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Abstract: Subjective understanding is a complex process that involves the interplay of feelings and
cognition. This paper explores how computers can monitor a user’s sympathetic and parasym-
pathetic nervous system activity in real-time to detect the nature of the understanding the user is
experiencing as they engage with study materials. By leveraging advancements in facial expression
analysis, transdermal optical imaging, and voice analysis, I demonstrate how one can identify the
physiological feelings that indicate a user’s mental state and level of understanding. The mental
state model, which views understandings as composed of assembled beliefs, values, emotions, and
feelings, provides a framework for understanding the multifaceted nature of the emotion–cognition
relationship. As learners progress through the phases of nascent understanding, misunderstanding,
confusion, emergent understanding, and deep understanding, they experience a range of cognitive
processes, emotions, and physiological responses that can be detected and analyzed by AI-driven
assessments. Based on the above approach, I further propose the development of Abel Tutor. This
AI-driven system uses real-time monitoring of physiological feelings to provide individualized,
adaptive tutoring support designed to guide learners toward deep understanding. By identifying the
feelings associated with each phase of understanding, Abel Tutor can offer targeted interventions, such
as clarifying explanations, guiding questions, or additional resources, to help students navigate the
challenges they encounter and promote engagement. The ability to detect and respond to a student’s
emotional state in real-time can revolutionize the learning experience, creating emotionally resonant
learning environments that adapt to individual needs and optimize educational outcomes. As we
continue to explore the potential of AI-driven assessments of subjective understanding, it is crucial to
ensure that these technologies are grounded in sound pedagogical principles and ethical considera-
tions, ultimately empowering learners and facilitating the attainment of deep understanding and
lifelong learning for advantaged and disadvantaged students.

Keywords: adaptive AI tutoring; adaptive ITS; affect aware AI; subjective understanding; emotion–
cognition relationship; feelings; sympathetic and parasympathetic nervous system; facial expression
analysis; transdermal optical imaging; voice analysis; mental states; homeostasis; cognitive dissonance;
knowledge building; deep understanding; phases of understanding

1. Introduction

In this paper, I explore how computers can monitor a user’s sympathetic and parasym-
pathetic nervous system activity, both directly and indirectly, to detect the nature of the
understanding the user is experiencing in real-time while engaging with study materials.
Following Damasio’s [1] popularized description, I will refer to the neurological reactions
and physiological changes as feelings, which serve as the primary data for AI detection of
understanding. Frijda elaborates on the foundation for this approach by pointing out that
feelings draw our attention to significant shifts, whether positive or negative, within our
psychological states [2]. According to his Law of Change, states often respond to perceived
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changes rather than static conditions [2]. Beyond their role as indicators, conscious feel-
ings also function as personal appraisals or evaluations of our experiences, affecting our
interpretations of events in relation to our goals or needs [3].

Moreover, feelings can motivate us to adapt our behaviour in response to our per-
ceptions and evaluations [2]. As such, feelings serve not only as reflections of our inner
states but also as catalysts for action. Conscious feelings can be expressed through facial
movements, blood flow patterns, and vocal changes, providing observable indicators of the
user’s feelings and mental states. This paper will focus on detecting physiological feelings
to inform AI-driven assessments of subjective understanding. While constructed emotions,
which are based on the sensing of internal physiological states such as heart rate variability
and blood pressure, help us interpret and communicate our internal experiences, they will
not be the main focus of this paper.

Understanding how we make subjective sense of the world and our experiences is
a complex process that involves the interplay of emotions, feelings, and cognition [4].
To comprehend this process, Damasio [1] suggests that we need to examine the role of
feelings as conscious mental events arising from the interoperception of bodily responses
and emotions. In Frijda’s [2] and Damasio’s [1] view, emotions are primarily unconscious,
automatic bodily reactions that have evolved to promote survival. Feelings, on the other
hand, are the conscious representations of these emotional mental states. While emotions
and feelings are distinct, they are closely related, and we often discuss our feelings in
terms of emotions. Indeed, as Scherer and Moors [5] point out, nonverbal feelings can
become conscious during the appraisal process when they are categorized and labelled
with emotion words or verbal emotional expressions. During this process, feelings are also
assigned valences that impact our reasoning and decision-making [1].

This approach is not entirely new, for Leon Festinger [6] theorized over half a century
ago that the consciousness of feelings, when they are negatively valenced, generates
dissonance (i.e., feelings such as anxiety, fear, or sadness) and creates a state of discomfort
and arousal that motivates the individual to take action to reduce the dissonance. More
recently, Harmon-Jones et al. [7] have used this drive as the basis of their action-based
model. However, dissonance can be viewed within a larger homeostasis framework for
mental states. We can speculate that maintaining homeostasis may be considered as part of
a broader system of physiological and mental processes that provide a need to improve
our subjective understandings. Figure 1, below, suggests that negatively and positively
valenced feelings will return to a balanced state as mental homeostasis is asserted. In the
figure below, even positively valenced feelings like an “ah-ha” or “eureka” will fade back to
a balanced state over time [3]; according to Frijda’s Law of Change, “Continued pleasures
wear off; continued hardships lose their poignancy” (cf., [3], p. 353). It also suggests that a
student may let a negatively valenced context regain balance by avoiding re-engaging the
concept or entire subject area. Damasio acknowledges this when he states, “. . . the negative
or positive valence of the experience advises me to correct the situation or else accept it
and do little or nothing” (cf., [1], p. 96).

This view of physical and mental stasis goes beyond explaining why we need to eat
when we are hungry; to see that when we are confused, we need to improve our under-
standing. Thus, the process involves integrating mental states with bodily processes. As
Figure 2 below suggests, a successful knowledge builder will attempt to correct the balance
and, therefore, engage in cycles of ever-deeper understanding and, as Damasio [1] ar-
gues, homeostasis and feelings will facilitate a student’s learning, adaptation, and effective
decision-making—a perspective central to the investigation of embodied cognition. In the
past, Damasio’s speculations would simply be untestable. Fortunately, new technologies
permit us to begin investigating his ideas.
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Figure 2. Graph depicts the cyclical feature of ever-deepening understanding.

Advances in detecting and measuring bodily events in real-time as proxies of emotion
have made it possible to explore Damasio’s theory in authentic settings. Specifically, tech-
nological advances have enabled the real-time examination of sympathetic and parasym-
pathetic nervous system events [8] through various methods, including facial expression
analysis, transdermal optical imaging, and voice analysis. Recent research employing
sophisticated acoustic analysis techniques has revealed numerous consistent patterns in
vocal expression, especially those associated with evaluations of control or power [5].
Regarding facial expression, our research will focus solely on the preprocessed muscle
movements, called action units, generated before identifying specific emotions. Scherer
and Moors [5] report that several researchers have found it challenging to demonstrate
reliable distinctions in patterns across discrete emotions (cf. [9]).

Facial expression analysis was initially designed to help researchers identify universal
emotions by analyzing specific facial muscle movements [10]. This method is grounded
in the facial action coding system [11], usually called FACS, and categorizes all facial
movements. The approach, developed by Ekman, concentrates less on the emotions and
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more on the expressions [12]. By examining the FACS-generated AUs, researchers can infer
activation of the sympathetic nervous system, as various emotions correlated with stress,
excitement, or fear involve characteristic facial expressions. Transdermal optical imaging
(TOI), as discovered in Kang Lee’s lab, offers a novel approach by using video to capture
changes in facial blood flow patterns, which can indicate shifts in autonomic nervous system
activity, providing a window into an individual’s emotional and physiological state [13].
Moreover, Fu and colleagues [13] showed that each emotion, including the neutral state,
elicited a distinct blood flow pattern in the facial epidermis, indicating that physiological
correlates of discrete emotions can be detected even when the face is expressionless.

Transdermal optical imaging is a non-invasive technique that uses visible and near-
infrared light to measure various biological parameters beneath the skin’s surface. When
emitted light enters the skin, it interacts with different biological components, such as
blood vessels, melanin, and collagen, through absorption, scattering, and reflection. TOI
primarily targets hemoglobin, measuring light absorption at specific wavelengths to deter-
mine the relative concentrations of oxygenated and deoxygenated hemoglobin, providing
information about blood oxygenation and tissue metabolism [14]. Light scattering in the
skin is caused by collagen fibres and other cellular structures, with longer wavelengths pen-
etrating deeper into the tissue. Photodetectors capture the returning light and mathematical
algorithms process the raw data to reconstruct images or maps of the tissue [15].

Voice analysis complements optical imaging by assessing variations in vocal properties,
such as pitch, tone, and energy, which can change in response to different emotional states
and autonomic nervous system activity [16–18]. For example, the sympathetic nervous
system’s activation can lead to a tightened vocal cord and changes in speech patterns, which
can be detected through voice analysis software. Emotion detection in voice, also known as
speech emotion recognition (SER), is a technology that analyzes various acoustic features
of speech to identify the speaker’s emotional state. Eunice Jang’s lab has used software to
detect emotions using features such as variations in pitch, pitch range, volume fluctuations,
melody, breathiness, etc. [19]. This work used the open software platform, Pratt, with
speech recognition software and machine learning algorithms of children’s voice recordings.
Though Jang’s work currently focuses on assessing fluency and oral language ability, those
acoustic features play a crucial role in understanding and interpreting emotions in speech
as they capture non-verbal clues and subtleties that reveal a speaker’s emotional state [20].

Collectively, these three technologies offer a novel toolkit for real-time analysis of the
intricate interactions between the sympathetic and parasympathetic nervous systems and
the conscious brain. They form the foundation of a new methodology employed in this
paper to explore the emotion–cognition relationship from an embodied cognition perspec-
tive. This approach allows for the unobtrusive real-time measurement of physiological
and affective states, providing deeper insights into the interplay between emotions and
cognition. As I will demonstrate, integrating data from facial expressions, optical imaging,
and voice analysis presents researchers with a powerful methodology to understand how
emotions, feelings, and physiological states manifest in the body. This, in turn, offers
valuable insights into human psychology, stress responses, and emotional well-being.

