
Citation: Pelegrí, J.L.; Claret, M.;

Sangrà, P. Vertical Shear, Diapycnal

Shear and the Gradient Richardson

Number. Oceans 2024, 5, 785–804.

https://doi.org/10.3390/

oceans5040045

Academic Editor: Bruno Buongiorno

Nardelli

Received: 17 July 2024

Revised: 20 September 2024

Accepted: 8 October 2024

Published: 17 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Vertical Shear, Diapycnal Shear and the Gradient
Richardson Number
Josep L. Pelegrí 1,* , Mariona Claret 1 and Pablo Sangrà 2,†

1 Institut de Ciències del Mar, CSIC, Unidad Asociada ULPGC-CSIC, 08003 Barcelona, Spain;
mclaret@icm.csic.es

2 Instituto Universitario de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria,
Unidad Asociada ULPGC-CSIC, 35017 Las Palmas de Gran Canaria, Spain

* Correspondence: pelegri@icm.csic.es
† Deceased author.

Abstract: In Cartesian coordinates (x, y, z), the gradient Richardson number Ri is the ratio between
the square of the buoyancy frequency N and the square of the vertical shear S, Ri = N2/S2, where
N2 = −(g/ρ) ∂ρ/∂z and S2 = (∂u/∂z)2 + (∂v/∂z)2, with ρ potential density, (u, v) the horizontal
velocity components and g gravity acceleration. In isopycnic coordinates (x, y, ρ), Ri is expressed as
the ratio between M2 ≡ N−2 and the squared diapycnal shear Sρ

2 = (ρ/g)2
[
(∂u/∂ρ)2 + (∂v/∂ρ)2

]
,

Ri = M2/Sρ
2. This could suggest that a decrease (increase) in stratification brings a decrease

(increase) in dynamic stability in Cartesian coordinates, but a stability increase (decrease) in isopy-
cnic coordinates. The apparently different role of stratification arises because S and Sρ are related
through the stratification itself, Sρ = S/N2. In terms of characteristic times, this is equivalent to
τ ≡ Sρ = to

2/td, which is interpreted as a critical dynamic time τ that equals the buoyancy period
to ≡ N−1 normalized by the ratio td/to, where td = S−1 is the deformation time. Here we follow
simple arguments and use field data from three different regions (island shelf break, Gulf Stream and
Mediterranean outflow) to endorse the usefulness of the isopycnal approach. In particular, we define
the reduced squared diapycnal shear σρ

2 = Sρ
2 − M2 and compare it with the reduced squared

vertical σ2 = S2 − N2, both being positive (negative) for unstable (stable) conditions. While both Ri
and σ2 remain highly variable for all stratification conditions, the mean σρ

2 values approach Sρ
2 with

increasing stratification. Further, the field data follow the relation σρ
2 = (1 − Ri)/

(
N2Ri

)
, with a

subcritical Ri = 0.22 for both the island shelf break and the Mediterranean outflow. We propose σρ
2

and Sρ
2 to be good indexes for the occurrence of effective mixing under highly stratified conditions.

Keywords: vertical mixing; diapycnal mixing; isopycnic coordinates; Richardson number; flow
instability

1. Introduction

The analysis of small flow perturbations, for the case of uniformly stratified and
sheared flow, goes back to Geoffrey Taylor’s 1915 essay for the Adams Prize [1], later
followed by many other researchers [2–5]. Other authors employed energetic arguments
to assess under which conditions the energy of fluctuations will increase [6–8], for a
brief historical review see [9]. The conclusion from these works is that the growth of
flow perturbations may be expressed in terms of the (gradient) Richardson number, Ri,
with perturbations remaining stable when the Richardson number is above some critical
value Ric (supercritical, Ri > Ric) but becoming unstable when it goes below (subcritical,
Ri < Ric). Further, the nonlinear stability analysis of three-dimensional stratified shear flow
leads to a critical value of one [5], in agreement with energy arguments [8]. Despite this,
there are still some theoretical and observational uncertainties on the actual Ri threshold
value for the development of turbulence [10,11].
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The most common representation for the Richardson number comes in the Cartesian
(x, y, z) coordinate system,

Ri =
−
(

g
ρ

)
∂ρ
∂z(

∂u
∂z

)2
+

(
∂v
∂z

)2 =
N2

S2 (1)

with ρ the potential density and (u, v) the horizontal velocity components in the horizontal
(x, y) directions. Both the vertical-oscillation or buoyancy frequency N = [−(g/ρ) ∂ρ/∂z]1/2

and vertical shear S =
[
(∂u/∂z)2 + (∂v/∂z)2

]1/2
have frequency units.

An alternative, possibly more natural representation of the Richardson number is in
isopycnic coordinates. We apply the chain rule ∂u/∂z = (∂u/∂ρ)(∂ρ/∂z) as well as the
inverse function rule ∂ρ/∂z = (∂z/∂ρ)−1 and introduce the (ρ/g) factor to obtain

Ri =
−
(

ρ
g

)
∂z
∂ρ(

ρ
g

∂u
∂ρ

)2
+

(
ρ
g

∂v
∂ρ

)2 =
M2

Sρ
2 (2)

where M ≡ N−1 = [−(ρ/g) ∂z/∂ρ]1/2 is the vertical-oscillation or buoyancy period and

Sρ = (ρ/g)
[
(∂u/∂ρ)2 + (∂v/∂ρ)2

]1/2
is the diapycnal shear, both with units of time. We

introduce the “diapycnal shear” terminology to emphasize that the derivatives are with
respect to density; when multiplied by (ρ/g), the result has time units.

