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Abstract: There is increasing interest in the role that seagrasses play in storing carbon in the context
of climate mitigation, but many knowledge gaps in the factors controlling this storage exist. Here, we
provide a small case study that examines the role of infaunal biodiversity in influencing seagrass and
the carbon stored in its sediments. A total of 25 species of invertebrate were recorded in an intertidal
Zostera marina meadow, where these species were dominated by polychaete worms with no bivalves
present. We find organic carbon storage (within the top 20 cm) measured by AFDW to be highly
variable within a small area of seagrass meadow ranging from 2961 gC.m−2 to 11,620 gC.m−2 with
an average (±sd) of 64602 ± 3274 gC.m−2. Our analysis indicates that infaunal communities are
significantly and negatively correlated with this sediment organic carbon. However, this effect is
not as influential as hypothesised, and the relatively small sample size of the present study limits its
ability to provide strong causality. Other factors, such as algal abundance, curiously had a potentially
stronger influence on the carbon in the upper sediments. The increasing richness of infauna is
likely reducing the build-up of organic carbon, reducing its ecosystem service role. We believe this
to likely be the result of bioturbation by specific species such as Arenicola marina and Ampharete
acutifrons. A change in sediment organic carbon suggests that these species could be key drivers
of bioturbator-initiated redox-driven organic matter turnovers, influencing the microbial processes
and remobilizing sediment compounds. Bioturbators should be considered as a limitation to Corg

storage when managing seagrass Corg stocks; however, bioturbation is a natural process that can
be moderated when an ecosystem is less influenced by anthropogenic change. The present study
only provides small-scale correlative evidence with a range of surprising results; confirming these
results within temperate seagrasses requires examining this process at large spatial scales or with
targeted experiments.
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1. Introduction

There is increasing evidence at regional and global scales that we are fishing down
the marine food chain [1,2], creating a whole range of unintended consequences [3], which
are restructuring marine ecosystems [4]. This restructuring is increasingly being observed
at the base of many ecosystems where the abundance and structure of invertebrate com-
munities are changing with respect to varying levels of predation [5–8]. These changes in
invertebrate communities also happen with respect to increasing eutrophication and or-
ganic pollution [9]. Given the roles that invertebrate communities play in marine sediments
in terms of carbon biochemistry [10], these changes are of increasing global importance.

Coastal vegetated ecosystems such as seagrass meadows, mangrove forests, salt
marshes, and hypersaline tidal flats are blue carbon environments, largely contributing
to global carbon sequestration [11–13]. Blue Carbon science has rapidly proliferated as a
consequence of the realisation of the need to manage these resources in the context of the
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climate [14]; however, this management suffers from the presence of many knowledge gaps
about the primary drivers of carbon storage and release [11,15].

Given what we know of how marine ecosystems are becoming increasingly restruc-
tured by over-exploitation, pollution, and increasingly climate-induced warming [16],
understanding how different components of the food web influence carbon storage and
release is of increasing importance. The implications of biotic factors on carbon stocks,
such as bioturbation and microbial processes, have been proposed as a research prior-
ity but remain poorly understood [17]. In many marine ecosystems there is increasing
realisation that numerous faunal communities re-work and re-mobilise sediment, often
inducing numerous local benefits for the interaction of the ecological community. Crabs
are well recorded to rework mangrove and salt marsh sediments [18,19] whilst in many
environments bioturbating animals such as sea cucumbers play similar roles [20].

Bioturbation is defined as the reworking of soils and sediments by animals or plants,
and it is an umbrella term that describes the process by which fauna rework the particles of
sediment through ingestion, burrowing, and excretion. Bio-irrigation, a separate process
that affects water movement through actively ventilating burrows with oxygenated over-
lying water, is often grouped with the term bioturbation [21]. Bioturbators are important
ecosystem engineers that can rehabilitate polluted sediments and play crucial roles in
shaping soil ecosystems as they are the foundation of biogeochemical processes in marine
habitats [22]. In seagrass meadows, bioturbators have commonly been found to restructure
communities and vice versa [23,24]. This therefore indicates that such roles will propagate
into the seagrass sediments.