2. Mental States and Phases

The mental state model allows us to view understandings as composed of assembled
beliefs, values, emotions, and feelings. Beliefs and values provide the cognitive framework
through which we interpret and make sense of our experiences, while emotions and
feelings add depth and meaning to these interpretations [12]. Together, these components
shape our perceptions, decisions, and actions, ultimately leading to a more comprehensive
understanding of ourselves and the world around us. Further, the mental state model
conveys the complexity and multifaceted nature of the relationship between feelings and
cognition. The model is a metaphor that helps us understand the complex relationship
between feelings and cognition. By recognizing the intertwined nature of these processes [1],
the activating or deactivating potential of mental states and their emotions [21], and the
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role of beliefs, values, and emotions in shaping understanding [4], we can gain a complete
and more nuanced picture of the emotion–cognition relationship. This interplay forms the
foundation for how individuals perceive, interpret, and interact with the world around
them (cf., [22]).

Moreover, mental states act as filters through which sensory information is processed,
categorized, and assigned meaning based on current physiological (feeling) states, cognitive
processes, and past experiences [23]. Such processing guides attention, interpretation,
and the emotional valuation of information, prioritizing specific experiences or facts for
attention and memory. They ensure that understanding is an active construction of meaning,
where individuals continually generate predictions about the world and test them against
incoming sensory information. This iterative process facilitates the refinement of existing
knowledge and the formation of new understandings, highlighting the intertwined nature
of cognition, feelings, and understanding.

Mental states are not necessarily discrete or linear, and learners may move between
them dynamically as they process new information and refine their understanding [24]. The
progression through these states can be influenced by various factors, such as the complexity
of the subject matter, the learner’s prior knowledge, cognitive abilities, and motivational
factors [25]. Moreover, each state’s specific cognitive processes and experiences may vary
depending on the domain or task. For example, in problem-solving tasks, confusion may
involve a more explicit awareness of the problem space and the need to develop new
strategies [26]. In contrast, conceptual learning may involve a deeper questioning of one’s
beliefs and assumptions [27].

If we imagine a student working to understand a concept, these mental states can
be viewed as phases of the process that track the changes and growth of the student’s
understanding. From this perspective, the phases might appear as follows: (1) nascent
understanding, (2) misunderstanding, (3) confusion, (4) emergent understanding, and
(5) deep understanding. See Figure 3, below.
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The nascent understanding phase is a starting point where learners have little knowl-
edge or comprehension of the subject matter. It describes an understanding just coming
into existence and displaying signs of promise for future emergence. In this stage, learners
may sense misunderstandings or confusions about the subject matter as they encounter
new information. This phase precedes confusion because learners may initially form in-
accurate understandings based on limited or incorrect information, giving them a false
sense of comprehension. Later, confusion occurs when learners realize that their initial
understanding is inconsistent, incomplete, or contradictory to new information, and they
enter a state of confusion (this phase follows misunderstanding because the recognition
of conflicting or unclear information challenges learners’ existing beliefs and prompts
them to question their understanding). If the student persists, we expect to see emergent
understanding appear.

As learners struggle with various instances of confusion and seek to resolve the incon-
sistencies in their understanding, they construct new knowledge and insights. In this phase,
learners actively process information, make connections, and start to form a more coherent
understanding of the subject matter. However, their understanding is still developing and
may be incomplete or unstable. Finally, we speculate that a deep understanding will appear.
With continued learning, reflection, and application of relational knowledge, learners solid-
ify their understanding of the subject matter [28,29]. Learners have a deep, comprehensive,
and stable understanding of the topic in this final phase. They can effectively apply their
knowledge, connect concepts, and communicate their understanding.

The phases of understanding in Figure 3, when viewed through a cognitive psychol-
ogy lens, highlight the complex interplay of cognitive processes, knowledge structures,
metacognitive awareness, and feelings that learners experience as they progress in their
understanding of the subject matter. The phases are not necessarily discrete or linear, and
learners may move back and forth between them as they encounter new challenges or
deepen their understanding. Furthermore, this framework provides a helpful way to con-
ceptualize the cognitive and affective experiences that learners go through as they progress
in their learning journey. By considering these phases and the factors that influence them,
educators and researchers can gain insight into how to support and optimize learning
outcomes. Each phase is elaborated below:

Nascent Understanding: In this phase, learners have insufficient prior knowledge of
the subject matter. They may experience a lack of schema or mental models to organize
and interpret new information [30]. Learners may struggle with attention and encoding, as
they have difficulty identifying relevant information or distinguishing between essential
and non-essential elements [31]. This state is characterized by a lack of comprehension and
a limited ability to form meaningful connections or representations.

Misunderstanding: Learners in this phase have formed incomplete or incorrect mental
representations of the subject matter. They may have developed misconceptions or faulty
models based on limited or misinterpreted information [32]. These learners may exhibit
overconfidence bias, where they overestimate their understanding and are unaware of their
knowledge gaps [33]. In this state, learners may use flawed reasoning or make incorrect
inferences based on inaccurate knowledge structures.

Confusion: In this phase, learners experience cognitive disequilibrium as they en-
counter information that conflicts with their knowledge structures [34]. They become aware
of inconsistencies, contradictions, or gaps in their understanding, leading to confusion
or perplexity. Learners may use effortful cognitive processing to reconcile new informa-
tion with prior knowledge [35]. This state is characterized by heightened metacognitive
awareness and a motivation to resolve the cognitive conflict.

Emergent Understanding: Learners in this phase actively engage in knowledge con-
struction and integration. They employ cognitive strategies, such as elaboration, organiza-
tion, and critical thinking, to form new connections and update their mental models [36].
Learners may experience insight or conceptual change as they restructure their knowledge
and develop a more coherent understanding [37]. In this state, learners can meaningfully re-
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late new information to their existing knowledge structures and apply their understanding
to solve problems or explain concepts.

Deep Understanding: In this phase, learners have constructed a rich, interconnected
network of knowledge related to the subject matter. They have developed well-organized
and elaborated schemas for efficient information processing and retrieval [38]. They may
exhibit solid metacognitive skills, such as self-monitoring, self-regulation, and reflection,
which enable them to assess and refine their understanding [39]. They can use flexible
thinking, transfer knowledge to novel situations, and generate new insights or creative
solutions [40]. This state is characterized by deep comprehension, automaticity in applying
knowledge, and the ability to communicate understanding effectively.

3. Instructional Use

Moving beyond the psychological perspective and looking toward educational ap-
plications, the mental phases are compatible with the SOLO (Structure of the Observed
Learning Outcome) model developed by John Biggs and Kevin Collis [41], where under-
standing is viewed as a progression through five hierarchical levels of increasing complexity.
These levels describe the quality of a learner’s understanding and knowledge structure
concerning a particular subject or task.

In the SOLO model, understanding is not viewed as a binary state (i.e., understand-
ing or not understanding) but rather as a continuum of depth and sophistication. The
learner’s journey of understanding starts from the pre-structural level, where they possess
only scattered bits of information that lack coherence or meaning. As they progress to
the uni-structural level, they begin to grasp a single relevant aspect or concept, albeit
in isolation from the broader context. Moving further, learners at the multi-structural
level can comprehend several relevant aspects independently but struggle to integrate
them into a unified whole. At the relational level, learners genuinely begin to see the
interconnectedness of different elements, weaving them together into a coherent tapestry
of understanding. Finally, at the pinnacle of the SOLO taxonomy, the extended abstract
level, learners transcend the boundaries of the subject matter, generalizing their knowledge
to novel situations, generating original insights, and exhibiting a profound metacogni-
tive awareness. The progression of understanding, from fragmented and superficial to
integrated and transformative, lies at the heart of the SOLO model.

While the SOLO model is deeply rooted in the cognitive perspective and concentrates
on outcomes, it may be mapped onto the emotional components essential to the mental state
approach. Table 1 below illustrates how the five phases of understanding, which describe
learners’ cognitive and metacognitive processes, align with the SOLO phases, which focus
on the structural complexity and integration of knowledge. The brief descriptors provide
a concise summary of the key characteristics of each phase or level, highlighting the
progression from a lack of understanding to a deep, transferable, and transformative
understanding of the subject matter.

Table 1. The five phases of understanding mapped onto the SOLO phases.

Phases of
Understanding

SOLO
Phases Brief Descriptor of SOLO Phases

Nascent
Understanding Pre-structural Little to no understanding; fragmented or

irrelevant information.

Misunderstanding Uni-structural
Basic understanding of one relevant aspect;
focus on a single element without seeing the
broader context.

Confusion Multi-structural
Grasp of several relevant aspects
independently; aspects treated as separate
entities without integration.
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Table 1. Cont.

Phases of
Understanding

SOLO
Phases Brief Descriptor of SOLO Phases

Emergent
Understanding Relational

Integration of multiple aspects into a coherent
structure; understanding of relationships
and connections.

Deep Understanding Extended abstract
Generalization of knowledge to new domains;
application in novel contexts; generation of
insights; metacognitive awareness.

The emotions associated with each phase of understanding accompany the cognitive
processes, challenges, and realizations that learners experience as they progress through
their learning journey (See Table 2). It is important to note that the emotional experiences
are not exclusive to each phase and may overlap or vary in intensity depending on the
individual learner and the specific learning context. However, we hypothesize that, among
the various measures collected for each phase, there will be emotional patterns that are
unique to that phase.

Table 2. Hypothesized Emotions Associated with Each Phase of Understanding.

Phase of Understanding Possible Emotions Manifested in Feelings

Nascent Understanding Confusion, frustration, anxiety, boredom, apathy, overwhelm.

Misunderstanding Surprise, false confidence, overconfidence, confusion, frustration,
defensiveness, embarrassment.

Confusion Surprise, perplexity, frustration, curiosity, uncertainty, discomfort,
cognitive dissonance, motivation to resolve confusion.

Emergent Understanding Curiosity, excitement, enthusiasm, satisfaction, pride, relief,
motivation to learn more.

Deep Understanding Enjoyment, satisfaction, fulfillment, enthusiasm, inspiration,
curiosity to explore further, metacognitive awareness, self-efficacy.

Nascent Understanding: In this phase, learners may experience confusion, frustra-
tion, and anxiety. They may feel lost in a sea of unfamiliar concepts and terminology,
struggYesling to make sense of the new information presented to them. This lack of
comprehension can lead to boredom and apathy as the learner may perceive the subject
matter as irrelevant or disconnected from their prior knowledge and interests. Furthermore,
when faced with a large amount of complex information without the necessary cognitive
frameworks to process it effectively, learners may experience a sense of overwhelm, feeling
ill-equipped to tackle the learning task at hand [42–45].

