adequately, predictions were made
on the test set and subsequently visualised by comparing actual versus predicted values, as
illustrated in Figure 8. Finally, in the adoption of a similar evaluation approach to Adhikari
et al. [25], MAE, MSE, and RMSE error metrics were computed and displayed to evaluate
the model’s performance using the test set.

Figure 8. Actual vs. predicted values using the test set.

2.6.3. Making Real-World Predictions

In the final phase of the AI model pipeline, a simulation mirroring a real-world scenario
was made by feeding historical data spanning 72 h to predict the subsequent 24 h. This 24-h
prediction window was chosen since it provides a balance between short-term accuracy
and computational feasibility, which is typically used for time-series forecasting in dynamic
environments like SSC. The dates of 4th August and 4th November 2023 were selected to
assess the model’s performance under different seasonal conditions; from here on, they are
referred to as Test 1 and Test 2, respectively. Specifically, data from 1st to 3rd August 2023
were used as input to predict conditions for Test 1; data from 1st to 3rd November were
used for Test 2. This setup allowed us to compare the predictions with actual historical
data from the data set. The process began with a loop to systematically extract SSC data
across 72 h for all 37 individual coordinate pairs. Subsequently, actual observed data for the
following 24-h period on 4th August (Test 1) were extracted for comparative purposes, and
both sets were saved as CSV files. Given the requirement for 72 consecutive hours of data
to be able to make predictions and 24 h for comparison, spline interpolation was utilised
to address any present NaN values, ensuring the data set’s completeness (this is distinct
from the case in which NaNs were ignored as discussed in Section 2.5). Using the rolling
forecasting method shown in Figure 9, predictions were generated for the subsequent 24-h
period for the individual targets u and v. It is noted that predictions based on interpolated
data served as inputs for subsequent forecasts, potentially diminishing their precision. This
effect was particularly noticeable in longer-term predictions, for which accuracy tended to
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decrease as the forecast horizon was extended, expectedly showing a decline in prediction
accuracy the farther the prediction extended into the future.

x
1 x . . .

2
x

3

x
2 x. . .

t
x

t+1

x
3 x. . .

t
x

t+1
x

t+2

x
t+1

predict

x
t+2

x
t+3

predict

predict

Figure 9. The process of a rolling forecast.

This process was repeated for all 37 data points, and the predictions were converted
into the NetCDF format to be subsequently used in the Lagrangian model. Finally, the same
error metrics were calculated to be used later for evaluation. This pipeline was repeated
four times, encompassing two LSTM models and two GRU models, one for each of the u
and v components, respectively. The architecture of the AI models’ pipeline is illustrated in
Figure 10 below.
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Figure 10. Overview of the entire pipeline.

2.7. Integrating the ML Models with the Lagrangian Model

The final stage of the pipeline involved integrating the AI models’ predictions with
the physics-based Lagrangian model to produce a 24-h forecast simulation of sea-surface
debris dispersion.
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This process was conducted separately for both the LSTM and GRU model predictions.
The initial and most critical step involved the preprocessing and merging of the predicted
u and v values as NetCDF data. Following this, the procedures outlined in Section 2.5 were
implemented once again to set up the Lagrangian simulation framework. This involved
the configuration of the land–sea mask, FieldSet, number of particles, kernels, and timestep.
The only difference lay in the particle-initialisation phase. Given that the model predictions
were specific to the area of interest (as depicted in Figure 6), it was decided to set the
centroid of the polygon as the starting position. More specifically, the coordinates were at a
latitude of 35.9895° and a longitude of 14.4944°. This approach is advantageous, as it allows
for an unbiased observation of dispersion patterns. The reason is that, since the centroid
is equidistant from all edges of the polygon, it provides a neutral starting point that does
not inherently favour any flow direction. In terms of the offset of the initial particles, the
same random seed was used for both the LSTM and GRU simulations. This ensured a fair
comparison, as the initial locations of the particles were identical for both models.

Finally, the Lagrangian simulations for both the LSTM and GRU models were exe-
cuted and stored. The resulting particle movements and dispersion patterns were visu-
alised. These visualisations (Figures 11 and 12) allowed us to observe the surface-debris
movement predictions and facilitate the evaluation of the results produced via the LSTM
and GRU models.
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Figure 11. LSTM and GRU initial vs. final debris movement for Test 1 (4th August).
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Figure 12. LSTM and LSTM initial vs. final debris movement for Test 2 (4th November).