As a result of the above change of coordinates, a paradox arises. From the Cartesian
perspective, Ri is directly proportional to stratification, while from the isopycnic viewpoint,
Ri is inversely proportional to stratification [12–14]. The answer lies in the fact that the
vertical and diapycnal shear are related through stratification, S = N2Sρ. For constant
vertical shear, an increase in stratification enhances dynamic stability. In contrast, for
constant diapycnal shear, the same increase in N actually reduces dynamic stability as
it implies a quadratic increase in vertical shear. We are undoubtedly most used to the
vertical perspective, so perhaps we are missing some lessons that may be learned from
the isopycnic view. In this work, we will pursue such an isopycnic inspection, by means
of both simple conceptual arguments and through the analysis of real data for different
dynamic situations.

The appearance and extensive use of instruments that sense small-scale turbulence,
hence providing data that can be translated into turbulent dissipation rates and vertical
diffusivities, has progressively reduced the early emphasis on the Richardson number as
an index for vertical instability. However, there are still many observational and numerical
studies that, in the absence of microstructure measurements, resort to hydrographic-velocity
data and the standard parameterizations of vertical diffusivity in terms of the Richardson
number [15–19]. Hence, it seems timely to follow other authors [18,20–24] and further
explore Ri-related alternative indexes that could possibly be used to assess the presence of
vertical instability.

In the next section, we explore some relevant differences between the vertical and
isopycnic perspectives, and introduce the concepts of natural oscillation time, reduced
squared vertical shear and reduced squared diapycnal shear. We present the non-dimensional
variables in Section 3, examining the interdependence between background stratification,
vertical shear and diapycnal shear. The three datasets used in our study are briefly described
in Section 4, and in Section 5 we look at these data in two different ways: first as cloud
points plotted in terms of two variables (among background stratification, vertical shear and
diapycnal shear) and next examining the dependence of both the reduced squared vertical
shear and the reduced squared diapycnal shear in terms of the background stratification.
Finally, in Section 6, we summarize the main conclusions.
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2. Isopycnic Versus Vertical Perspectives
2.1. Basic Considerations

In vertical coordinates, the critical Richardson number criterion is commonly inter-
preted as if sufficiently high stratification (high N) leads to stable conditions (Ri > 1),
provided the vertical shear remains moderate, while low stratification is prone to unstable
conditions (Ri < 1) (Equation (1)). In a layered ocean, with near-constant density layers
bounded by relatively thin steps of rapid density changes, this vertical-coordinate perspec-
tive would usually associate the steps with stable regions and the layers with unstable
zones (Figure 1). This is true for a static ocean, but dynamic stability depends on the vertical
shear. A layer will have most properties well mixed so that both N and S tend to zero; weak
vertical shear will lead to instabilities, but these will only redistribute near-homogeneous
water. In a step, on the other hand, N is large and instabilities can effectively redistribute
density (and other water properties), but these will only develop for large enough vertical
shear S.
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Figure 1. Schematics of flow deformation in Cartesian and isopycnic coordinates. (Top left) Imagine
the water column is split in high- and low-stratified regions, characterized by small and large values
of ∂z/∂ρ in the isopycnic representation, (Top right) which corresponds to the steps and layers in
Cartesian coordinates. Let the entire water column experience a constant diapycnal shear ∂u/∂ρ,
and (Bottom left) explore what will happen to material water volumes defined in the isopycnic
representation. (Bottom right) When viewed in the vertical domain relatively large material volumes
located in layers will experience low deformation while much smaller volumes within steps will
experience high deformation.

Equation (2) in isopycnic coordinates, on the other hand, suggests that a highly strati-
fied region (a step, M = N−1 → 0) may be prone to mixing as long as the diapycnal shear
Sρ, which depends on the velocity of water parcels in adjacent layers, remains finite. Con-
sider for example a 2D symmetrically stable front with the density field ρ(x, z), and further
consider that the along-front flow is in geostrophic balance. The thermal wind equation
in Cartesian and isopycnic coordinates are ρ f ∂v/∂z = g ∂ρ/∂x and ρ f ∂v/∂ρ = g ∂z/∂x,
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respectively, and the corresponding Richardson numbers are Ri = C (∂ρ/∂z)/(∂ρ/∂x)2

and Ri = C (∂z/∂ρ)/(∂z/∂x)2, where C = −
(

f 2ρ/g
)
. In a frontogenetic situation where

the isopycnals get steeper with time (both ∂ρ/∂x and ∂z/∂x increase) and vertical stratifica-
tion does not change (∂ρ/∂z remains constant), Ri will decrease in both reference frames.
However, in those locations where frontogenesis also leads to increased vertical stratifi-
cation, the Cartesian expression suggests that stability may increase while the isopycnic
perspective points to further instability.