Misunderstanding: Learners may experience false confidence and overconfidence
during the misunderstanding phase. Having constructed an incomplete or incorrect un-
derstanding of the subject matter, they may believe that they have a grasp on the concepts,
unaware of the misconceptions they hold. This false sense of understanding can produce
mistakes and lead to confusion and frustration when they encounter information that
contradicts their misunderstandings, creating cognitive dissonance. When confronted with
evidence challenging their flawed mental models, learners may become defensive or feel
embarrassed as their self-perceptions of competence are questioned (cf., [46]).

Confusion: In the confusion phase, learners are confronted with the realization that
their current understanding is insufficient or inconsistent, sometimes leading to surprise.
Perplexity and uncertainty take hold as they struggle with the limitations of their exist-
ing knowledge structures. Frustration may mount as learners attempt to reconcile new
information with their prior understanding, experiencing the discomfort of cognitive disso-
nance. However, amidst this confusion, a spark of curiosity can emerge. Learners begin to



AI 2024, 5 906

recognize the gaps in their understanding and develop a desire to resolve the confusion
and gain new insights. This motivation to overcome the perplexity drives them to seek
additional information, clarification, or support [47–51].

Emergent Understanding: As learners transition into the emergent understanding
phase, they experience positive emotions. Curiosity and excitement grow as they begin
to form new connections and gain fresh insights, realizing the rewarding nature of the
learning process. Enthusiasm builds as they engage more deeply with the subject matter,
recognizing its relevance and applicability to their lives. Satisfaction and pride emerge as
learners successfully integrate new information into their existing knowledge structures,
experiencing a sense of accomplishment. The confusion that once clouded their understand-
ing dissipates, replaced by a feeling of relief and clarity. This newfound understanding
ignites a motivation to learn more as learners become eager to expand their knowledge and
explore the subject further [52–54].

Deep Understanding: In the phase of deep understanding, learners may experience
a profound sense of confidence in their knowledge and abilities. They have developed
a robust and integrated understanding of the subject matter, enabling them to navigate
the domain easily. They may feel satisfaction and fulfillment as they realize the extent of
their intellectual growth and the ability to apply their knowledge effectively. Enthusiasm
and enjoyment may be high as learners explore the subject’s intricacies, discovering new
avenues for application and inquiry. They may be inspired by the transformative power of
deep understanding, motivated to share their knowledge with others and make meaningful
contributions to their field. Curiosity may lead learners to venture into related domains
and further expand their understanding. With heightened metacognitive awareness, they
reflect on their own thought processes, strategies, and intellectual journey, fostering a sense
of self-efficacy and self-regulated learning (cf., [55,56]).

As students work to improve their understanding, identifying phases of understand-
ing in real time may provide us with opportunities to heighten task engagement. We
know emotions are pivotal in heightening task engagement and transforming how stu-
dents approach and interact with their studies [57]. Positively valenced emotions, such
as enthusiasm, curiosity, and excitement, increase motivation and engage the students
through what Pekrun has called activating emotions [50]. Engagement reaches new heights
when individuals connect emotionally with a task, perceiving it as personally relevant and
aligned with their values and goals [50]. This emotional investment can turn the task into a
meaningful endeavour, sometimes creating intense focus and immersion, sending individ-
uals into a state of flow where the boundaries between self and task dissolve, leading to
optimal performance and a profound sense of enjoyment [58].

Furthermore, emotional regulation skills have proven crucial in navigating obstacles
and setbacks, which involve activating and deactivating emotions [50]. By cultivating an
environment that nurtures positive emotional experiences, we also provide opportunities
for personal growth through heightened engagement [59]. Figure 4 below depicts a hy-
pothesized relationship between phases of understanding and task engagement from a
cognitive and educational psychology perspective.

Overall, the emotions and phases align with the idea that cognitive processes and
emotional experiences are closely intertwined during learning. As individuals progress
through the different stages of understanding, their emotional responses and level of
engagement vary accordingly. This relationship is supported by research in educational
psychology, which emphasizes the role of emotions in learning, motivation, and academic
achievement [21]. Thus, the graph above highlights the importance of guiding learners
from nascent understanding or misunderstanding to emergent and deep understanding. By
providing appropriate support, feedback, and instructional resources, educators can facili-
tate the development of accurate mental models and foster positive emotional experiences
that enhance task engagement and learning outcomes.
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Figure 4 represents how learners’ emotional valence and task engagement levels
vary across mental understanding states. We are looking at valence, for as Tamir and
colleagues [60] have written, “[Valence] has long been implicated in social and affective
processing. As such, it may come as no surprise that valence plays an important role in the
organization of mental state representations” (cf., [60], p. 197). Further, the figure illustrates
that as the valence becomes increasingly positive, learners progress from nascent to deep
understanding and their task engagement and motivation levels rise accordingly.

Schwartz and Wrzesniewski’s [61] elaboration of internal motivation provides a foun-
dation for describing how deepening students’ understanding of a concept can lead to
increased task engagement. Internal motivation arises from personal factors such as goals,
values, and self-concept, driving individuals to participate in activities that align with their
feelings, beliefs, and desires. Internal motivation can move you to undertake positively
or negatively valenced activities and personalize what is to be learned—which Reeve and
Tseng [62] identify as a crucial component of student agentic engagement. Agentively
engaged students actively invest in their learning, employing self-regulated strategies to
process information deeply and construct meaning. Thus, they are driven by curiosity,
challenge, and the desire to explore the subject matter.

Figure 4 illustrates that as students progress through the phases of understanding,
from nascent understanding to emergent understanding and, finally, to deep understand-
ing, we can expect their cognitive engagement to intensify. The more they understand,
the more invested they become in the learning process, leading to higher levels of task
engagement. This increased task engagement, fueled by internal and intrinsic motivation,
can create a positive feedback loop. As students engage more deeply with the task, they
experience a greater sense of stasis and competence, further reinforcing their cognitive and
task motivation.

Learners who do not understand will likely experience slightly negative emotions and
exhibit below-average task engagement. As noted above, a lack of comprehension can lead
to discouragement and disengagement from the learning process. Moving up higher on the
graph, we see that misunderstanding is associated only with a marginal increase in task
engagement due to some partial understanding of the material. In this phase, we expect
that the emotional valence remains slightly negative, indicating that learners may still feel
confused or frustrated despite their initial grasp of the concept.

Confusion is in the central part of the graph. Typically, it is characterized by neutral
emotional valence and moderate task engagement. This transitional state represents a point
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where learners actively grapple with the material, trying to make sense of the information
presented. Their emotional response is mixed and their engagement level is moderate as
they work through the challenges of understanding.

As learners develop an emergent understanding of a concept, their position on the
graph shifts slightly toward a positive emotional valence and above-average task engage-
ment. This movement indicates that accurate comprehension is accompanied by more
positive emotions and increased investment in the learning task. Learners who achieve
deep understanding will experience the most positive emotions and exhibit the highest
levels of task engagement. They will likely feel confident and satisfied and employ bet-
ter learning strategies. As Muis has pointed out, “Specifically, following Pekrun’s [63]
framework, positive activating emotions (curiosity, enjoyment) will positively predict deep
processing learning strategies, including elaboration, critical thinking, and metacognitive
self-regulation (see [50]). Negative activating emotions (anxiety, frustration) will positively
predict shallow processing strategies for rehearsal of learning material, and confusion and
surprise will positively predict metacognitive self-regulation to reduce cognitive incon-
gruity [50]. Negative deactivating emotions such as boredom will impair the systematic
use of learning strategies [64]” (cf., [44], p. 171).

Overall, the graph highlights the interconnectedness of cognitive and affective factors
in the learning process. It emphasizes the importance of guiding learners towards accurate
understanding, as it enhances their comprehension and fosters positive emotions and
engagement. These factors are crucial for sustained learning and achievement, highlighting
the need for educators to support learners through the various stages of understanding and
create learning environments that promote cognitive growth and emotional well-being.

To this point, I have addressed the concept of understanding in the sense of it being as-
cribed by the learner through integrating insights from cognitive psychology, neuroscience,
and education. Central to the attainment is the mental state framework, which can help us
identify the phases of understanding as students transition from nascent understanding
to misunderstanding, confusion, emergent understanding, and, eventually, to deep un-
derstanding. This framework is a lens through which educators might view a student’s
growth in understanding, enabling them to recognize the cognitive processes and emotional
experiences that characterize each stage. Further, I have highlighted the interplay between
cognition and emotion in learning. Its interwoven nature underscores the importance of
considering both the intellectual and affective dimensions of understanding. Indeed, I
have suggested that the SOLO model could incorporate a mental state framework. By
acknowledging the emotional states associated with each phase of understanding, from
the frustration and anxiety of nascent understanding to the joy and confidence of deep
understanding, teachers can cultivate a more supportive and empathetic classroom culture
that honours the full spectrum of the learning experience. Implementing such a program
on an individual basis, however, would be very difficult in a typical classroom situation.

We must use affect-aware technologies to support children’s learning with an aug-
mented Generative Artificial Intelligence (Gen-AI) tutor to take full advantage of the mental
state framework. Advances in detecting feelings and emotions raise the possibility of creat-
ing adaptive learning systems that can respond to a student’s emotional state in real-time.
Imagine a future where educational technologies can sense a learner’s feelings and dy-
namically adjust the pace of instruction, provide personalized support, or offer additional
resources to optimize the learning experience. While such technologies are still developing,
seminal research in affect-aware tutoring suggests they promise to transform education
and ensure every privileged or disadvantaged student receives the support they need
to thrive.

4. Toward the Affect-Aware Tutor

Artificial intelligence (AI) tutors require more sophisticated models of the learner to
support student learning [65] effectively. These models should be grounded in theories
of knowledge acquisition to capture the learning process accurately. While advanced AI
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techniques such as graph neural networks, adversarial approaches, federated learning [66],
Levenberg–Marquardt optimization in neural networks [67], or AI-based power routing
optimization in DC–DC converters [68] have their applications in various domains, they
are unlikely to contribute significantly to the improvement of student models in AI tutors.
If we wish to enhance the effectiveness of AI tutors, our focus should be on develop-
ing theoretically grounded student models that accurately represent the complexities of
human learning.

The science of learning highlights the importance of social interaction, like dialogues
with expert tutors or peers, for deeper learning [69]. Human tutors remain the most
effective, but well-designed Intelligent Tutoring Systems (ITSs) can approach their efficacy
by leveraging expert tutoring strategies [70,71]. Critically, Lepper and Woolverton [72]
identified motivational and affective strategies used by expert tutors, such as building trust,
giving praise, and being responsive to student emotions. These findings highlight the need
for affect-sensitive intelligent tutoring systems to adopt the above techniques to enhance
student motivation and engagement. Further, I suggest that affect-sensitive intelligent
tutoring systems need to incorporate student models of real-time subjective understanding.