2.8. Evaluation Strategy

The original plan was to evaluate the Lagrangian framework by comparing dispersion
patterns with drifter data, as done by van Sebille et al. [6] and Aijaz et al. [39]. However, due
to the coastal proximity of the area of interest and the general practice of deploying drifters
in open waters to avoid beaching, the drifter trajectory data were not available. While
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this would be the ideal approach to assessing the Lagrangian simulations, this proved to
be impossible due to the unavailability of drifter data. Instead, the focus shifted to the
analysis of the LSTM and GRU model predictions. Through the adoption of an approach
similar to that of H. Yadav et al. [40], the mean absolute error (MAE), mean squared error
(MSE), and root mean squared error (RMSE) were used to assess their predictive accuracy.
Furthermore, to ensure that the procedure could generalise well, it was also run on the Test
2 timeframe (in a different season) from the 1st to the 3rd November 2023 using the same
trained models.

Given that this analysis included 37 distinct models for both the u and v components,
the mean and standard deviation were computed for each metric to facilitate a more
comprehensive evaluation of the LSTM and GRU. During the analysis, certain outliers
within the results were identified. To address this, the average was also calculated using the
interquartile range (IQR), focusing on the differences between the 75th and 25th percentiles
for each metric and thereby obtaining a more robust mean that excluded these outliers.

A geospatial evaluation of the LSTM and GRU models was motivated by the observa-
tion that each specific data point within the area of interest yielded varied results. Initially,
a heat map was generated (Figure 7) to identify which model corresponded to each location
and to quantify the amount of training data available for each model. Subsequently, the
MAE values for the u and v components were visualised again using heat maps. The
choice of MAE as a metric was deliberate, as it provides a straightforward and uniformly
interpretable measure that treats all errors equivalently. These visualisations were instru-
mental in comparing the spatial accuracy of the models, highlighting areas where each
model exhibited better or worse performance. These findings were then compared with the
original heat map to discern patterns and discrepancies. This analysis was performed for
the predictions corresponding to both Test 1 and Test 2.

Finally, the performance of the LSTM and GRU models was quantified across different
regions, calculating the centroid, spread, and skewness of their respective Lagrangian
simulation outputs. The measures included the following:

• Mean, median, and standard deviation of centroids: the geographical centroids
of the merged predictions were computed from both the LSTM and GRU models to
assess the proximity of the final debris-movement predictions generated via the two
models. Smaller mean, median, and standard deviation values suggested a higher
degree of consistency between the models’ predictions.

• Spread of LSTM and GRU: the spatial spread was determined by calculating the stan-
dard deviation of distances from each model’s centroid. A lower standard deviation
indicated a tighter clustering around the centroid, reflecting more consistent model
performance across the area.

• Longitudinal and latitudinal skewness of LSTM and GRU: to understand the di-
rectional tendencies of the model’s predictions, the skewness of the distribution of
the prediction points’ longitude and latitude was calculated. A skewness close to
zero indicates a symmetrical distribution of prediction errors, whereas a positive or
negative skewness value points to a systematic bias in a particular direction.

3. Results

The primary objectives were to ascertain which model (LSTM or GRU) demonstrated
superior performance and to evaluate the real-world similarity of the Lagrangian simula-
tions generated using these models’ predictions. As previously noted, the framework was
tested on two time periods. This was done to gauge the models’ consistency and reliability
under varying seasonal conditions, offering a thorough analysis of their performance across
different environmental dynamics.
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3.1. LSTM vs. GRU

In the initial experiment, the accuracy of the models in predicting SSC velocities was
assessed by comparing the predicted results against actual historical values using the MAE,
MSE, and RMSE metrics.

Error Metric Results

The average error metrics for the 24-h rolling predictions from all 37 models in Test 1
are presented in Tables 1–4 below.

Table 1. LSTM u average error metrics for Test 1 (4th August).

Metric Mean Std. Dev. IQR

MAE 0.141 0.226 0.058
MSE 0.116 0.513 0.010

RMSE 0.179 0.291 0.053

Table 2. LSTM v average error metrics for Test 1 (4th August).