The above simple arguments suggest that diapycnal shear may be a convenient vari-
able to analyse whether sheared oceanic flows are prone to mixing. As an illustrative
example, consider the two-layer flow between parallel planes such as that set up in the labo-
ratory to simulate interfacial Kelvin–Helmholtz instabilities, e.g., [25] and references therein.
The upper and lower layers have densities ρ = ρ0(1 − ∆ρ) and ρ = ρ0(1 + ∆ρ), respec-
tively, and the corresponding velocities are u = ∆ρ g t sinθ and −∆ρ g t sinθ, where θ is the
tilting of the table in the experimental setup. The vertical shear between both layers is not
uniquely defined but, in contrast, the isopycnic derivative of the horizontal velocity is easily
calculated from ρ = ρ0(1 − u/(g t sinθ)), as ∂u/∂ρ = −(g t sinθ)/ρ0; notice this derivative
is equal to the finite-difference fraction, δu/δρ = (2 g t ∆ρ sinθ)/(2 ρ0 ∆ρ) = (g t sinθ)/ρ0.
The resulting expression for the diapycnal shear is simply Sρ = t sinθ, with time units,
implying that instabilities will develop independently of stratification if sufficient time
is allowed.

2.2. Characteristic Times

As mentioned in the Introduction, the Richardson number criterion arises from either
flow-stability or energy arguments. A complementary interpretation comes in terms of
characteristic times associated with the inverse of the buoyancy frequency and the vertical
shear, as well as with the diapycnal shear itself. The inverse of the buoyancy frequency is
the time characteristic for the vertical oscillation of a water parcel in a stratified medium,
hereafter the vertical-oscillation or buoyancy period, to ≡ N−1. The inverse of the vertical
shear gives a characteristic time for the horizontal deformation of a water parcel (or
temporal rate of strain), henceforth the vertical-deformation time, td ≡ S−1.

The diapycnal shear is proportional to the derivative of the horizontal velocity with
respect to density, e.g., ∂u/∂ρ; when we multiply this derivative by ρ/g, we get the
diapycnal shear with units of time, so we set τ ≡ Sρ to simply remind us of its time units.
Because the vertical and diapycnal shears are related through the stratification, Sρ = S/N2,
the diapycnal shear is related to the buoyancy and deformation times as τ = to

2/td. We
envision the diapycnal shear as reflecting adjacent layers that maintain their velocity, so
it naturally incorporates both stratification (through to) and shear deformation (through
td). We may hence interpret τ as a critical dynamic time for the system, equal to the
vertical-oscillation period t0 normalized by the ratio (td/to).

Equations (1) and (2) may be written in terms of these characteristic times as

Ri =
N2

S2 =

(
td
to

)2
(3)

Ri =
1

N2Sρ
2 =

(
t0

τ

)2
(4)

or alternatively as

Ri =
1

S Sρ
=

td
τ

(5)

We may now see that Equations (3) and (5) are not really that different. According
to Equation (3), the Richardson number is subcritical (less than one) when td < to, i.e.,
when the vertical excursion of the water parcel takes long enough for it to become greatly
distorted. Similarly, Equation (5) tells us that subcritical conditions require a short defor-
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mation time td as compared with the critical dynamic time τ, td < τ. The main difference
lies on the linear and quadratic dependences: in vertical coordinates the dependence is
quadratic (td/t0)

2 while in isopycnal coordinates it is linear (td/τ). Equations (3) and (4)
further tell us that the instability condition implies td < t0 < τ.

2.3. Reduced Squared Shears

The reduced vertical shear was introduced as a complementary way to understand
the relevance of subcritical conditions for mixing [20,21]. By considering a critical value
Ri = 1/4, the subcritical condition would correspond to S2 − 4N2 = (S + 2N)(S − 2N) > 0
or, alternatively, to a reduced shear greater than zero, S − 2N > 0. A formal advantage
of the reduced shear is that it is approximately proportional to the growth rate of Kelvin–
Helmholtz instabilities [20,26]. A practical advantage is that reduced shear helps assess
when effective mixing occurs. As mentioned above, growing instabilities are effective
blenders in well-stratified conditions; in poorly stratified conditions, however, they can only
redistribute water which is already well mixed. The Richardson number Ri is not capable
of distinguishing cases of low stratification and low shear from those of high stratification
and high shear, but the reduced shear does, i.e., for two different situations (high and low
stratification) with equal Ri subcritical values, it turns out that S − 2N = N

(
Ri−1/2 − 2

)
is

larger for the well-stratified condition.
Let us pursue these ideas and define a reduced squared vertical shear σ2 and a reduced

squared diapycnal shear σρ
2, but using the critical Richardson value of one [5]:

σ2 ≡ S2 − N2 = S2(1 − Ri) = N2(1 − Ri)/Ri (6)

σρ
2 ≡ Sρ

2 − M2 = Sρ
2(1 − Ri) = (1 − Ri)/

(
N2Ri

)
(7)

The definitions in (6) and (7) show that both squared shears are positive for unstable
conditions (Ri < 1) and negative for stable conditions (Ri > 1). For constant shears, σ2

decreases with stratification from S2 to increasingly negative values, and σρ
2 increases

with stratification up to a maximum value of Sρ
2. Equations (6) and (7) illustrate how,

for constant Ri values, the reduced squared shears change with either stratification or
vertical/diapycnal shear. Both reduced squared shears are equal to the corresponding
squared shear but with a (1 − Ri) reduction factor, i.e., the reduced squared shears increase
with decreasing Ri up to a maximum value equal to the squared shear, with σ2 approaching
S2 and σρ

2 approaching Sρ
2. When expressed as a function of stratification N2, both

variables increase as Ri decreases but with σ2 and σρ
2 directly and inversely proportional

to stratification, respectively.