D’Mello and Graesser’s [65] comprehensive review of the last 50 years of intelligent
tutoring systems highlights the importance of student models in enabling ITSs to emulate
the adaptability and interactivity of expert human tutors. Additionally, they note five
illusions that current intelligent tutoring systems are affected by that involve students’
understanding: (1) the illusion of grounding, which is the mistaken belief of shared knowl-
edge between the speaker and listener; (2) the illusion of feedback accuracy, where the tutor
mistakenly believes that students accurately indicate their understanding when probed;
(3) the illusion of discourse alignment, which is the unwarranted assumption that the
listener understands the speaker’s intentions and meaning; (4) the illusion of student
mastery, where the tutor believes the student has mastered more than they have; and (5) the
illusion of knowledge transfer, where the tutor believes that the student accurately encodes
the information they express. These illusions emerge from inaccurate assumptions about
students’ understanding and learning progress. However, if the AI tutor were aware of
the student’s current state of understanding, advances in addressing the illusions would
be possible. The first step, and the focus of this paper, will be to describe how an AI tutor
could detect the student’s subjective understanding.

Current work in my lab by Milan Lazic examines the potential for AI to detect students’
phases of understanding using the webcam available on most computers and laptops [73].
Students sit at a computer while they are trying to solve problems. The camera records their
facial expressions and OpenFace Version 2.2.0 identifies the FACS action units evidenced
from frame to frame. Examining the FACS AUs is not done to recognize individual
emotions but rather to identify the patterns of AUs associated with each of the phases of
understanding. Earlier, I suggested that each phase may have many different feelings and
emotions that appear in more than one phase. We speculate, however, that each phase will
have uniquely identifiable patterns that machine learning analyses will detect and model.

In emotion recognition research, FACS is used to identify the specific facial muscle
movements associated with different emotions. FACS consists of 46 main action units
numerically coded to represent specific facial muscle movements. For example, AU 1
represents the raising of the inner portion of the eyebrows, while AU 12 represents the
pulling of the lip corners upward in a smile. Trained FACS coders can identify these
AUs’ presence, intensity, and timing, allowing for a detailed analysis of facial expressions.
This approach has been widely applied in studies of emotional communication, social
interaction, and detecting affective disorders because of its objectivity and reliability. Since
the system is based on specific muscle movements rather than subjective interpretations of
expressions, it allows for more consistent and accurate measurement of facial behaviour
across different individuals and cultures.

Figure 5 shows a human face with a sample of AU locations. These AUs offer an
objective lens to measure the subtle display of emotions across the face. For example, AU01,
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the inner brow raiser, and AU02, the outer brow raiser, draw the eye upward, hinting at
the interplay of surprise, concern, or concentration. AU04, the brow lowered, and AU05,
the upper lid raiser, work in tandem to create expressions of intensity or focus.
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Part of Lazic’s dissertation research collects the AUs recorded as undergraduate stu-
dents see if they can understand riddles posed to them while they sit at a computer. Riddles
are used because we anticipated that moments of nascent understanding, misunderstand-
ing, confusion, emergent understanding, and deep understanding could be objectively
validated by human observers (e.g., they could attribute, in many cases, the phases of
understanding across raters reliably). The phases will not be identified directly by the
students’ emotions; instead, they will be determined by patterns of AU that are unique
to each phase. These data allow us to develop supervised machine learning models that
identify phases of understanding.

To better understand this procedure, imagine you want to teach a computer to rec-
ognize different types of fruits. The computer is like a student, and you are the teacher.
To help the computer learn, you must show it many examples of each fruit and tell it
what each one is. This process is called supervised machine learning. First, you gather an
extensive collection of fruit pictures, making sure to include a variety of examples for each
type of fruit. You carefully sort through the images, removing any that are blurry or do
not clearly show the fruit. You must also have a balanced set of examples, so the computer
does not learn to favour one fruit over another. Next, you decide on the best way to teach
the computer.

When you start teaching the machine, you show the computer a picture of a fruit and
tell it what it is. The computer looks at the picture and tries to determine what makes that
fruit unique. Is it the colour, shape, or texture? The computer adjusts its understanding
based on your feedback. You do this many times with different pictures of the same fruit,
helping the computer to refine its understanding. After showing the computer many
examples of each fruit, you test its knowledge. You show it new pictures of fruits it has
not seen before and ask it to identify them. If the computer gets most of them right, you
know it has learned well. If it makes a lot of mistakes, you might need to go back and teach
it some more, perhaps focusing on the fruits it had trouble with. Once you are satisfied
that it has learned, you can use the program to identify fruit—or, in our case, phases
of understanding.

The initial results of Lazic’s study indicate that machine learning models can accurately
predict the student’s understanding phase. Each of the five phases can be identified reliably.
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Once the models are refined, the next step will be to evaluate them as the students work
on authentic problems of understanding related to their academic studies, using a Gen-AI
program to improve their understanding. Gen-AI, sometimes called a generative pre-
trained transformer (GPT), is a type of artificial intelligence that can create new content,
such as text, images, or music, based on patterns learned from existing data. It uses deep
learning algorithms to analyze and understand the underlying patterns in the input data.
By training on vast amounts of data, Gen-AI systems can learn to generate new content
that resembles the original data but is not an exact copy.

One of the essential aspects of Gen-AI is that it does not store the content it generates.
Instead, it creates new content based on the patterns and rules it learned during training.
When a user provides an input or prompt, the Gen-AI system uses its trained neural
networks to analyze the input and generate a relevant output in response. Therefore,
the Gen-AI system does not have a pre-defined database of content to pull from; instead,
it dynamically creates new content tailored to the specific input. This approach allows
Gen-AI systems to be highly flexible and adaptable, as they can generate a wide variety of
content without being limited by a fixed set of stored data [74]. Creating content on the fly
enables Gen-AI to produce novel and unique outputs, making it a powerful tool for various
applications, such as content creation, virtual assistance, and creative problem-solving.

The content creation feature of Gen-AI makes it a potentially powerful tutor because
it can create personalized learning experiences tailored to an individual student’s needs,
learning style, and pace. By analyzing the student’s responses and performance, the AI tutor
can adapt its teaching approach and generate explanations, examples, and exercises that
are most relevant and effective for that student. Gen-AI tutors can provide instant feedback
and support, helping students identify and correct mistakes in real-time, accelerating the
learning process and keeping students engaged and motivated. Students can ask questions
and receive accurate, detailed answers generated on the spot or request to be tested and
receive instant feedback on their answers.

Moreover, with its ability to create content on the fly, a Gen-AI tutor can generate a
virtually unlimited number of practice problems, examples, and explanations, ensuring
that students have access to a wide variety of learning materials and can practice as much
as they need to master a topic without running out of content [75]. Gen-AI models can tutor
in various subjects, from math and science to language and arts, allowing students to have
a consistent, personalized learning experience across different subjects and educational
levels. In doing so, they can evaluate their output if requested.

Furthermore, Gen-AI tutors can be accessed anytime, anywhere, through digital
devices, making quality education more accessible to students who may not have access to
traditional tutoring services. Gen-AI tutors’ scalability means they can serve many students
simultaneously without compromising the quality of instruction. By leveraging the power
of content creation on the fly, Gen-AI can reform how we approach education and provide
students with highly effective, personalized learning experiences [76].

We leverage machine learning and generative predictive transformation AI technolo-
gies in our work. Output from Lazic’s AU monitoring is processed to identify phases of
understanding and this information is then fed to our initial version of a Gen-AI tutor we
call Abel Tutor.

5. Abel Tutor

Considerable thought has been put into the ethical considerations of building a Gen-AI
tutor with an affective perception of the user. As the development of Abel Tutor moves
forward, we are mindful of the complex ethical concerns of creating a tool designed to aid
students. It needs to be a tool that promotes equal opportunities and addresses the diverse
needs of learners. The algorithms must be meticulously designed to avoid perpetuating
or amplifying existing biases and disparities in educational outcomes. Regular audits will
need to be part of the workflow, allowing us to (1) identify and mitigate any unintended
biases that threaten to undermine the educational value of the technology; (2) detect and
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remove inaccurate information that the system may have “hallucinated”; and (3) refine the
guardrails designed to suppress harmful and hateful content.

Additionally, we understand the importance of data privacy and security in dealing
with sensitive information about students’ learning patterns, strengths, and weaknesses—a
responsibility no one should take lightly. Robust data protection measures, including
encryption and strict access controls, will be woven into every element of Abel Tutor. We
will prioritize ensuring that students’ personal information remains confidential and secure,
fostering trust between the learners and the system.

Additionally, transparency and accountability are essential. The team recognizes that
for students, teachers, and parents to embrace Abel Tutor, they must understand how the
system makes its decisions and recommendations. To that end, we are developing visual
dashboards to provide clear and accessible explanations of the underlying measurements,
empowering users to make informed decisions about their engagement with the platform.
We will also have channels for feedback and open communication, ensuring that any
concerns or questions will be promptly addressed.

Further, we are monitoring the balance between the benefits of personalized learning
and the potential risks of over-reliance on AI. While the system is designed to adapt to
individual learning needs and provide tailored support, we are aware of the importance of
human interaction and the role of teachers in the learning process. We will develop Abel
Tutor as a complementary tool that can enhance the guidance and mentorship provided by
educators. Moreover, we are committed to ongoing monitoring and refinement, ensuring
that the system continues to align with fairness, privacy, transparency, and balanced
learning support. We understand that accurate measure of success will not be found solely
in the technological sophistication of the platform but in its ability to positively transform
the lives of learners while upholding the highest ethical standards. Finally, the ability
to turn on or off the affective perception features of Abel Tutor will be entirely under the
control of the students. No data about individuals or their performance will be stored
outside of the data of fully informed research participants engaged in a research study.