The microbial priming effect (MPE) is the remineralisation of carbon stimulated by
disturbance [25]. Labile organic matter (LOM) inputs driven by bioturbator movement
lead to disproportionate remineralisation of stable organic carbon (Corg) through MPE [26].
Bioturbators have close relationships with sediments and microbes. This is because biotur-
bators such as infauna rework and bring O2 into anoxic sediment, which catalyses sediment
metabolization and increases substrate permeability. This changes the depth distribution
of organic material, enhances the quality and inventory of food for deposit feeders, and
increases nutrient fluxes, leading to increased primary production by benthic fauna and
elevated microbial activity, which promotes infaunal biodiversity [27]. Indirectly, they
consume and alter microbial communities, which greatly influences nutrient cycling and
sequestration [28]. Deeper O2 penetration through oxygenation can reduce the organic
content of sediment by up to 50% in situ [29].

Seagrass roots trap sediment, stabilising soil and creating three-dimensional habitats in
support of diverse faunal (micro and macro) assemblages, enhancing foraging opportunities
for infauna communities, including bioturbators [30]. As a result, seagrass meadows
greatly increase infauna densities and assemblages, with significantly lower numbers of
taxa recorded in fragmented meadows [31] and bare sediments [32].

In seagrass meadows, burying activities by deposit feeders are thought to increase
the growth rate of seagrass through improving sediment oxygenation and organic matter
(OM) remineralisation enhancement. Alternatively, head-down ‘conveyor belt’ feeders,
such as Arenicola marina, can disturb the root–rhizome matrix and bury seeds below their
critical depth, which stops seedling development [33]. Prolonged top-down trophic cas-
cades through unsustainable harvest of predators have indirectly affected benthic seagrass
communities, resulting in a global increase in bioturbator densities that enhance transport
of O2 into deeper sediments, ultimately effecting the plants photosynthetic C fixation,
storage, and remineralisation [34]. Given these active management concerns, it is vital to
understand the extent of the impacts bioturbators may be having on seagrass productivity
and carbon storage.

Current research indicates there is a relationship between infaunal assemblages and
seagrass carbon storage in the tropics [35]. However, little to no literature covering this
theme is available in temperate seagrass ecosystems, resulting in a lack of discussion
around this concept in Blue Carbon research and policy. A significant knowledge gap
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exists in the context of degraded food webs [36], such as that observed in the North
Atlantic [2]. The previous literature on seagrass has not measured animal density and
biodiversity in relation to both carbon storage and productivity but instead has focused on
the effects of bioturbation on one or the other. Overall, there is a lack of infauna studies in
seagrass meadows that relate to the properties of the ecosystem, such as carbon storage
and productivity.

The present case study hypothesises that infauna density and biodiversity influence
carbon storage in a temperate Zostera marina meadow. Surprisingly, this is the first study to
investigate the relationship between infaunal animal density and biodiversity and seagrass,
as well as carbon storage and productivity in northern temperate seagrass systems.

2. Methods
2.1. Study Area

The influence of bioturbation on seagrass productivity and carbon storage was in-
vestigated in Porthdinllaen (PD, Wales, UK) (Figure 1). Porthdinllaen contains over 28 ha
of seagrass, with its full range spanning from the intertidal zone to the subtidal areas of
the harbour [37]. Despite all effort to achieve favourable conservation status of habitat
and species features, seagrass here continues to exist in unfavourable conditions, mainly
due to damage caused by moorings and vehicles [38] and is one of the largest and most
extensive meadows in Wales [39]. The seagrass has some excess nutrients from nearby golf
courses [40], but overall has limited impacts from land due to its significant distance from
any riverine input. The region suffers from a degraded food web as a result of centuries of
overfishing [2], leading to a loss of predators.
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Figure 1. Seagrass study site, Porthdinllaen, North Wales, UK. Orange overlay shows mapped
seagrass meadow (Zostera marina). Black Star is the location of the nine sampling sites spread over a
250 m long transect.