Metric Mean Std. Dev. IQR

MAE 0.144 0.134 0.141
MSE 0.064 0.109 0.073

RMSE 0.183 0.175 0.212

Table 3. GRU u average error metrics for Test 1 (4th August).

Metric Mean Std. Dev. IQR

MAE 0.148 0.222 0.067
MSE 0.116 0.503 0.016

RMSE 0.187 0.285 0.070

Table 4. GRU v average error metrics for Test 1 (4th August).

Metric Mean Std. Dev. IQR

MAE 0.145 0.138 0.149
MSE 0.066 0.112 0.066

RMSE 0.184 0.179 0.202

The analysis of these results revealed insightful differences in model performance.
For the u component, the LSTM models demonstrated slightly lower MAEs and RMSEs,
indicating better average accuracy and consistency, although the GRU models showed a
marginally lower MSE. Conversely, for the v component, both models performed similarly,
with minimal variations across all metrics, which suggests a near-equivalent capability
in handling this type of prediction. A further examination of the variability through
standard deviation and IQR metrics showed that the LSTM models had a lower standard
deviation in the v-component predictions, suggesting more consistent performance relative
to GRU. Additionally, the smaller IQR for LSTM in both components implies that its
predictions were more tightly clustered around the median, indicating less variability
and more reliability. While both models performed well, LSTM offered marginally better
performance, particularly for the u component, establishing it as the preferable model.

The results for the 24-h rolling predictions for all 37 models in Test 2 are detailed in
Tables 5–8 below.
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Table 5. LSTM u average error metrics for Test 2 (4th November).

Metric Mean Std. Dev. IQR

MAE 1.031 2.118 0.299
MSE 14.765 40.758 0.243

RMSE 1.634 3.478 0.397

Table 6. LSTM v average error metrics for Test 2 (4th November).

Metric Mean Std. Dev. IQR

MAE 2.622 5.507 0.506
MSE 97.858 253.429 0.860

RMSE 4.239 8.938 0.844

Table 7. GRU u average error metrics for Test 2 (4th November).

Metric Mean Std. Dev. IQR

MAE 1.051 2.112 0.568
MSE 14.772 40.773 0.466

RMSE 1.651 3.471 0.586

Table 8. GRU v average error metrics for Test 2 (4th November).

Metric Mean Std. Dev. IQR

MAE 2.653 5.502 0.537
MSE 97.980 253.623 1.144

RMSE 4.268 8.931 0.991

When it comes to the u component, both models displayed relatively high MAEs,
MSEs, and RMSEs, with LSTM showing lower metrics. The high standard deviations
observed for both models suggest a significant presence of outliers, indicating that some
predictions were inaccurate. This is evident in the GRU u component, for which the IQR
was higher, suggesting a broader spread compared to LSTM and pointing to more frequent
outliers in the GRU model. In contrast, the v component exhibited considerably higher
error values for both models, with GRU again having higher values across all metrics. The
standard deviations and IQR values were significantly larger in the v component for both
models, again reinforcing the presence of outliers and indicating that predictions for the
v component were generally less accurate and more variable. Overall, the LSTM model
performed better than the GRU model, particularly with the v component, as evidenced by
the lower error metrics and narrower IQR. Therefore, the more consistent performance of
LSTM across both tests seems to suggest that it is the better model overall.

4. Discussion
4.1. Error Metric Results

The analysis highlighted that predictions of the u component (east–west velocity) were
generally more accurate than for the v component (north–south velocity). This discrepancy
can be attributed to the baseline alignment of radar systems, which are aligned along a
north–south orientation, as depicted in Figure 1. This potentially impacts the accuracy
of v-component readings and inhibits the radar’s ability to capture detailed north–south
data, consequently leading to less accurate predictions for the v component. Moreover,
Test 1, conducted on the 4th of August, exhibited notably better results, characterised
by lower error values and fewer outliers when compared to Test 2 on the 4th November.
This improvement was likely due to the August data being in close proximity to the final
sequences of the test data set, potentially leading to the models being better tuned to these
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conditions. Furthermore, the process of rolling forecasting, which bases predictions on pre-
ceding outputs, may lead to inaccuracies, particularly when initial predictions are derived
from interpolated data. This method could inherently propagate errors, especially under
conditions of notable missing data, as discussed in Section 2.6.3. Such findings emphasise
the necessity of considering temporal proximity and data integrity when assessing model
performance. These phenomena and their implications on model performance will be
explored further in the next section.