Figure 6 illustrates the flow of information within the Abel Tutor system. The infor-
mation pipeline consists of several components that work together to process and analyze
user data, ultimately providing personalized tutoring support. As illustrated in the figure,
Abel Tutor’s backend processing uses the student’s video and voice inputs. This information
is processed in real-time to detect action unit (AU) dynamics, transdermal optical imaging
(TOI) changes, and vocal dynamics. Three measures are employed to enhance the reliability
and validity of the physiological effects. Both voice and video are collected because talking
can degrade AU information and TOI may be unreliable under unstable lighting conditions.
The data on physiological feelings are then passed to the phase identification model, where
phases of understanding are detected based on machine learning (ML) models. If a phase
is identified, the information is sent to the individualized student model, which builds and
saves a history for the learner throughout the session. This information helps determine
if the student is repeatedly confused, overconfident in assessing their understanding, or
potentially developing a misconception. The student model information is then passed to
the instructional model, where prompts are generated to inform the generative AI (Gen-AI)
tutor about the student’s physiological state and current phase of understanding, session
history of understanding, and any special conditions that need to be addressed, such
as possible misconceptions. Based on the student’s input and the instructional model’s
prompts, the Gen-AI tutor constructs its output for the student. The tutor then waits for
the next round of input from the student.
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The information flow in the Abel Tutor system is designed to be iterative and dynamic,
allowing for real-time monitoring and adaptation to the user’s evolving understanding.
By leveraging advanced technologies for feeling detection and mental state modelling, the
system aims to provide emotionally resonant and individualized tutoring support that
facilitates deep understanding and lifelong learning. This is a novel approach to AI tutoring
that advances the field in several critical ways compared to existing tutors. Unlike many
existing tutors that primarily rely on text-based input or simple user interactions, Abel Tutor
uses video and voice input to instantaneously detect a student’s state of understanding. The
system processes AU dynamics, TOI changes, and vocal dynamics in real time, allowing
for a more accurate and timely assessment of the student’s emotional and cognitive state,
which is not found in existing tutor systems. By employing three measures for physiological
effects and collecting both voice and video data, Abel Tutor aims to increase the reliability
and validity of its assessments, addressing potential limitations of existing systems that
may rely on a single modality-based measure.

Further, using machine learning (ML) models to detect phases of understanding is
a significant advancement in Abel Tutor. It allows the tutor to adapt its approach based
on the student’s current level of comprehension, which is crucial for effective tutoring.
Moreover, Abel Tutor builds and maintains an individualized student model that tracks
the learner’s history throughout the session, enabling the tutor to identify patterns, such as
repeated confusion or overconfidence, and potentially detect misconceptions. This level of
personalization and extended tracking is lacking in existing tutor systems.

The instructional model in Abel Tutor generates prompts to inform the generative AI
(Gen-AI) tutor about the student’s state, history, and special conditions, allowing for a
more tailored context and tutoring experience. The Gen-AI tutor can then construct its
output based on the student’s input and the instructional model’s prompts, enabling a
more dynamic and responsive interaction than pre-programmed tutoring systems.

In summary, Abel Tutor’s integration of multimodal input, real-time processing, robust
measures, advanced machine learning models, individualized student modeling, and a
responsive generative AI tutor represents a new generation of cognitive and affect-aware
AI tutoring systems. By building upon existing research and techniques, this system pushes
the boundaries of AI tutoring, creating the conditions for more sophisticated and impactful
educational technologies.



AI 2024, 5 914

6. Discussion and Implications

The Abel Tutor system aims to enhance the learning experience by viewing affect
and cognition as integrated, as suggested by Damasio’s theory. Statements like “It just
didn’t feel right” or “I knew in my gut that what he said was wrong” demonstrate what
Damasio [1] is talking about in Feeling & Knowing: Making Minds Conscious. Of course,
the gut does not know facts, but the feelings it generates accompany cognition and serve
as a proxy for what the brain is contemplating. We can infer the cognitive processes that
underlie a learner’s understanding by measuring physiological feelings.

I have speculated that while this approach aligns with Festinger’s Cognitive Disso-
nance Theory, which posits that negative feelings drive individuals to reduce dissonance,
our model goes further. We extend Festinger by considering negative and positive valences
and the learner’s mental state. Specifically, while dissonance motivates you to resolve
your confusion or misunderstanding, positively valenced feelings can provide the internal
motivation and cognitive engagement necessary to deepen your understanding.

Throughout this paper, I suggest that understanding progresses through distinct
phases, each characterized by unique affective identifiers. By detecting these identifiers, we
can determine a learner’s current understanding phase and predict their task engagement
level. The phases are non-linear. A student might flip between emerging understanding and
confusion numerous times before they move to deeper understanding. The instructional
model must anticipate these iterations. The student needs to keep working until “it feels
right”. Information about the student’s affect and phase is crucial for providing targeted
support and interventions to optimize the learning experience. Therefore, to demonstrate
that such a Gen-AI tutor is possible, we leverage two forms of AI: machine learning
for affect awareness and Gen-AI for adaptive behaviour. Lazic’s research has demon-
strated the feasibility of using machine learning to detect affective states. By incorporating
this capability into Abel Tutor, we can gain valuable insights into the learner’s emotional
experiences. Additionally, Gen-AI can utilize this affective information to adjust its be-
haviour and provide personalized support tailored to the learner’s needs (see sample text in
Table 3 below).

Table 3. Sample tutor–student interaction.

SAMPLE TUTOR-STUDENT INTERACTION ON ABEL

Abel Tutor:

So, Kelly, you’re curious about how things move. It’s pretty fascinating stuff. Some people think
that to keep something moving, you have to keep pushing it. But actually, things want to keep
doing what they’re already doing—whether that’s moving or staying still—unless something else
gets in the way. What do you think could get in the way of an object that’s moving?

Kelly’s response: Maybe it stops when the push stops?

Probability measures indicate: 60% misunderstanding (holds the misconception), 40% not understanding (confusion about the
concept). Valence in text: Uncertain.

Abel Tutor: Response Valence: Curious and inviting clarification.

Abel Tutor:

It’s a common idea, but there’s a twist. Imagine you’re skating on ice and you push off. You glide
smoothly without needing to keep pushing, right? This is because there’s hardly any friction—the
force that usually stops things from moving. On ice, you keep moving even after you stop
pushing. This is what Sir Isaac Newton discovered too. It’s not the push that keeps things
moving; it’s the absence of enough friction or other forces to stop them. How does that sound?

Kelly’s response: Oh, I see. So, if there’s no friction, things don’t stop?

Probability measures indicate: 20% misunderstanding, 80% emergent understanding. Valence in text: Intrigued.

Abel Tutor: Response Valence: Enlightening and explanatory.

Abel Tutor: Abel Tutor:

Exactly! You’ve got it. If there’s no friction or another force, an object in motion stays in motion.
This is what Newton’s First Law of Motion is about: an object will stay still or keep moving at the
same speed in a straight line unless acted on by a force. Now, imagine if you’re skating and you
hit a rough patch of ice or the ice turns to carpet. What do you think happens then?
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Table 3. Cont.

SAMPLE TUTOR-STUDENT INTERACTION ON ABEL

Kelly’s response: I’d probably slow down and stop.

Probability measures indicate: 90% emergent understanding, 10% deep understanding. Valence in text: Understanding.

Abel Tutor: Response Valence: Confirmatory and reinforcing understanding.

Abel Tutor:

You got it! That slowing down is because of the force of friction. When you hit the rough patch,
it’s a force that changes your motion. Without that force, like on the smooth ice, you’d just keep
going. This is Newton’s way of saying that it’s not the continuous force that keeps us moving, it’s
the lack of a force that stops us from moving. So, knowing this, how do you feel about objects in
motion now?

Kelly’s response: It makes sense. Things stay moving unless something stops them. It’s not about the push
all the time.

Probability measures indicate: 5% emergent understanding, 95% deep understanding. Valence in text: Confident.

Abel Tutor: Response Valence: Affirmative and encouraging exploration.

Abel Tutor:

That’s an excellent grasp of the concept, Kelly! You’ve navigated from the initial
misunderstanding to a deep understanding of Newton’s First Law of Motion. Are you ready to
see how this applies to more than just skating? Like how planets orbit the sun or cars move on
the road?

The tutoring session highlighted in Table 3 showcases two integral features. Firstly, in
addition to the phase of understanding, the tutor automatically tracks the emotional tone
in both its replies and the student’s input, which is an important element of the interaction.
Secondly, the nature of the student’s engagement is given considerable importance.

Abel can detect and respond to the learner’s feelings, emotional cues, and under-
standing levels. This capability enables Abel to create a learning experience far more
individualized and engaging than mere knowledge transfer. This strategy is grounded in
the idea that learning should cultivate a deep interest and a self-driven desire to explore a
subject. This goal aligns with Frijda’s theory of passion as a sustained eagerness to pur-
sue an area of interest [77] and improve comprehension—an approach backed by notable
research in teaching and learning [78].

Incorporating learner engagement means having the tutor encourage students to
express their thoughts, questions, and uncertainties. This dialogue facilitates targeted
support [79,80]. By urging learners to communicate, the tutor can assess their current
level of comprehension and emotional state, leading to support that is both personalized
and effective. Additionally, the tutor’s empathetic response to the learner’s emotional
state is crucial, providing the necessary scaffolding to help them navigate the learning
process [56,72,81]. Furthermore, monitoring the learners’ feelings, along with offering
tailored support, can foster a learning environment that is both safe and conducive to
deeper engagement with the subject matter [82,83]. Personalizing the learning experience
to align with the learner’s prior knowledge, interests, and learning style is also vital,
enhancing their connection to the material and motivating them to explore further [84,85].

Ideally, the AI tutor should create opportunities for learners to apply their knowledge
meaningfully, promoting a deep understanding and a well-developed interest in the subject.
Practical applications, like problem-solving, case studies, or creative projects, help learners
perceive the value of their learning, moving them to engage fully with the subject and
fostering a true passion for learning [78]. At the same time, a primary design feature of
Abel will be to prevent the establishment of deeply rooted misconceptions that are difficult
to remediate later. By continuously monitoring the learner’s affective states and phases
of understanding, the tutor can identify and address misconceptions early in the learning
process. We anticipate this will be particularly helpful in mathematics, where many student
misconceptions are well-documented. Additionally, Abel Tutor may serve as an assessment
tool that can determine when a student is ready to move on to the next stage of learning. By
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presenting test-confirming questions when the tutor detects deep understanding, the tutor
can ensure that learners progress efficiently and avoid wasting time studying material they
have already mastered.