2.2. Seagrass and Sediment Assessment

A 0.25 m2 quadrat was used to sample eelgrass (Zostera marina) throughout the inter-
tidal meadow in Porthdinllaen. These quadrats were spread over a 250 m long section of
intertidal seagrass. Nine sites were stratified a priori into those with high, medium, and low
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levels of expected bioturbation intensity determined by the density of lugworm (Arenicola
marina) casts in each quadrat (observed on the seabed surface). Quadrats containing three
or more worm casts were considered areas of high bioturbation; those containing one or
two worm casts were considered areas of medium bioturbation; and those with no worm
casts were considered areas of low bioturbation. Quadrats were placed intertidally on the
seagrass at low tide at the shoreline as the tide went out and the seagrass was then as-
sessed. Shoot density was determined alongside seagrass percentage cover of seagrass and
macroalgae using percentage cover standards. In addition, percentage cover of epiphytes
(using the Seagrass Watch method), sediment type, and coverage of leaves with wasting
disease were also quantified. Measurements of the redox layer depth were assessed visu-
ally using a ruler. This visual method provides an integrated long-term average of redox
conditions (aRPD) [41]. Reduction and oxidisation of ferric sulphides, the primary reaction
responsible for sediment colour change, do not occur instantly, and therefore, although the
visual method may have short-term inaccuracies, we believe it makes a better longer-term
indication of the conditions influencing the carbon stored in the sediments [41,42].

2.3. Biodiversity Assessment

Nine biodiversity and nine carbon cores were taken, one of each within each quadrat,
and hammered down to collect a core with a sediment depth of 20 cm. These were collected
using PVC pipes with a diameter of 10 cm. Cores were retrieved and subsampled in the field
into 10 cm intervals (0–10 cm and 10–20 cm), placed in a freezer box for transportation, and
stored in a freezer until analysis. These 10 cm intervals were used for biodiversity samples,
and samples were sieved through 0.5 mm using seawater to separate the invertebrates
from the fine sedimentary material according to international standard methods (ISO, 2022).
Invertebrates were stored using 70% ethanol and 10% glycerol until further laboratory
analysis. Invertebrates were identified to species levels using a 40 X–2500 X LED Trinocular
Lab Compound Microscope (OMAX, Gyeonggi-do, Republic of Korea) and [43]. Species
accumulation curves indicate that the number of samples was sufficient to characterise the
assemblage (see Appendix A).

2.4. Carbon Core Analysis

Nine carbon cores were taken, one within each quadrat, and hammered down to
collect a core with a sediment depth of 20 cm. These were collected using PVC pipes with a
diameter of 10 cm. Cores were retrieved and subsampled in the field into 10 cm intervals
(0–10 cm and 10–20 cm), placed in a freezer box for transportation, and stored in a freezer
until analysis. Cores were analysed following the established methods outlined in the
Blue Carbon Manual [44]. Samples were left to thaw for 24 h before being weighed and
oven-dried at 60 ◦C for 72 h or until a constant weight was achieved. After drying, the
sediment was weighed again to determine the dry bulk density.

Aliquots of 5 cm3 of each subsample were placed into pre-weighed crucibles and placed
in the muffled furnace at 650 ◦C for 6 h to determine the loss of ignition (% LOI). Organic
matter was determined according to [45], due to its comparability to the environment.

The literature commonly extrapolates organic carbon (Corg) stocks in Z. marina mead-
ows to a 100 cm depth from a 25 cm depth [12,46]. Although we recognise the uncertainty
in performing so, we have calculated values to 25 cm from our values of 20 cm in order to
make comparisons with other literature values [47].

2.5. Statistical Analysis

In order to examine differences in the community composition of the infaunal com-
munities and link this to environmental parameters, nonmetric multidimensional scaling
ordination (nMDS) was used with Bray–Curtis similarity using the software PRIMER v7
with PERMANOVA+ [48]. The Bray–Curtis similarity index was applied to square-root
transformed data, which created a ranked similarity matrix [49]. This scale was used to
determine if key species could be drivers of seagrass productivity or carbon storage.
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Additional Partial Least Squares regression analysis [50] was conducted to determine
those parameters of the seagrass community (plants and infauna) that most strongly
correlate to the amount of organic carbon within different depth segments of the seabed
(top 10 cm, 10 to 20 cm, and the whole of the top 20 cm). This analysis is particularly suited
to incidences when the matrix of predictors has more variables than observations and when
there is multi-co-linearity among variables [50,51].