4.2. Geospatial Analysis

Another test focused on determining whether an increased volume of data corre-
lated with enhanced predictive accuracy, whether data points closer to the coast, typically
characterised by fewer data, yielded poorer performance, and whether the time of year
and seasonality of the data impacted the results. The primary goal was to assess whether
the geographical location of data points influenced the accuracy of the predictive models.
Additionally, the final Lagrangian simulations generated via both the LSTM and GRU
models were compared to evaluate their similarities in modelling sea-surface debris.

4.2.1. A Hypothesis

As highlighted in Sections 2.6.1 and 2.8, the data set contained considerable missing
data, with data points closer to the coast having more NaNs present, as evidenced in
Figure 7. This is corroborated by Figure 13, which illustrates how some data points had
significantly less data available. Figure 7 is instrumental in demonstrating the correlation
between model performance and geographic location, thereby paving the way for a focused
analysis of the impact of data availability at specific locations. Based on these observations,
a hypothesis was formulated.

Hypothesis 1. Data points near the coast exhibit reduced data availability due to environmental
and technical challenges that interfere with radar performance. This scarcity of data consequently
impairs the accuracy of predictive models for SSC velocities near the coast. Specifically, it suggests
that models predicting SSC at coastal locations perform less effectively compared to those further
offshore, for which radar data tends to be more complete.

Figure 13. Histogram of data points by location number.

The hypothesis was investigated by conducting a comparative analysis with the heat
map in Figure 7. This analysis helped us validate or refute the assumption regarding the
influence of geographical location on model accuracy.

4.2.2. Heat Map Results and Analysis

As discussed in Section 2.8, heat maps were utilised to geospatially analyse the perfor-
mance of the models, focusing on the MAE across all 37 models. These visualisations were
crucial for testing the validity of the hypothesis regarding the impact of data availability on
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predictive accuracy near coastal areas. Heat maps for the MAE metrics were produced for
both the u and v components of both the LSTM and GRU models, covering the predictions
made in both Test 1 and Test 2. To enhance the clarity of these visualisations and minimise
the influence of outliers, a clipping method was applied at the 95th percentile of the data.
This method effectively limited the range of data considered for colour scaling in the heat
maps, allowing for more nuanced visual comparisons between most data points by exclud-
ing extreme outliers. The resultant heat maps for Test 1 are displayed in Figures 14 and 15,
and the ones for Test 2 are displayed in Figures 16 and 17 below.

N N

5 km 5 km

Figure 14. u component MAE heat maps for Test 1 (4th August).

N N

5 km 5 km

Figure 15. v component MAE heat maps for Test 1 (4th August).

N N

5 km 5 km

Figure 16. u component MAE heat maps for Test 2 (4th November).
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Figure 17. v component MAE heat maps for Test 2 (4th November).

These visualisations clarify that, while models near the coast generally performed
worse, presumably due to fewer data being available, there were notable exceptions in
which coastal predictions maintained good accuracy. This observation challenges the as-
sumption that a greater data volume directly correlates with higher predictive accuracy.
Instead, it suggests that the models’ capabilities to handle noise and extract meaningful
patterns from sparse data can significantly impact their effectiveness. Furthermore, the
differential accuracy between the u and v components highlights the complexity of environ-
mental factors and model sensitivities, which contribute to a diverse spectrum of outcomes
that are not determined solely by the amount of data available.

Comparing the results obtained via the two tests revealed a stark contrast: the pre-
dictions for August were markedly more accurate, underscoring the potential impact of
seasonal variations. The outliers observed in Test 1 were inconsistent with those of Test 2,
highlighting the temporal variability of missing data and its non-uniform impact across
different points and times. It becomes evident that no consistent pattern existed, thus
challenging any definitive conclusions. While certain models excelled in predicting the u
component, their performance diminished when they were applied to the v component.
These observations attest to the intricate dynamics at play in predictive modelling, where
factors like the models’ ability to manage noise and the inherent directional properties
of data lead to outcomes in which fewer data does not always result in less accuracy.
Therefore, these findings not only challenge but also effectively refute the hypothesis.