In summary, the Abel Tutor system represents a new generation of educational tech-
nology. By integrating affect and cognition, leveraging AI capabilities, and adapting to
individual learner profiles, the tutor has the potential to create emotionally resonant learn-
ing experiences that foster deep understanding and lifelong learning. The power of this
technology should help both advantaged and disadvantaged learners. We anticipate that
disadvantaged students will have access to a personal, non-judgemental tutor willing to
work with them at any time for as long as they wish, imparting learning strategies and
emotional support in a way they may never have experienced. As we continue to refine and
develop this system, we anticipate a transformative impact on how we approach education
and support learners in their pursuit of knowledge in a manner that promotes equity
of outcomes.

The instructional implications of the phased understanding framework are far-reaching.
By determining the learner’s phases of understanding, educators, even those not using
an AI tutor, can craft instructional strategies that are finely attuned to the needs of learn-
ers in each phase. For example, when a child struggles with nascent understanding or
misunderstanding, teachers can break down complex concepts into manageable chunks,
provide clear explanations, and help learners forge connections between new information
and prior knowledge. As learners navigate the confusion phase, educators can encourage
questioning, provide opportunities for exploration and discovery, and facilitate discussions
that help learners resolve cognitive conflicts and construct new understandings. As learners
progress to emergent and deep understanding, teachers can challenge them with more
complex tasks, encourage metacognition and reflection, and provide knowledge application
and transfer opportunities. Such an approach can potentially shape how we approach
education profoundly. By illuminating the cognitive and emotional dimensions of learning,
aligning with existing educational theories, and pointing towards the potential of emerging
technologies, we can imagine creating learning experiences that are intellectually nurturing.

The mental state model, which views understanding as being composed of assem-
bled beliefs, values, emotions, and feelings, provides a framework for understanding the
complex interplay between emotion and cognition in the learning process. As learners
progress through nascent understanding, misunderstanding, confusion, emergent un-
derstanding, and deep understanding, they experience a range of cognitive processes,
knowledge structures, metacognitive awareness, and emotions that shape their learning
journey. By identifying the feelings associated with each understanding phase in real
time, Abel Tutor can provide targeted interventions and support tailored to each individual
learner’s needs. For example, when a student is detected to be in the confusion phase,
characterized by perplexity, frustration, and curiosity, Abel Tutor can offer clarifying ex-
planations, guiding questions, or additional resources to help resolve the confusion and
foster emergent understanding. As the student progresses towards deep understanding,
accompanied by feelings of enjoyment, satisfaction, and inspiration, Abel Tutor can provide
more advanced, thought-provoking materials and encourage the student to explore the
subject matter further, nurturing their intrinsic motivation and engagement. Throughout
this process, Abel gives feedback when subjective understanding develops.

Detecting and responding to a student’s emotional state in real-time is a powerful
tool for enhancing the learning experience. By creating an emotionally resonant learning
environment that adapts to the individual’s needs, Abel Tutor can help students navigate
the challenges and setbacks they encounter, promoting the development of accurate mental
models and fostering a sense of self-efficacy and self-regulated learning. As we continue to
develop and refine AI-driven assessments of subjective understanding, we must ensure
that these technologies are grounded in sound pedagogical principles and ethical consid-
erations. By harnessing the power of real-time monitoring and analysis of physiological
feelings, Abel Tutor can provide personalized, adaptive support that empowers learners
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and optimizes their educational outcomes, ultimately facilitating the attainment of deep
subjective understanding.

As Abel Tutor progresses, there will be two significant foci that represent our chal-
lenges. The primary focus will be to continue to help students advance their subjective
understanding, which will involve (a) ongoing fine-tuning of the ML models to identify
the phases of understanding, (b) elaborating and adjusting the student model based on
the tutor’s success and failures, and (c) refining the instructional model through improved
prompt engineering. The second focus will be to help students nurture their curiosity,
interest, and motivation. The description of interest as a psychological construct has been
described as a phase-driven process (see Renninger and Hidi [86]). Current research is
underway in my lab to create ML models that will detect these phases.

This paper has concentrated on describing the first focus, which should not be taken
educationally as any diminution of the second focus. As Litman [53] points out, curiosity
can promote a need to know “. . . that becomes increasingly bothersome until satisfied by
obtaining the desired pieces of missing information” (cf., [53], p. 418). However, Renninger
and Hidi [86] view curiosity as a temporary motivational state triggered by novelty or
information gaps. On the other hand, interest is a more enduring and stable motivational
state characterized by focused attention, increased cognitive functioning, and a willingness
to engage with a subject over time. Further, these researchers also say “At any age, in any
context, interest can be encouraged to develop” (cf., [87], p. 282). Specifically, Abel Tutor
will be designed to develop interest, expressed in curiosity-driven research, and hopefully
nurture what Csikszentmihalyi [58] would call flow or what Frijda [2] would describe
as passion.

Abel Tutor’s role is to help students develop a subjective understanding of the material
being taught. Subjective understanding, or what Searle [88–90] would refer to as onto-
logical subjective understanding, is a student’s personal, individualized way of relating
to and making sense of information. This understanding allows students to connect new
knowledge to their prior experiences, beliefs, and emotions, making the learning process
more meaningful and engaging. Abel Tutor should strive to awaken a passion for the subject
in its students to enhance learning. When students are passionate, they are intrinsically
motivated to explore, ask questions, and seek additional information. This passion can be
sparked by presenting the material to highlight its relevance to students’ lives, interests,
and goals.

To advance students further, it becomes necessary for us to shift the focus toward
objective understanding. Carl Bereiter [28] argues that students must develop objective
understanding in the knowledge age, an age characterized by rapid technological advance-
ments and exponential information growth. As Bereiter explains, objective understanding,
or what Searle [88–90] would refer to as epistemically objective understanding, involves
grasping the underlying principles, theories, and facts that constitute a body of knowledge
independent of personal experiences or opinions. Shifting from subjective to objective un-
derstanding encourages students to ask questions, engage in peer discussions, and explore
the subject matter more creatively, systematically, and rigorously. Collaboratively engaging
with ideas in such a manner is a pedagogy of knowledge building that will complement
Abel Tutor’s solitary tutoring approach—emphasizing the human component that some fear
may be lost as general artificial intelligence advances.

7. Conclusions

This paper emphasizes that subjective understanding is a complex process involving
the interplay of feelings and cognition. Feelings act as indicators of mental states and
highlight significant shifts in psychological states. Advances in technology, such as facial
expression analysis, transdermal optical imaging, and voice analysis, enable computers to
monitor a user’s sympathetic and parasympathetic nervous system activity in real-time.
This allows for the detection of feelings and mental states associated with different phases
of understanding as users engage with study materials.
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I introduce the mental state model as a framework for understanding the multi-
faceted nature of the emotion–cognition relationship expressed by embodied cognition
theorists [91–93]. Accordingly, understandings are composed of assembled beliefs, values,
emotions, and feelings that shape perceptions, decisions, and actions. I further describe five
phases of understanding that learners may progress through: nascent understanding, mis-
understanding, confusion, emergent understanding, and deep understanding. Each phase
is characterized by specific cognitive processes, emotions, and physiological responses that
can be detected and analyzed by AI-driven assessments.

Grounded in the above approach, I propose the development of Abel Tutor, an AI-a
driven system that uses real-time monitoring of physiological feelings to provide individu-
alized, adaptive tutoring support. By identifying the feelings associated with each phase
of understanding, Abel Tutor can offer targeted interventions to help students navigate
challenges and promote engagement, as advocated by developers like Sal Khan [94]. This
paper suggests that AI-driven assessments of subjective understanding could reform the
learning experience by creating emotionally resonant learning environments that adapt to
individual needs and optimize educational outcomes for both advantaged and disadvan-
taged students.

Finally, I emphasize the importance of ensuring that AI-driven assessments of sub-
jective understanding are grounded in sound pedagogical principles and ethical consid-
erations as these technologies continue to be explored. The ultimate goal is to empower
learners by facilitating deep understanding and lifelong learning.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: As a perspective, there is no original data to share.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Damasio, A. Feeling & Knowing: Making Minds Conscious; Pantheon Books: New York, NY, USA, 2021.
2. Frijda, N.H. The Laws of Emotion, 1st ed.; Taylor and Francis: Abingdon, UK, 2007. [CrossRef]
3. Frijda, N.H. The Emotions; Cambridge University Press: Cambridge, UK, 1986.
4. Olson, D.R. Making Sense: What It Means to Understand; Cambridge University Press: Cambridge, UK, 2022.
5. Scherer, K.R.; Moors, A. The Emotion Process: Event Appraisal and Component Differentiation. Annu. Rev. Psychol. 2019, 70,

719–745. [CrossRef] [PubMed]
6. Festinger, L. Cognitive Dissonance. Sci. Am. 1962, 207, 93–106. [CrossRef] [PubMed]
7. Harmon-Jones, E.; Harmon-Jones, C.; Levy, N. An Action-Based Model of Cognitive Dissonance Processes. Curr. Dir. Psychol. Sci.

2015, 24, 184189. [CrossRef]
8. Wei, J.; Luo, H.; Wu, S.J.; Zheng, P.P.; Fu, G.; Lee, K. Transdermal Optical Imaging Reveal Basal Stress via Heart Rate Variability

Analysis: A Novel Methodology Comparable to Electrocardiography. Front. Psychol. 2018, 9, 309547. [CrossRef] [PubMed]
9. Barrett, L.F. How Emotions Are Made: The Secret Life of the Brain; Houghton Mifflin Harcourt: Boston, MA, USA, 2017.
10. Buono, S.; Zdravkovic, A.; Lazic, M.; Woodruff, E. The Effect of Emotions on Self-Regulated-Learning (SRL) and Story Compre-

hension in Emerging Readers. In Frontiers in Education; Frontiers Media SA: Lausanne, Switzerland, 2020; Volume 5, pp. 1–12.
[CrossRef]

11. Ekman, P.; Rosenberg, E.L. (Eds.) What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action
Coding System (FACS); Oxford University Press: Oxford, UK, 1997.

12. Oatley, K. Our Minds, Our Selves: A Brief History of Psychology; Princeton University Press: Princeton, NJ, USA, 2018.
13. Fu, G.; Zhou, X.; Wu, S.J.; Nikoo, H.; Panesar, D.; Zheng, P.P.; Oatley, K.; Lee, K. Discrete Emotions Discovered by Contactless

Measurement of Facial Blood Flows. Cogn. Emot. 2022, 36, 1429–1439. [CrossRef] [PubMed]
14. Jacques, S.L. Optical Properties of Biological Tissues: A Review. Phys. Med. Biol. 2013, 58, 37–61. [CrossRef] [PubMed]
15. Bashkatov, A.N.; Genina, E.A.; Tuchin, V.V. Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review. J. Innov. Opt.