3. Results
3.1. Invertebrate Communities

A total of 25 species of invertebrates were recorded from biodiversity cores across
nine study quadrats in PD. In total, 74 individuals were recorded, with an average of
8.2 animals per sample. A total of 24 annelids were sampled (22 Polychaetes and 2 Ne-
mertea), one crustacean was sampled (Arthropoda), and 0.014 organisms per L of sediment.
Ampharete acutifrons (present in 89% of samples) was the most abundantly recorded species
across the study area (22 individuals in total sampled) and of samples (Appendix A),
followed by Notomastus latericeus and Neoamphitrite edwardsi. Five species dominated the
assemblages, making up 63% of all the animals observed (see Table 1). These dominant
species were all categorised in terms of their reworking traits as being ‘upward and down-
ward conveyors’, two of them were living in fixed tubes, and the other three defined as
having ‘limited movement’ (Table 1) [52].

Table 1. Bioturbation potential allocations (adapted from [52]) for the five most abundant macrofaunal
species (that accounted for 63% of the abundance) recorded in the seagrass at Porthdinllaen, North
Wales, UK. Mi and Ri are the reworking and mobility traits, and Fti is the corresponding sediment
reworking functional types. Two of the species had no allocation, and therefore, data from closely
related species was used in lieu (see * and **).

Species Reworking Traits (Ri) Motility Traits (Mi) Sediment Reworking Types (Fti)

Neoamphitrite edwardsi * Upward and downward conveyors Fixed Tubes DC
Ampharete acutifrons Upward and downward conveyors Limited Movement UC/DC
Notomastus latericeus Upward and downward conveyors Limited Movement UC
Terebellides stroemii Upward and downward conveyors Fixed Tubes DC

Malacoceros vulgaris ** Upward and downward conveyors Limited Movement UC/DC

* Neoamphitrite affinis, ** Malacoceros fuliginosus.

Animal abundance (p = 0.025, F1,17 = 6.11) and richness (p = 0.033, F1,17 = 5.45) were
significantly higher in the first 10 cm of sediment and decreased with depth (Figure 2);
however, the whole assemblage structure was not changed with depth (F1,17 = 1.9383,
p = 0.067). Across the nine sediment cores, there was an average of 8.2 ± 3.9 animals
per core; this was 5.4 ± 2.6 animals in the top 10 cm and 2.8 ± 2.0 animals in a depth of
10–20 cm. Species richness (number of taxa recorded) was on average 4.2 ± 1.6 animals
per core in the upper 10 cm and 2.4 ± 1.7 animals per core in the deeper depths from 10 to
20 cm.

3.2. Sediment Carbon

The average carbon storage (based on a 20 cm core depth) was 6460 gC.m−2 ± 3274
and ranged from 2961 to 11,620 gC.m−2 (Figure 3). When extrapolated to a 25 cm depth
for alignment with existing Z. marina data across the Northern Hemisphere [47], the mean
value becomes 8075 ± 4092 gC.m−2. This indicates that carbon stocks in Porthdinllaen are
on average higher than the Northern Hemisphere average of 2721 gC.m−2 [47]. The carbon
levels did not significantly differ between depths (p = 0.76, F1,17 = 0.10); however, the data
from the first 10 cm is far more variable than that at deeper depths (Figure 3).
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Figure 3. Box plot of total organic carbon (gC.m−2) at two depth intervals recorded in sediment cores
within the Porthdinllaen seagrass meadow (Zostera marina).

3.3. Seagrass Characteristics

Seagrass % cover was on average (±SD) 32 ± 19% and ranged from 9 to 73%. Shoot
density was on average 75 ± 34 shoots per 0.25 m2

, ranging from 26 to 128 shoots. The
redox layer was also quite variable between cores, ranging from a depth of 16 cm to 28 cm
with an average depth of 21.16 ± 4.13 cm. Epiphytes coverage was also highly variable,
ranging from 1 to 17% cover with an average cover of 6.8 ± 5.7.

3.4. Correlations

The creation of a Pearson’s correlation matrix between fourteen variables assessed
in the cores (see Figure 4) revealed a range of significant correlations. This shows a range
of strong correlations between the infaunal invertebrate communities and aspects of the
seagrass and the carbon storage.
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Figure 4. Pairwise Bayesian Pearson correlation coefficients between variables quantified in the
seagrass meadow in Porthdinllaen, Wales, UK.