4.2.3. Comparison of Lagrangian Simulations

In the final component of the evaluation framework, the performance similarities
between the LSTM and GRU models were assesed through the analysis of centroids,
spreads, and skewness within the respective Lagrangian simulation outputs. The findings
for Test 1 are shown in Figure 18.

Mean Centroid Distance: 0.0196° (2.17 km)
Median Centroid Distance: 0.0186° (2.06 km)
Std Dev of Centroid Distances: 0.0138° (1.54 km)

LSTM Spread: 0.0163° (1.81 km)
GRU Spread: 0.0049° (0.54 km)

LSTM Longitude Skewness: 0.249
LSTM Latitude Skewness: -0.487
GRU Longitude Skewness: -1.076
GRU Latitude Skewness: 0.381

Figure 18. LSTM vs. GRU comparison of Lagrangian simulations for Test 1 (4th August).

In this case, the average centroid distances for the LSTM and GRU models were
around 2 km, suggesting that both models achieved markedly different geographical accu-
racy. The standard deviation of these distances was 1.54 km, indicating a moderate spread
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around the centroids. However, the GRU model demonstrated a more compact spread
of 0.54 km compared to the LSTM’s 1.81 km, suggesting that GRU’s predictions were more
tightly grouped. The skewness metrics showed a mild eastward and southward bias in
the LSTM predictions, whereas the GRU exhibited a stronger westward bias and a slight
northward tendency, highlighting directional tendencies in their prediction patterns. Next,
the results for Test 2 are shown in Figure 19.

Mean Centroid Distance: 0.0147° (1.63 km)
Median Centroid Distance: 0.0172° (1.91 km)
Std Dev of Centroid Distances: 0.0063° (0.70 km)

LSTM Spread: 0.0144° (1.60 km)
GRU Spread: 0.0232° (2.58 km)

LSTM Longitude Skewness: 0.563
LSTM Latitude Skewness: -0.167
GRU Longitude Skewness: 0.278
GRU Latitude Skewness: 0.475

Figure 19. LSTM vs. GRU comparison of Lagrangian simulations for Test 2 (4th November).

The results of the second test showed improvements in clustering, with mean and
median centroid distances reduced to approximately 1.63 km and 1.91 km, respectively.
This reduction, coupled with a decreased standard deviation of 0.70 km, suggests en-
hanced prediction accuracy and consistency for this period. Interestingly, LSTM showed
a more consistent spread of 1.60 km, whereas GRU’s predictions were more dispersed,
with a spread of 2.58 km. Skewness values also shifted, indicating changes in predictive
behaviour that might have been influenced by different environmental conditions or model
sensitivities to the input data at that time.

Overall, the analyses highlight that the LSTM models generally offered more consistent
and reliable performance, marked by less variability in spread and skewness compared
to GRUs. While GRUs seemed to adjust their performance based on different conditions,
suggesting a possible sensitivity to seasonal or environmental changes, the LSTM models
maintained steadiness across the evaluated metrics. This consistent performance makes
LSTM the more suitable model for this application.

4.2.4. Comparison of Final Lagrangian Visualisations

Visual comparisons between Figures 11 and 12 indicate notable differences in the out-
comes of the LSTM and GRU simulations. Specifically, the August simulations (Figure 11)
revealed distinct disparities in the final particle locations between the LSTM and GRU
models. Conversely, the November simulations (Figure 12) displayed a high degree of
similarity. This observation lends support to findings from our previous observations in
Section 4.2.3, where the November results demonstrated greater alignment between the
models when compared to August. Such disparities point out the variable nature of these
predictions and highlight the complex interplay of various factors that significantly impact
the accuracy and consistency of the final outcomes. This variability is illustrative of the
inherent challenges in modelling time-series data, for which slight variations in input or
parameters can lead to markedly different predictions.