Health Sci. 2011, 4, 9–38. [CrossRef]
16. Lu, C.; Zong, Y.; Zheng, W.; Li, Y.; Tang, C.; Schuller, B.W. Domain Invariant Feature Learning for Speaker-Independent Speech

Emotion Recognition. IEEE ACM Trans. Audio Speech Lang. Process. 2022, 30, 2217–2230. [CrossRef]

https://doi.org/10.4324/9781315086071
https://doi.org/10.1146/annurev-psych-122216-011854
https://www.ncbi.nlm.nih.gov/pubmed/30110576
https://doi.org/10.1038/scientificamerican1062-93
https://www.ncbi.nlm.nih.gov/pubmed/13892642
https://doi.org/10.1177/0963721414566449
https://doi.org/10.3389/fpsyg.2018.00098
https://www.ncbi.nlm.nih.gov/pubmed/29472879
https://doi.org/10.3389/feduc.2020.588043
https://doi.org/10.1080/02699931.2022.2124960
https://www.ncbi.nlm.nih.gov/pubmed/36121056
https://doi.org/10.1088/0031-9155/58/11/R37
https://www.ncbi.nlm.nih.gov/pubmed/23666068
https://doi.org/10.1142/S1793545811001319
https://doi.org/10.1109/TASLP.2022.3178232


AI 2024, 5 919

17. Hunte, M.R.; McCormick, S.; Shah, M.; Lau, C.; Jang, E.E. Investigating the Potential of NLP-Driven Linguistic and Acoustic
Features for Predicting Human Scores of Children’s Oral Language Proficiency. Assess. Educ. Princ. Policy Pract. 2021, 28, 477–505.
[CrossRef]

18. Wu, Z.; Li, D.; Yang, W. Rules Based Feature Modification for Affective Speaker Recognition. In Proceedings of the IEEE
International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 14–19 May 2006; Volume 1,
p. 1.

19. Vincett, M.; Jang, E.E. Examining Young Learners’ Emotions and How They Relate to Cognition and Learning. Ph.D. Thesis,
University of Toronto, Toronto, ON, Canada, 2022.

20. Jang, E.E.; Hannah, L.; Lee, M.-H.; Russell, B. Investigating Prosody-Inclusive Automated Oral Reading Fluency Assessment:
Construct Representativeness and Linguistic Equity. In Proceedings of the Symposium at 2023 Language Testing Research
Colloquium, NYC, New York, NY, USA, 7–9 June 2023.

21. Pekrun, R.; Linnenbrink-Garcia, L. Introduction to Emotions in Education. In Educational Psychology Handbook Series. International
Handbook of Emotions in Education; Pekrun, R., Linnenbrink-Garcia, L., Eds.; Routledge: London, UK; Taylor & Francis Group:
Abingdon, UK, 2014; pp. 1–10. [CrossRef]

22. Palmer, C.J.; Seth, A.K.; Hohwy, J. The Felt Presence of Other Minds: Predictive Processing, Counterfactual Predictions, and
Mentalising in Autism. Conscious. Cogn. Int. J. 2015, 36, 376–389. [CrossRef]

23. Ünal, E.; Papafragou, A. The Relation between Language and Mental State Reasoning’. In Metacognitive Diversity: An Interdisci-
plinary Approach; Proust, J., Fortier, M., Eds.; Oxford University Press: Oxford, UK, 2018.

24. Siegler, R.S. Emerging Minds: The Process of Change in Children’s Thinking; Oxford University Press: Oxford, UK, 1996.
25. Pintrich, P.R. A Motivational Science Perspective on the Role of Student Motivation in Learning and Teaching Contexts. J. Educ.

Psychol. 2003, 95, 667–686. [CrossRef]
26. Newell, A.; Simon, H.A. Human Problem Solving; Prentice-Hall: Hoboken, NJ, USA, 1972.
27. Chi, M.T.H. Three Types of Conceptual Change: Belief Revision, Mental Model Transformation, and Categorical Shift. In Handbook

of Research on Conceptual Change; Vosniadou, S., Ed.; Erlbaum: Mahwah, NJ, USA, 2008; pp. 61–82.
28. Bereiter, C. Education and Mind in the Knowledge Age; Routledge: London, UK, 2005.
29. Woodruff, E. Manifold Relational Understanding; University of Toronto: Toronto, ON, Canada, 2005.
30. Bartlett, F.C. Remembering: A Study in Experimental and Social Psychology; Cambridge University Press: Cambridge, UK, 1932.
31. Broadbent, D.E. Perception and Communication; Pergamon Press: Oxford, UK, 1958.
32. Johnson-Laird, P.N. Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness; Harvard University Press:

Cambridge, MA, USA, 1983.
33. Dunning, D.; Kruger, J. Unskilled and Unaware of It: How Difficulties in Recognizing One’s Own Incompetence Lead to Inflated

Self-Assessments. J. Pers. Soc. Psychol. 1999, 77, 1121–1134.
34. Piaget, J. The Origins of Intelligence in Children; International Universities Press: Madison, CT, USA, 1952.
35. Sweller, J. Cognitive Load during Problem Solving: Effects on Learning. Cogn. Sci. 1988, 12, 257–285. [CrossRef]
36. Weinstein, C.E.; Mayer, R.E. The Teaching of Learning Strategies. In Handbook of Research on Teaching; Wittrock, M.C., Ed.;

Macmillan: New York, NY, USA, 1986; pp. 315–327.
37. Vosniadou, S.; Brewer, W.F. Mental Models of the Earth: A Study of Conceptual Change in Childhood. Cognit. Psychol. 1992, 24,

535–585. [CrossRef]
38. Anderson, J.R. The Architecture of Cognition; Harvard University Press: Cambridge, MA, USA, 1984.
39. Flavell, J.H. Metacognition and Cognitive Monitoring: A New Area of Cognitive Developmental Inquiry. Am. Psychol. 1979, 34,

906–911. [CrossRef]
40. Barnett, S.M.; Ceci, S.J. When and Where Do We Apply What We Learn? A Taxonomy for Far Transfer. Psychol. Bull. 2002, 128,

612–637. [CrossRef] [PubMed]
41. Biggs, J.B.; Collis, K.F. Evaluating the Quality of Learning: The SOLO Taxonomy (Structure of the Observed Learning Outcome); Academic

Press: Cambridge, MA, USA, 1982.
42. Graesser, A.C.; D’Mello, S. Emotions during the Learning of Difficult Material. In The Psychology of Learning and Motivation; Ross,

B.H., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 57, pp. 183–225. [CrossRef]
43. Pekrun, R.; Goetz, T.; Titz, W.; Perry, R.P. Academic Emotions in Students’ Selfregulated Learning and Achievement: A Program

of Qualitative and Quantitative Research. Educ. Psychol. 2002, 37, 91–105. [CrossRef]
44. Muis, K.R.; Pekrun, R.; Sinatra, G.M.; Azevedo, R.; Trevors, G.; Meier, E.; Heddy, B.C. The Curious Case of Climate Change:

Testing a Theoretical Model of Epistemic Beliefs, Epistemic Emotions, and Complex Learning. Learn. Instr. 2015, 39, 168–183.
[CrossRef]

45. Baker, R.S.; D’Mello, S.K.; Rodrigo, M.M.T.; Graesser, A.C. Better to Be Frustrated than Bored: The Incidence, Persistence, and
Impact of Learners’ Cognitive-Affective States during Interactions with Three Different Computer-Based Learning Environments.
Int. J. Hum.-Comput. Stud. 2010, 68, 223–241. [CrossRef]

46. D’Mello, S.; Graesser, A. Dynamics of Affective States during Complex Learning. Learn. Instr. 2012, 22, 145–157. [CrossRef]
47. D’Mello, S.; Lehman, B.; Pekrun, R.; Graesser, A. Confusion Can Be Beneficial for Learning. Learn. Instr. 2014, 29, 153–170.

[CrossRef]

https://doi.org/10.1080/0969594X.2021.1999209
https://doi.org/10.4324/9780203148211
https://doi.org/10.1016/j.concog.2015.04.007
https://doi.org/10.1037/0022-0663.95.4.667
https://doi.org/10.1207/s15516709cog1202_4
https://doi.org/10.1016/0010-0285(92)90018-W
https://doi.org/10.1037/0003-066X.34.10.906
https://doi.org/10.1037/0033-2909.128.4.612
https://www.ncbi.nlm.nih.gov/pubmed/12081085
https://doi.org/10.1016/B978-0-12-394293-7.00005-4
https://doi.org/10.1207/S15326985EP3702_4
https://doi.org/10.1016/j.learninstruc.2015.06.003
https://doi.org/10.1016/j.ijhcs.2009.12.003
https://doi.org/10.1016/j.learninstruc.2011.10.001
https://doi.org/10.1016/j.learninstruc.2012.05.003


AI 2024, 5 920

48. Muis, K.R.; Sinatra, G.M.; Pekrun, R.; Winne, P.H.; Trevors, G.; Losenno, K.M.; Munzar, B. Main and Moderator Effects of
Refutation on Task Value, Epistemic Emotions, and Learning Strategies during Conceptual Change. Contemp. Educ. Psychol. 2018,
55, 155–165. [CrossRef]

49. Muis, K.R.; Chevrier, M.; Singh, C.A. The Role of Epistemic Emotions in Personal Epistemology and Self-Regulated Learning.
Educ. Psychol. 2018, 53, 165–184. [CrossRef]

50. Pekrun, R.; Stephens, E.J. Academic Emotions. In APA Educational Psychology Handbook; Harris, K.R., Graham, S., Urdan, T.,
Graham, S., Royer, J.M., Zeidner, M., Eds.; American Psychological Association: Washington, DC, USA, 2012; Volume 2, pp. 3–31.
[CrossRef]

51. Woodruff, E.; Buono, S.; Schnabel, R.; Moreno, M.; Xu, Z. Optimizing Affective Confusion. In Proceedings of the Hawaii
International Conference on Education (16th Annual Conference), Honolulu, Hawaii, 4–7 January 2018; pp. 1953–1960.