A significant negative correlation (p < 0.05) was observed between the redox depth
and seagrass cover (−0.58) as well as shoot density (r = −0.7). This redox parameter
was also found to have positive correlations with infaunal abundance (0.51) and richness
(r = 0.46). Additionally, a similar negative correlation was observed between the number of
surface worm casts and the density of seagrass shoots. The cover of algae on the seabed
was also negatively correlated with the amount of organic carbon in the top 10 cm of the
sediment. The small sample size relative to the number of potential drivers led to the need
to examine the data using a targeted partial least squares statistical approach [50].

When applying a partial least squares (PLS) regression analysis of sediment carbon
content in different depth ranges relative to environmental and ecological parameters
measured within the seagrass, we found that 72% of the variability in the carbon content in
the top 10 cm was best explained by the negative effect of algae cover and Neoamphitrite
edwardsi (a downward conveyor) and the positive effect of the ringworm species Notomastus
latericeus (Figure 5, Table 2). Furthermore, 52% of the carbon content of the deeper 10 cm
(10–20 cm) was explained by a combination of the positive effect of seagrass shoot density
and the density of the ringworm species Notomastus latericeus, together with a negative
effect of Ampharete acutifrons. Meanwhile, 74% of the variability of the carbon content
of the entire core sample (top 20 cm) was explained by the negative effect of algae cover,
A. acutifrons and N. edwardsi (a downward conveyor), and the positive effect of the ringworm
species Notomastus latericeus (Table 2).
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Figure 5. Correlations and 95% CI between variables observed to contribute to three partial least
squares regression models (see Table 2), explaining carbon stores in different depth fractions of
seagrass sediment in Porthdinllaen, North Wales, UK.

Infaunal assemblage composition varied between the samples (Figure 6). However,
samples did not show significantly high levels of similarities. Bray–Curtis similarity
scaling showed some 30% similarity clusters between cores containing low and medium
total organic carbon levels; however, there was no consistency in this pattern. ANOSIM
indicated that neither bioturbation (no. of worm casts) nor carbon content explained the
variability in the assemblage (p > 0.7).
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Table 2. Partial least squares (PLS) regression analysis (final models following stepwise analysis) of
sediment carbon content in different depth ranges relative to environmental and ecological parameters
measured within the seagrass. Table shows the overall ‘global’ ANOVA statistics for each of the
regression models, the individual principal components, and their cumulative R2 values. The table
also shows the values computed by the PLS model of the variance explained with the x-axis (x-var.).
Individual regression coefficients of the specific carbon predictors are also shown.

R2 R2 F P Coeff

Carbon Comp 1 Comp 2 X
variance Algae (%) Shoot

density
Ampharete
acutifrons

Notomastus
latericeus

Neoamphitrite
edwardsi

Corg in Top 10 cm 0.71 0.72 17.38 0.004 0.50 −0.55 0.22 −0.36

Corg in 10 to 20 cm 0.47 0.53 6.25 0.041 0.47 0.35 −0.4 0.3

Corg in Top 20 0.69 0.74 14.16 0.007 −0.29 −0.49 0.77 −0.13
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4. Discussion

There is limited discussion in the literature on the interaction of sedimentary organic
carbon in seagrass meadows in the context of its associated biota. By their very nature,
vegetated habitats support biodiverse and productive faunal communities that influence
carbon cycling through processes of herbivory, bioturbation, and decomposition [53]. Many
of these species exist in the sediment and in close proximity to the root systems of seagrass
due to the radial oxygen loss (ROL) [54] that creates an oxic layer in otherwise potentially
anoxic sediment. The present study is a novel example of assessing seagrass infaunal
communities relative to seagrass sedimentary organic carbon storage accumulation and
finds that specific abundant infaunal species, the cover of algae, and the seagrass density
combine to be explanatory variables of the amount of carbon within the shallower sediment
depths.