5. Conclusions

In this study, an integrated system that combined ML models with a physics-based
Lagrangian framework to forecast the movement and dispersion of sea-surface debris
around Malta were proposed. The results demonstrate the capability of the system to
make accurate 24-h predictions and dynamically visualise the trajectory of marine debris.
Through a comparative evaluation, it was determined that the LSTM model outperformed
the GRU model in predicting SSC velocities, evidenced by better performance in error
metrics such as the mean absolute error (MAE), mean squared error (MSE), and root mean



Oceans 2024, 5 691

squared error (RMSE). These findings validate the effectiveness of the integrated approach
and demonstrate its potential to enhance marine conservation efforts.

The analysis consisted of an evaluation of error metrics and geospatial behaviour,
which together provided a robust evaluation of the effectiveness of the models and the
corresponding practical applicability. The findings indicate that LSTM provided more
consistent and reliable predictions, establishing it as the preferred model when considering
the performance of both components across diverse seasonal and environmental conditions.
The geospatial analysis further corroborated these findings, showing that the LSTM gener-
ally maintained more consistent performance metrics, such as spread and skewness, when
compared to the GRU. This consistency was evident despite the seasonal variations between
the two dates, highlighting LSTM’s robustness across different predictive scenarios.

Furthermore, this analysis did not consistently support the hypothesis that proximity
to the coast and reduced data availability significantly degraded the models’ performance.
While coastal data points generally showed less accuracy, this was not universally the case.
Some predictions maintained good accuracy, suggesting that other factors, such as the
capacity of the models to handle sparse data and environmental noise, play a critical role
in prediction outcomes. Therefore, the findings do not support the hypothesis that fewer
data inherently results in poorer model performance.

Throughout this study, several challenges and limitations were encountered. The
primary challenge was the presence of missing data, particularly near coastal areas, which
likely affected the precision of the two predictive models. Moreover, the geographical area
of interest was limited, potentially constraining the broader applicability of these findings.
The final limitation was the inability to empirically validate the Lagrangian model due to
the absence of drifter data within the chosen area.

Integrating additional weather parameters, such as wind and wave action into the
models to enhance the predictions, is left as future work. Additionally, the framework
can be adapted to various applications, including jellyfish and plankton movements,
search and rescue operations, and oil-spill trajectory simulations. Further enhancements in
predictive accuracy could be achieved by implementing ensemble learning methods, as
evidenced by the research of B. Naderalvojoud and T. Hernandez-Boussard [41], and by
integrating more sophisticated models such as transformers [42]. Expanding the area of
interest could provide a more comprehensive understanding of marine debris dynamics
while also enabling the evaluation of the Lagrangian model using historical drifter data.
Implementing a model specifically designed to predict and fill in missing values within the
data sets could enhance the accuracy of predictions and improve visualisations. Finally,
developing a front end to display future predictions with enhanced visualisations would
make the research more accessible, allowing interaction with the data in real time and
fostering greater engagement with and understanding of the capabilities of the model and
environmental implications.

In Malta, there is a significant issue of litter on the beaches, particularly microplastics.
Some beaches experience higher levels of contamination than others, and there is uncer-
tainty about whether the influx of plastics originates from land-based sources or the sea.
Eventually, this study aims to analyse these patterns and identify the sources of beach litter,
providing critical information for targeted clean-up efforts and policy-making. Addition-
ally, the Malta Channel is a heavily trafficked maritime route with numerous cargo ships
passing through. This research can help identify potential hotspots for litter accumulation,
which is crucial in the event of a spill or accident. Understanding these hotspots will enable
more effective response strategies for mitigating environmental damage. Moreover, this
study serves as foundational work for a jellyfish dispersion model. This future model will
allow us to predict the spread of jellyfish blooms and determine which bays will be affected.
Such information is vital for public safety, tourism, and marine ecosystem management.
While these applications are indeed practical and highly useful, they are beyond the scope
of the current paper. Here, a model has been presented that was specifically configured
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and optimised for analysing floating litter, laying the groundwork for future research in
these areas.
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AI Artificial intelligence
ANN Artificial neural network
GRU Gated recurrent unit
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LSTM Long short-term memory
MAE Mean absolute error
ML Machine learning
MSE Mean squared error
NetCDF Network Common Data Form
NaN Not-a-number
RNN Recurrent neural network
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SSC Sea-surface current
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