3. Data Analysis

To see how the above ideas fit in the real world, we consider several different cases of
stratification and vertical/diapycnal shear. In order to compare these cases, it is convenient
to consider the nondimensional form of the dependent variables in Equations (3)–(7).
For this purpose we use a background stratification, Nb, to set the following relations:
N = Nb(N/Nb) ≡ NbN′, S = Nb(S/Nb) ≡ NbS′, M = (1/Nb)(Nb M) ≡ (1/Nb)M′ and
Sρ = (1/Nb)

(
NbSρ

)
≡ (1/Nb)Sρ

′; notice there are only two independent variables as
M′ = 1/N′ and Sρ

′ = S′/N′2.
Hereafter, we drop primes for all dependent variables and will always refer (except

where indicated) to their nondimensional forms. In particular, notice that N−1, S−1 and Sρ,
respectively, are the nondimensional forms of the vertical-oscillation period, the deforma-
tion time and the critical dynamic time. The Richardson number may hence be expressed
in terms of the nondimensional variables exactly as in Equations (3)–(5). Analogously, the
nondimensional reduced squared shears have the same form as in Equations (6) and (7).
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The subcritical condition (Ri < 1) translates into the following instability conditions
for the reduced squared shears:

σ2 =
(

S2 − N2
)
> 0 (8)

σρ
2 =

(
Sρ

2 − 1
N2

)
> 0 (9)

To illustrate the relations among the nondimensional dependent variables, we have
produced several sets of plots, where we explore the relations between two variables as a
function of the third variable and the Richardson number (Figure 2). Specifically, we look
at the following dependences:

- in the (S, N) domain, S = SρN2 =
(

1/Ri1/2
)

N,

- in the
(
Sρ, N

)
domain, Sρ = S/N2 =

(
1/Ri1/2

)
(1/N), and

- in the
(
Sρ, S

)
domain, Sρ = S/N2 = (1/Ri)(1/S).

In all these plots, we show an overall perspective that goes all the way to stratification
values as large as 10 times the background stratification (Figure 2, upper panels), and
display a close-up on that region with stratification values between well mixed and twice
the background stratification (Figure 2, lower panels). As justified above, we are most
interested in what leads to mixing in relatively well-stratified conditions, e.g., for N ∈ [1, 2].

In the left panels of Figure 2, the domain is halved in regions of supercritical and
subcritical conditions, illustrating that subcritical conditions may only be reached if the
vertical shear is sufficiently large, S > N. For low stratification values, subcritical conditions
(Ri ≤ 1) can only be attained for relatively large diapycnal shears (Equation (1)), e.g., Sρ ≥ 2
when N ≤ 0.5; however, as stratification increases, we find that subcritical conditions are
achieved with a progressively smaller diapycnal shear, e.g., when N ≥ 2 it is sufficient to
have Sρ ≤ 0.5.

The middle panels of Figure 2 show a quite different partition between subcritical
and supercritical conditions, which is the result of the quadratic inverse dependence of
Ri on both stratification and diapycnal shear (Equation (2)). Only a small portion of the
domain corresponds to supercritical conditions, tending to zero as either N or Sρ become
large. In particular, for well-stratified conditions, the domain of subcritical conditions
reaches moderate and even low diapycnal shears, necessarily coincident with high values
of vertical shear.

Finally, the right panels in Figure 2 show the inverse linear dependence of Ri on
both vertical and diapycnal shear (Equation (3)), with subcritical conditions requiring
sufficiently large values of either one or both variables, depending on the size of vertical
stratification. In particular, subcritical flow requires only moderate diapycnal shear during
high stratification conditions.

The principal idea arising from Figure 2 is that moderate diapycnal shear in well-
stratified conditions is a guarantee for actual mixing of distinct waters. We may further
explore this idea by examining the dependence of the nondimensional reduced squared
shears as a function of the nondimensional stratification N for different S, Sρ and Ri values:

- in the
(
σ2, N

)
domain, σ2 = S2 − N2 =

(
Sρ

2N2 − 1
)

N2 = N2(1 − Ri)/Ri, and

- in the
(
σρ

2, N
)

domain, σρ
2 = Sρ

2 − 1/N2 =
(
S2 − N2)N4 = (1 − Ri)/

(
N2Ri

)
.

The corresponding plots are shown in Figure 3, again up to N = 10 (upper panels)
and for N ∈ [0, 2] (lower panels). Recall that subcritical conditions correspond to positive
values of either reduced squared shear.
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Figure 2. Relations among nondimensional dependent variables. (Left panels) Vertical shear as a func-
tion of stratification, (Middle panels) diapycnal shear as a function of stratification, (Right panels) di-
apycnal shear as a function of vertical shear, for different Ri values (red curves) and different values of
the third variable (blue curves) as shown; the dashed, solid and dotted lines, respectively, correspond
to values less than, equal to and greater than one. In the top panels, we present the results in the
[0:10, 0:10] domain, while in the bottom panels we zoom into the [0:2, 0:2] domain; the colored arrows
illustrate the direction for decreasing Ri (red curves in all panels), increasing Sρ (blue in left panels),
increasing S (blue in middle panels) and increasing N (blue in right panel).