Shoot density and the abundance of the Notomastus latericeus were positive explanatory
variables of the carbon, whereas algal cover, Ampharete acutifrons, and Neoamphitrite edwardsi
were potentially negatively influencing carbon storage and accumulation. In addition, fau-
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nal assemblages present in sediments with relatively high Corg were significantly different
from those present in sediments with low Corg. This raises two hypotheses: either seagrass
infauna prefer sediment with specific organic content or the abundant assemblages of
infauna are effective at remobilising the sediment, which alters the total organic C content
in the sediment. We hypothesise the latter explanation is more likely.

As particular dominant infauna increased in abundance, the amount of Corg stored in
the area decreased correspondingly, most likely due to the actions of bioturbating infauna
of varied function [35]; however, this was not observed as a strong linear correlation but
as a component of a partial least squares model that was also influenced by increasing
macroalgal abundance and decreasing seagrass shoot density. We did not measure the par-
ticle size distribution of sediment in this study, and given the potential for this to influence
carbon accumulation [55] and also act as an indicator of variable hydrodynamics [56] we
cannot rule out this influence. However, we suspect it to be minimal due to the relatively
small spatial area (200 × 10 m) and consistent sediment type from all sample areas that
were classified as muddy sand, an observation from long-term data that has not changed
over a decadal period [57].

Although infaunal richness was a significant driver of carbon, this did not explain the
full variability, and other factors, such as algal and seagrass cover, were significant and
possibly greater drivers of carbon storage. The negative correlation of algal cover with
sediment carbon is an unexpected result and cannot be fully explained; however, we know
that algal cover can have a negative impact on seagrass systems, leading to reduced density
and patchiness [58], potentially further proliferating its cover as habitat gaps expand. This
presence may also negatively influence the faunal communities, creating further complex
interactions. In addition, the negative influence of macroalgae might relate to reduced
productivity within the seagrass and therefore the reduced exudation of labile organic
carbon or the reduced accumulation of plant detritus [59]. These explanations, however,
remain speculative.

Infaunal richness and abundance were much lower at deeper depths in the sediment,
where carbon levels were not significantly different and a lot less variable. We hypothesise
that this reduced variability is the result of less prevalent and different infauna influencing
sediment composition.

Ampharete acutifrons was the most abundant species sampled (on average three times
higher density than other species) during this study and is described as a soft-bodied
deposit feeding polychaete [60]. Higher A. acutifrons densities were most abundant in
sample areas with low Corg content. A. acutifrons exert strong effects on the sediment by
mechanically and chemically altering dissolved and particulate organic matter (POM),
which might also enhance seagrass growth through the deep burial of O2 [61]. A. acutifrons
can reduce the concentration of H2S in sediment porewater, facilitating seagrass growth
in organic carbon-rich sediments, allowing the plant to thrive in areas of poor water
quality [62], which have been recorded at the sampling site, Porthdinllaen [40].

Some specific species of infauna that were unexpectedly lower in density (e.g., Arenicola
marina) are thought to have a stronger effect on biogeochemical processes [10], significantly
influencing seagrass carbon stocks through burrowing activities by stimulating the rem-
ineralisation of carbon through mediated disturbance. This causes labile organic matter
input and reduces the carbon capture capacity [63]. Previous lab studies have also shown
how such burrowing played an important role in the cycling of iron and sulphur across the
sediment–water interface [64].

A. marina was recorded as the principle bioturbator during this study and was present
in three samples, which contained the lowest amount of Corg. These animals were the
biggest species encountered, and therefore, physically, their effect would have been dis-
proportionally bigger. A. marina is an upward conveyor with an impressive capacity for
particle reworking and the transport of deep sediment particles to the surface [65].

Overall, it seems the interactions of multiple components of the infaunal assemblage
are potentially exerting some level of influence over the seagrass carbon stocks rather
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than just one specific species of infauna, but this influence is not as pronounced as we
hypothesised. In a broader sense, the interaction between the infauna and the seagrass is
also a two-way process, as seagrass roots improve oxygenation and labile organic carbon,
potentially promoting infauna abundance and diversity [66,67]. In addition, the presence
of the organisms likely increases oxygen movement within the sediment, increasing the
oxidation of toxic sulphide [68]. Bioturbator burrows such as those of A. marina are rich
in organic carbon and can support up to 11 times more microbes than sediment without
burrows [69]. Bioturbator-stimulated microbial priming accounts for approximately 15% of
released Corg in controlled environments [70], which likely explains why Corg was lowest
in samples that contained this species.