52. Kang, M.J.; Hsu, M.; Krajbich, I.M.; Loewenstein, G.; McClure, S.M.; Wang, J.T.Y.; Camerer, C.F. The Wick in the Candle of
Learning: Epistemic Curiosity Activates Reward Circuitry and Enhances Memory. Psychol. Sci. 2009, 20, 963973. [CrossRef]
[PubMed]

53. Litman, J. Curiosity: Nature, Dimensionality, and Determinants. In The Cambridge Handbook of Motivation and Learning; Cambridge
University Press: Cambridge, UK, 2019; pp. 418–442. [CrossRef]

54. Schukajlow, S.; Rakoczy, K.; Pekrun, R. Emotions and Motivation in Mathematics Education: Where We Are Today and Where We
Need to Go. ZDM Math. Educ. 2023, 55, 249–267. [CrossRef] [PubMed]

55. Pekrun, R.; Vogl, E.; Muis, K.R.; Sinatra, G.M. Measuring Emotions during Epistemic Activities: The Epistemically-Related
Emotion Scales. Cogn. Emot. 2017, 31, 1268–1276. [CrossRef] [PubMed]

56. Meyer, D.K.; Turner, J.C. Re-Conceptualizing Emotion and Motivation to Learn in Classroom Contexts. Educ. Psychol. Rev. 2006,
18, 377–390. [CrossRef]

57. Fredrickson, B.L. The Role of Positive Emotions in Positive Psychology: The Broaden and-Build Theory of Positive Emotions. Am.
Psychol. 2001, 56, 218226. [CrossRef] [PubMed]

58. Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience; Harper & Row: New York, NY, USA, 1990.
59. Ryan, R.M.; Deci, E.L. Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social Development, and Well-Being.

Am. Psychol. 2000, 55, 68–78. [CrossRef]
60. Tamir, D.I.; Thornton, M.A.; Contreras, J.M.; Mitchell, J.P. Neural Evidence That Three Dimensions Organize Mental State

Representation: Rationality, Social Impact, and Valence. Proc. Natl. Acad. Sci. USA 2016, 113, 194–199. [CrossRef]
61. Schwartz, B.; Wrzesniewski, A. Reconceptualizing Intrinsic Motivation: Excellence as Goal. In The Cambridge Handbook of

Motivation and Learning; Renninger, K.A., Hidi, S.E., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 373–393.
62. Reeve, J.; Tseng, C.M. Agency as a Fourth Aspect of Students’ Engagement during Learning Activities. Contemp. Educ. Psychol.

2011, 36, 257–267. [CrossRef]
63. Pekrun, R. The Control-Value Theory of Achievement Emotions: Assumptions, Corollaries, and Implications for Educational

Research and Practice. Educ. Psychol. Rev. 2006, 18, 315–341. [CrossRef]
64. Pekrun, R.; Goetz, T.; Daniels, L.M.; Stupnisky, R.H.; Perry, R.P. Boredom in Achievement Settings: Exploring Control-Value

Antecedents and Performance Outcomes of a Neglected Emotion. J. Educ. Psychol. 2010, 102, 531–549. [CrossRef]
65. D’Mello, S.K.; Graesser, A. Intelligent Tutoring Systems: How Computers Achieve Learning Gains That Rival Human Tutors. In

Handbook of Educational Psychology; Routledge: London, UK, 2023; pp. 603–629.
66. Ren, L.; Zhao, L.; Hong, S.; Zhao, S.; Wang, H.; Zhang, L. Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep

Learning Approach. IEEE Access 2018, 6, 50587–50598. [CrossRef]
67. Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of Job Shop Scheduling Research and Its New Perspectives under Industry 4.0.

J. Intell. Manuf. 2019, 30, 1809–1830. [CrossRef]
68. Liu, Y.; Wang, Y.; Zhang, J. New Machine Learning Algorithm: Random Forest. In Proceedings of the Information Computing

and Applications: Third International Conference, ICICA 2012, Chengde, China, 14–16 September 2012; Springer: Chengde,
China, 2012; Volume Proceedings 3, pp. 246–252.

69. Medicine National Academies of Sciences, Engineering; Division of Behavioral and Social Sciences and Education; Board
on Science Education; Sensory Sciences Board on Behavioral, Cognitive; Committee on How People Learn II: The Science
and Practice of Learning. How People Learn II: Learners, Contexts, and Cultures; National Academies Press: Washington, DC,
USA, 2018.

70. VanLehn, K. The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems. Educ.
Psychol. 2011, 46, 197–221. [CrossRef]

71. VanLehn, K. Regulative Loops, Step Loops and Task Loops. Int. J. Artif. Intell. Educ. 2016, 26, 107–112. [CrossRef]
72. Lepper, M.R.; Woolverton, M. The Wisdom of Practice: Lessons Learned from the Study of Highly Papertive Tutors. In Improving

Academic Achievement; Aronson, J., Ed.; Academic Press: Washington, DC, USA, 2002.
73. Lazic, M.; Woodruff, E. Towards a Real-Time Tutor for Deep Learning. In Proceedings of the Canadian Psychological Associations’

85th Annual National Convention, Ottawa, ON, Canada, 21–23 June 2024.
74. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI

Blog 2019, 1, 9.

https://doi.org/10.1016/j.cedpsych.2018.10.001
https://doi.org/10.1080/00461520.2017.1421465
https://doi.org/10.1037/13274-001
https://doi.org/10.1111/j.1467-9280.2009.02402.x
https://www.ncbi.nlm.nih.gov/pubmed/19619181
https://doi.org/10.1017/9781316823279.019
https://doi.org/10.1007/s11858-022-01463-2
https://www.ncbi.nlm.nih.gov/pubmed/36684477
https://doi.org/10.1080/02699931.2016.1204989
https://www.ncbi.nlm.nih.gov/pubmed/27448030
https://doi.org/10.1007/s10648-006-9032-1
https://doi.org/10.1037/0003-066X.56.3.218
https://www.ncbi.nlm.nih.gov/pubmed/11315248
https://doi.org/10.1037/0003-066X.55.1.68
https://doi.org/10.1073/pnas.1511905112
https://doi.org/10.1016/j.cedpsych.2011.05.002
https://doi.org/10.1007/s10648-006-9029-9
https://doi.org/10.1037/a0019243
https://doi.org/10.1109/ACCESS.2018.2858856
https://doi.org/10.1007/s10845-017-1350-2
https://doi.org/10.1080/00461520.2011.611369
https://doi.org/10.1007/s40593-015-0056-x


AI 2024, 5 921

75. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Amodei, D. Language Models Are Few-Shot Learners.
Adv. Neural Inf. Process. Syst. 2020, 33, 346. [CrossRef]

76. Zawacki-Richter, O.; Marín, V.I.; Bond, M.; Gouverneur, F. Systematic Review of Research on Artificial Intelligence Applications
in Higher Education–Where Are the Educators? Int. J. Educ. Technol. High. Educ. 2019, 16, 1–27. [CrossRef]

77. Frijda, N.H. The Laws of Emotion. Am. Psychol. 1988, 43, 349–358. [CrossRef] [PubMed]
78. Donovan, M.S.; Bransford, J.D.; Pellegrino, J.W. (Eds.) How People Learn: Bridging Research and Practice; National Academy Press:

Washington, DC, USA, 1999.
79. Chi, M.T.H.; Wylie, R. The ICAP Framework: Linking Cognitive Engagement to Active Learning Outcomes. Educ. Psychol. 2014,

49, 219–243. [CrossRef]
80. Graesser, A.C.; Person, N.K. Question Asking during Tutoring. Am. Educ. Res. J. 1994, 31, 104–137. [CrossRef]
81. Meyer, D.K.; Turner, J.C. Scaffolding Emotions in Classrooms. In Emotion in Education; Academic Press: Cambridge, MA,

USA, 2007.
82. Walkington, C.; Bernacki, M.L. Personalization of Instruction: Design Dimensions and Implications for Cognition. J. Exp. Educ.

2018, 86, 50–68. [CrossRef]
83. Bloom, B.S. The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One Tutoring. Educ. Res.

1984, 13, 416. [CrossRef]
84. Savery, J.R. Overview of Problem-Based Learning: Definitions and Distinctions. Interdiscip. J. Probl.-Based Learn. 2006, 1, 3.

[CrossRef]
85. Kolodner, J.L.; Camp, P.J.; Crismond, D.; Fasse, B.; Gray, J.; Holbrook, J.; Puntambekar, S.; Ryan, M. Problem-Based Learning

Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting Learning by DesignTM into Practice. J. Learn. Sci.
2003, 12, 495–547. [CrossRef]

86. Renninger, K.A.; Hidi, S. Revisiting the Conceptualization, Measurement, and Generation of Interest. Educ. Psychol. 2011, 46,
168–184. [CrossRef]

87. Renninger, K.A.; Hidi, S.E. Interest Development and Learning. In The Cambridge Handbook of Motivation and Learning; Cambridge
University Press: Cambridge, UK, 2019; pp. 265–290. [CrossRef]

88. Searle, J.R. Intentionality: An Essay in the Philosophy of Mind; Cambridge University Press: Cambridge, UK, 1983.
89. Searle, J.R. The Rediscovery of the Mind; MIT Press: Cambridge, MA, USA, 1992.
90. Searle, J.R. Mind: A Brief Introduction; Oxford University Press: Oxford, UK, 2004.
91. Gallagher, S. How the Body Shapes the Mind; Clarendon Press: London, UK, 2006.
92. Shapiro, L.A. The Routledge Handbook of Embodied Cognition, 2nd ed.; Routledge: London, UK, 2024.
93. Fischer, M.H. The Embodied Cognition Approach: Principles and Research Questions. In Experimental Methods in Embodied

Cognition; Routledge: London, UK, 2024; pp. 3–18.
94. Khan, S. Brave New Words: How AI Will Revolutionize Education (and Why That’s a Good Thing); ebook; Viking: New York, NY,

USA, 2024.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1186/s41239-019-0171-0
https://doi.org/10.1037/0003-066X.43.5.349
https://www.ncbi.nlm.nih.gov/pubmed/3389582
https://doi.org/10.1080/00461520.2014.965823
https://doi.org/10.3102/00028312031001104
https://doi.org/10.1080/00220973.2017.1380590
https://doi.org/10.3102/0013189X013006004
https://doi.org/10.7771/1541-5015.1002
https://doi.org/10.1207/S15327809JLS1204_2
https://doi.org/10.1080/00461520.2011.587723
https://doi.org/10.1017/9781316823279.013

	Introduction 
	Mental States and Phases 
	Instructional Use 
	Toward the Affect-Aware Tutor 
	Abel Tutor 
	Discussion and Implications 
	Conclusions 
	References