The plots for the reduced squared vertical shear (Figure 3, left panels) illustrate that
the same Richardson number may correspond to many different σ2 values, each of them
with a different combination of N, S and Sρ values (except Ri = 1, which corresponds to
σ2 = 0). In particular, positive values of σ2 are obtained under highly stratified conditions
for moderate and even low diapycnal shear but require high values of vertical shear; for
example, a value as low as Sρ = 0.5 guarantees the subcritical conditions for N ≥ 2,
implying S ≥ 2.

The plots for the reduced squared diapycnal shear (Figure 3, right panels) serve to
emphasize the idea that, under well-stratified conditions, vertical instability and mixing
will only occur if the vertical shear is very high, but even a small diapycnal shear can
cause such stirring. In particular, for relatively large stratifications, the approximation
σρ

2 = Sρ
2 − 1/N2 ∼= Sρ

2 > 0 holds always, which suggests that the diapycnal shear is
a good stability index. In these conditions, the critical dynamic time is large enough to
guarantee that the flow deformation will create instability.

In the following sections, we will use three very different datasets to explore the
relevance of the isopycnic perspective. Our approach will be empirical: we will display
scatter plots of the sort shown in Figures 2 and 3 and will explore the different Ri-regimes
in each dynamical system.
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Figure 3. (Left panels) Nondimensional reduced squared vertical shear S2 − N2 and (Right panels)
nondimensional reduced squared diapycnal shear Sρ

2 − 1/N2, in both cases plotted as a function of
stratification N. Red curves stand for different Ri values, blue curves for different S values and green
curves for different Sρ values; the dashed, solid and dotted lines correspond, respectively, to values
less than, equal to and greater than one. In the top panels, we present the results in the [0:10, 0:100]
domain, while in the bottom panels we zoom into the [0:2, 0:4] domain; the colored arrows illustrate
the direction where the flow becomes subcritical (Ri decreasing) and the shear increases.

4. Datasets

The three different datasets represent very diverse oceanographic settings and dynamic
conditions: (1) the shelf break of Gran Canaria Island (GCI), a deep-ocean island where
internal waves are commonly present over the slope and shelf break (Figure 4); (2) the
Gulf Stream (GS), an intense western boundary baroclinic current (Figure 5); and (3) the
Mediterranean outflow (MO), a density-driven intense jet (Figure 6). All three datasets share
the characteristic that a significant fraction of the data corresponds to well-stratified waters
(Figure 7) which are experiencing an intense flow. Further, in all cases the velocity field is
actually sampled, therefore allowing a good assessment of vertical and diapycnal shears.
Therefore, these datasets may be quite useful for examining the relationships between
stratification, vertical shear and diapycnal shear and to explore how the Richardson number
and the reduced squared (vertical and diapycnal) shears change with stratification.
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Figure 4. (Left panels) A map of the central Canary Islands, (Top left) showing the location of the 
survey area in the shelf break southwest of Gran Canaria Island and (Bottom left) a detail of the 
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Figure 4. (Left panels) A map of the central Canary Islands, (Top left) showing the location of
the survey area in the shelf break southwest of Gran Canaria Island and (Bottom left) a detail
of the shelf-break bathymetry with the location of the yo-yo repeated vertical sampling (YOYO
station). (Right panels) Time–depth plots over two days of (Top panel) potential density (isopycnals at
0.1 σθ-intervals with 25.5 and 26.0 shown as bold contours) and (Bottom panel) cross-slope speed (in
cm s−1, positive values onshore). In the right panels, the barotropic tide is denoted with a dotted line
amplified by a factor of 10. Reproduced with permission from Sangrà et al., Sci. Mar., published by
CSIC Press, 2001 [27].

The first set of data corresponds to repeated vertical sampling at a fixed location on
the 100 m isobath (yo-yo type) in the shelf break south of GCI (Figure 4, left panels) in fall
1994 [27]. Sampling consisted of a conductivity–temperature–depth (CTD) probe which
included an acoustic Doppler point current meter. Density and velocity profiles were
obtained at 1 m vertical resolution every hour during nearly four days, two days of neap
tides and two days of spring tides, for a total of about 9000 samples.

Gran Canaria Island has a steep slope (about 0.15) that goes down to depths over
2500 m (Figure 4, bottom left). The dominant semidiurnal tide propagates northwards into
the slope and, as a result of the interaction with the topography, packets of internal waves
with semidiurnal and lower periodicities are generated. The structure of the water column
consisted of a 50–70 m surface mixed layer, a 20–30 m thick seasonal thermocline where
the potential density increased from 1025.5 to 1026.0 kg m−3, and a relatively thin bottom
mixed layer (Figure 4). The buoyancy frequency reflects the fairly well-mixed region in the
upper half of the water column, on top of varyingly stratified waters in the bottom half,
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with a mean buoyancy frequency equal to 0.010 s−1 (Figure 7, left panel). The cross-slope
speed often exceeds 0.2 m s−1 over the entire water column (Figure 4, bottom right), leading
to subcritical conditions not only in the mixed layers but also in the thermocline [24].
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Figure 5. (Left panel) Location of the velocity and temperature stations (P0 through P8) across
the Gulf Stream, off the east coast of North America, with the bottom isobaths. Reproduced with
permission from Halkin and Rossby, J. Phys. Oceanogr; published by American Meteorological Society,
1985 [28]. (Middle panel) Vertical section of the along-stream mean velocity (solid contours in cm s−1)
and the temperature in (dashed contours in ◦C). (Right panel) Along-stream velocity as a function of
temperature. Reproduced from [29].