The environment created by the seagrass might attract animals (e.g., through enhanced
oxygenated sediments with a deeper redox layer). Undisturbed seagrass habitats with
greater complexity in relation to shoot density, plant biomass, and canopy height greatly
increase infauna communities and assemblages [31,71]. In the present study, as seagrass
density varied, we found little impact of this upon the abundance and diversity of the
infauna but some interaction with the carbon. This may reflect the fact that only basic
parameters of the seagrass were assessed (e.g., cover and density) rather than a detailed
assessment of the root and rhizome biomass.

Bioturbators play crucial roles in sediment nutrient recycling and removing pollutants
and contaminants from sediment through burial and oxygenation, which promotes seagrass
growth through bioirrigation, a process that differs from bioturbation [72]. However,
bioturbators also disturb the root–rhizome matrix, which damages the anchoring system of
the plant and reduces overall productivity [62]. Our results do find some influence of the
infaunal community on the carbon, but limited effect on the seagrass. In addition, bivalves
were not recorded within the sediment at the site; given the known role many of these
species play in assisting with the detoxification of sulphide-rich sediments [73], this was a
surprise. The detoxification influence of A. acutifrons may be playing this role (assuming
the sediments are sulphide rich) instead rather than just the effect of the seagrass alone [74].
Although we focus on the potential negative influence of infauna on carbon storage within
sediments, there exists some evidence that bioturbation might facilitate carbon storage due
to the movement of organic matter deeper into the sediments [75]. Whilst we do not show
such a process within our data, there exists potential for some species to do so.

Trophic cascades caused by over-exploitation of top predators have been recorded
to affect C sediment stocks in tropical seagrass ecosystems [34]. Marine ecosystems in
the North Atlantic are heavily overexploited and largely anthropogenically modified,
leading to the presence of numerous potential trophic cascades [76] including seagrass
ecosystems [77]. Within seagrass ecosystems, a loss of predators is thought to have released
secondary consumers from control, leading to a loss of grazers and reduced resilience to
eutrophication [77]. Previous studies have recorded cascades from changes in predatory
fish density to densities of polychaete worms [78,79]. This suggests that trophic cascades
with increased polychaete abundances could negatively influence seagrass carbon storage,
as it has happened with other keystone predators, influencing grazing in tropical seagrass
systems to affect sediment Corg stocks [34]. Findings of the present study show that
bioturbators have the potential to turn seagrass meadows from carbon sinks to carbon
sources [28] and should be considered as a negative factor when estimating seagrass
Corg stocks.

In conclusion, we recorded infaunal communities within a temperate seagrass meadow
to potentially influence the ability of the plant community to trap and store organic carbon.
However, this effect is not as pronounced as expected. The increasing density of infauna is
likely to have some effect in reducing the storage of organic carbon, which might affect its
ecosystem service role, but other factors (algae and seagrass cover) are also influencing this
over small scales. When in high densities, infauna can bury seedlings, uproot patches of
seagrass, and reduce light availability by increasing turbidity. High bioturbation makes
seagrass more susceptible to erosion via reducing sediment cohesion [62]. This study
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highlights the importance of including bioturbator processes when managing temperate
seagrass Corg stocks and the need to examine this process in more detail.
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Appendix A

Table A1. Species List of All Invertebrates Recorded from Biodiversity Cores Across Nine Study
Areas in Porthdinllaen, Wales, UK.

Annelida Crustacea

(Polychaeta) (Arthropoda)
Ampharete acutifrons Urothoe marina

Arenicola marina
Cirriformia tentaculata

Eteone picta
Euclymene lombricoides

Eumida sanguinea
Eurnereis longissma Johnston

Lumbrineris latreilli
Malacoceros vulgaris

Marphysa bellii
Mediomastus fragilis Rasmussen

Melinna palmata
Myriochele heeri

Neoamphitrite edwardsi
Nephtys caeca

Nicolea zostericola
Notomastus latericeus

Parexgone hebes
Scoloplos armiger

Terebellides stroemii
Thelepus setosus
Polychaete sp.
(Nemertea)

Emplectonema echinoderma
Tetrastemma coronatum
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