Oceans 2024, 5, FOR PEER REVIEW 11 
 

 

 

 
Figure 6. (Left panel) Location of most stations with conductivity and velocity data used in our 
analysis, with vectors illustrating the peak Mediterranean outflow velocity; some additional stations 
inside the Strait of Gibraltar are not shown. (Right panels) Examples of velocity and salinity vertical 
profiles along the outflow axis of sections A, C and F (see left panel for the location of each section). 
Reprinted with permission from Price et al., Sci.; published by AAAS, 1993 [30]. 

Gran Canaria Island has a steep slope (about 0.15) that goes down to depths over 
2500 m (Figure 4, bottom left). The dominant semidiurnal tide propagates northwards into 
the slope and, as a result of the interaction with the topography, packets of internal waves 
with semidiurnal and lower periodicities are generated. The structure of the water column 
consisted of a 50–70 m surface mixed layer, a 20–30 m thick seasonal thermocline where 
the potential density increased from 1025.5 to 1026.0 kg m−3, and a relatively thin bottom 
mixed layer (Figure 4). The buoyancy frequency reflects the fairly well-mixed region in 
the upper half of the water column, on top of varyingly stratified waters in the bottom 
half, with a mean buoyancy frequency equal to 0.010 s−1 (Figure 7, left panel). The cross-
slope speed often exceeds 0.2 m s−1 over the entire water column (Figure 4, bottom right), 
leading to subcritical conditions not only in the mixed layers but also in the thermocline 
[24]. 

  

Figure 6. (Left panel) Location of most stations with conductivity and velocity data used in our
analysis, with vectors illustrating the peak Mediterranean outflow velocity; some additional stations
inside the Strait of Gibraltar are not shown. (Right panels) Examples of velocity and salinity vertical
profiles along the outflow axis of sections A, C and F (see left panel for the location of each section).
Reproduced with permission from Price et al., Sci.; published by AAAS, 1993 [30].
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The permanent thermocline of the GS, with temperatures between about 6 and 16 °C, 
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the GS core velocities increase from about 0.25 to more than 1.5 m s−1 over this same tem-
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ground geostrophic velocity field is intense enough for the core of the GS to experience 
several instances of subcritical conditions (Ri < 1) which are responsible for vertical mixing 
[12,34]. The buoyancy frequency decreases largely in the top 300 m and remains approxi-
mately constant down to 1000 m, with low variability characteristics for the subtropical 
permanent thermocline. The mean buoyancy frequency for this second dataset is 0.004 s−1 
(Figure 7, middle panel). 

The third set of data consists of 56 stations with full-depth CTD profiles and simul-
taneous velocity measurements with expendable current profilers (XCP) that sampled the 
eastern Gulf of Cádiz during fall 1988 [30,35,36], with about half of the stations over the 

Figure 7. Buoyancy frequency as a function of depth for (Left panel) the shelf break of Gran Canaria
Island, (Middle panel) the Gulf Stream permanent thermocline and (Right panel) the region west
of Gibraltar which includes the Mediterranean outflow. Note the changing scales between figures
and the lack of data from the top and bottom 10 m in Gran Canaria Island because of instrumental
limitations. Thick solid lines represent mean profiles while dashed lines indicate the one-standard
deviation limit from mean profiles. Thin solid lines indicate the mean buoyancy frequency for each
dataset, used to obtain the nondimensional variables.

The second dataset consists of 20 repeated hydrographic sections across the GS
(Figure 5, left panel), carried out between September 1980 and May 1983. These sec-
tions include temperature data obtained with expendable bathythermographs (XBT) and
velocity data obtained from free-falling Pegasus instruments [31], originally reported and
analyzed by [28], see also [29] and references therein. Temperature values were converted
into potential density by means of a recursive utilization of algorithms [32,33]. Each section
contained between four and ten stations of velocity and potential density from the sea
surface down to 2000 m at 25 m intervals, for a total of some 10,000 samples.

The permanent thermocline of the GS, with temperatures between about 6 and 16 ◦C,
slopes sharply towards the continental slope, rising some 600–700 m in 100 km. As a
result, the GS core velocities increase from about 0.25 to more than 1.5 m s−1 over this
same temperature range. On both sides of the GS core, the mean vertical stratification
remains similar but the velocities are substantially smaller (Figure 5, middle panel). The
relatively low vertical data resolution limits the sampling of high-shear events associated
to internal waves, which would be responsible for a significant increase in the gradient
Richardson values, and hence restricts our analysis to near-geostrophic flow [9]. Despite
this, the background geostrophic velocity field is intense enough for the core of the GS to
experience several instances of subcritical conditions (Ri < 1) which are responsible for
vertical mixing [12,34]. The buoyancy frequency decreases largely in the top 300 m and
remains approximately constant down to 1000 m, with low variability characteristics for
the subtropical permanent thermocline. The mean buoyancy frequency for this second
dataset is 0.004 s−1 (Figure 7, middle panel).

The third set of data consists of 56 stations with full-depth CTD profiles and simulta-
neous velocity measurements with expendable current profilers (XCP) that sampled the
eastern Gulf of Cádiz during fall 1988 [30,35,36], with about half of the stations over the
MO (Figure 6, left panel). Velocity and density data were recorded every 2 m down to an
average depth of about 500 m so that some 14,000 measurements were collected.
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As the MO exits the Strait of Gibraltar, it experiences three different dynamic regions
over a distance of less than 50 km. In the first phase, located between Spartel Sill (360 m)
and Western Spartel Sill (420 m, located at about 6◦20′W, 35◦47′N), the MO follows west
along a relatively narrow (about 5 km wide) and gently sloping channel that deepens from
360 to 420 m in about 20 km. In the second phase, the MO continues west along a channel
of variable amplitude (typically 5 to 10 km) and undergoes three abrupt topography-
driven accelerations (the bathymetry deepens from 420 to 700 m over a distance of another
20 km) with core velocities in excess of 1 m s−1, resulting in substantial dilution of the
Mediterranean water properties. During these two phases, the MO approximately occupies
the bottom third of the water column (Figure 6, right panels). In the third phase, the MO
follows northwest, its diluted core slowing down and leaning against the Iberian continental
slope [30,37–39]. Therefore, the local profile of the buoyancy frequency depends on whether
the station is close to Gibraltar and whether it is found on the path or away from the path
of the MO; for this reason, the variability is largest at depths between 200 and 750 m, and
decreases in the bottom 100 m simply because of the few stations we have for deep waters.
The mean buoyancy frequency for this third dataset is 0.004 s−1 (Figure 7, right panel).

5. Results

We nondimensionalize the variables with a different constant background frequency
for each dataset, as explained in Section 3. This background frequency, which is defined
as the mean buoyancy frequency over each region (Table 1), allows consideration of the
dynamic changes within each single region. Additionally, the utilization of different
background stratifications (one per region) facilitates a unified interpretation of all three,
potentially quite different, cases.

Table 1. Dimensional mean buoyancy frequency N (s−1) and best-fit parameters to the nondimen-
sional mean σρ

2 values for two different functions, with the R2 correlation coefficients.

Gran Canaria
Island Gulf Stream Mediterranean

Outflow

Number of samples 9000 10,000 14,000

Mean N (s−1) 0.010 0.004 0.004

best exponential
adjustment

σρ
2 = σ0

2exp(−rN)

σ0
2 174.2 −1.9 250.3

r 2.90 1.05 4.03

R2 0.66 0.83 0.97

best adjustment as
σρ

2 = (1 − Ri)/
(

N2Ri
) Ri 0.217 2.067 0.222

R2 0.70 0.86 0.81

Consider first the cloud points for the nondimensional vertical stratification, vertical
shear and diapycnal shear (Figure 8), in particular the zoom for the high stratification
and high shear domain (Figure 9). The overall shape of S against N changes greatly in all
three cases, with no noticeable dependence of vertical shear on stratification. The common
denominator in all three cases is that S takes a relatively high range of values for any N
(Figures 8 and 9, top panels). In contrast, all Sρ against N cloud points have similar shapes,
with relatively high values and high variability in low stratification conditions and the op-
posite for well-stratified waters (N > 3) (Figures 8 and 9, middle panels); these cloud points
actually suggest a decay of the maximum diapycnal shears with increasing vertical stratifi-
cation. Finally, the Sρ against S scatter plots also display very large differences between all
three cases, with the GCI and GS cases displaying completely different distributions and
the MO possibly as an intermediate situation (Figures 8 and 9, bottom panels).
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Figure 8. Scatter plots of nondimensional variables: (Top panels) S as a function of N, (Center panels)
Sρ as a function of N and (Bottom panels) Sρ as a function of S. The three columns correspond to the
three datasets: (left panels, GCI) Gran Canaria Island shelf break, (middle panels, GS) Gulf Stream
and (right panels, MO) Mediterranean outflow. The red lines correspond to contours of Ri = 0.25 and
1. The blue lines correspond to contour values of 1 and 2 for (Top panels) Sρ, (Center panels) S and
(Bottom panels) N.
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Figure 9. As in Figure 8 but zooming at N ∈ [0, 6], S ∈ [0, 8] and Sρ ∈ [0, 2].

These results may be interpreted as if each flow has its own dynamics, setting a range
of characteristic diapycnal shears. We may step forward and explore if each dynamical
system is characterized by a controlling parameter. In Section 2, we argued that the
reduced squared diapycnal shear σρ

2 may be such parameter. This variable is an index
for the stability of the system, in the same way as the Richardson number, but with the
characteristic that its maximum value is the squared diapycnal shear Sρ

2, to be attained
during high stratification conditions. These ideas are sustained by the cloud points of σ2

and σρ
2 as a function of stratification (Figures 10 and 11). The distribution of σ2 is quite

different in each case, with large scattering for all N values. In contrast, the distribution of
σρ

2 does hint at a dependence on N, with its maximum (positive) values decreasing with
increasing vertical stratification, with a threshold value Sρ

2 that is itself conditioned by N,
i.e., σρ

2 = Sρ
2 − N−2 = S2N−4 − N−2.
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Figure 10. Scatter plots of nondimensional variables: (Top panels) σ2 and (Bottom panels) σρ
2, both

as a function of N. The three columns correspond to the three datasets: (left panels, GCI) Gran Canaria
Island shelf break, (middle panels, GS) Gulf Stream and (right panels, MO) Mediterranean outflow.
The red lines correspond to contours of Ri = 0.25 and 1. The green lines in the top panels correspond
to contours of Sρ = 1 and 2, while the blue lines in the bottom panels correspond to contours of
S = 1 and 2.

In order to further examine these ideas, we look at the way the mean values and
standard deviations of all three stability indices (Ri, σ2 and σρ

2) change with stratification
(Figure 12; for this calculation the mean values and standard deviations are calculated over
0.2 intervals of N). The results show no clear relation of σ2 and Ri with stratification, but
suggest the existence of a univocal dependence of σρ

2 with stratification for each particular
flow, with σρ

2 proportional to N−1 in GCI and the MO, and σρ
2 proportional to −N−1 in

the GS (Figure 13).
Finally, we explore if there are simple functions that can provide a good fit to the ob-

served mean σρ
2 dependence on stratification N (Figure 13; mean values are here calculated

over 0.1N intervals). Our first attempt involves simple exponential decay with stratification,
given by σρ

2 = σ0
2 exp(−rN). It turns out that the adjustment is fairly good in all cases,

with the best-fit parameters (as calculated separately for each dataset) presented in Table 1;
because of the excellent fit for low and high N values, the highest correlation with the data
corresponds to the MO case. For GCI and the MO, the exponential coefficient is relatively
large (2.90 and 4.03) as compared with the one for the GS (1.05); the main difference, how-
ever, is that for GCI and the MO the mean σρ

2 values remain always positive, indicative
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of unstable conditions, while for the GS they are negative, indicative of stable conditions
for shear instabilities. The negative values in the GS are likely the consequence of the low
vertical resolution of these data, which cannot resolve the relevant turbulent scales.
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Figure 11. As in Figure 10 but zooming at N ∈ [0, 6], σ2 ∈ [−30, 60] and σρ
2 ∈ [−1, 4].

An equally good σρ
2 fit corresponds to the Ri-dependence given by Equation (7). We

may again appreciate a similar behavior for GCI and the MO, quite different from what
happens for the GS. Both former cases are best adjusted with a subcritical Ri = 0.22, while
the GS reflects a supercritical flow Ri = 2.1 (Table 1). It is remarkable that this happens
despite the mean Richardson values being almost always significantly greater than one (top
panels of Figure 12). Our interpretation is that, despite all the variability reflected by the
scattered points in Figure 11, each case responds to a different flow dynamic. This dynamic
setting is characterized by a σρ

2(N) relation with a characteristic flow-dependent Ri value,
in agreement with the idea that strongly stratified flows self-organize around some local
critical state [40].
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Figure 12. Nondimensional mean values, together with standard deviations, of (Top panels) Ri,
(Center panels) σ2 and (Bottom panels) σρ

2, plotted as a function of N. The three columns correspond
to the three datasets: (left panels, GCI) Gran Canaria Island shelf break, (middle panels, GS) Gulf
Stream and (right panels, MO) Mediterranean outflow.
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6. Conclusions

In this work, we have endorsed the advantages of isopycnic thinking to better under-
stand the dynamic conditions leading to effective mixing in stratified sheared flows. A
nondimensional analysis, in terms of the background stratification, proves to be useful to
explore the interdependences between stratification (expressed in terms of the buoyancy
frequency N), vertical shear S, diapycnal shear Sρ and the (gradient) Richardson number
Ri. In particular, we have discussed vertical instability in terms of characteristic times,
showing that instability occurs when the critical dynamic time τ—which is equal to the
diapycnal shear and hence includes both stratification and vertical shear, τ ≡ Sρ = to

2/td—
is longer than the vertical-oscillation period t0 = N−1, which itself is longer than the
vertical-deformation time td = S−1.

The Richardson number Ri is the classical index to assess the occurrence of instability,
but it cannot differentiate between instances when mixing effectively redistributes density
(and other properties, which occurs when stratification is high) from cases when instabilities
simply displace water that is already homogeneous. Here, we have extended previous
work [20,21] by defining the reduced squared vertical shear σ2 in vertical coordinates and
the reduced squared diapycnal shear σρ

2 in isopycnic coordinates. The three indices for
instability (Ri, σ2 and σρ

2) are sensitive to stratification, but σρ
2 has the special property
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of decreasing with increasing stratification towards a limiting value equal to the squared
diapycnal shear Sρ

2.
Finally, we have examined the distribution of the nondimensional dependent variables

(N, S, Sρ) and indices (Ri, σ2, σρ
2) for three quite different dynamic regimes: the Gran

Canaria Island shelf break characterized by intense internal waves, the strongly baroclinic
Gulf Stream and the gravity-current Mediterranean outflow. The most remarkable feature is
the decay of both the mean and maximum Sρ

2 and σρ
2 values with increasing stratification,

which changes for each different flow regime, endorsing the idea that σρ
2 > 0 is a good

index for assessing flow stability: σρ
2 has to be large for low stratification values, but

small positive values are sufficient for high stratification. The non-dimensional expression
σρ

2 = (1 − Ri)/
(

N2Ri
)

fits well to the mean σρ
2 experimental values, leading to a family

of instability functions with a characteristic Ri value for each flow regime.
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