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Abstract: The safety and robustness of convolutional neural networks (CNNs) have raised increasing
concerns, especially in safety-critical areas, such as medical applications. Although CNNs are efficient
in image classification, their predictions are often sensitive to minor, for human observers, invisible
modifications of the image. Thus, a modified, corrupted image can be visually equal to the legitimate
image for humans but fool the CNN and make a wrong prediction. Such modified images are called
adversarial images throughout this paper. A popular method to generate adversarial images is
backpropagating the loss gradient to modify the input image. Usually, only the direction of the
gradient and a given step size were used to determine the perturbations (FGSM, fast gradient sign
method), or the FGSM is applied multiple times to craft stronger perturbations that change the model
classification (i-FGSM). On the contrary, if the step size is too large, the minimum perturbation of
the image may be missed during the gradient search. To seek exact and minimal input images for a
classification change, in this paper, we suggest starting the FGSM with a small step size and adapting
the step size with iterations. A few decay algorithms were taken from the literature for comparison
with a novel approach based on an index tracking the loss status. In total, three tracking functions
were applied for comparison. The experiments show our loss adaptive decay algorithms could find
adversaries with more than a 90% success rate while generating fewer perturbations to fool the CNNs.

Keywords: convolutional neural network; adversarial attack; surgical tool recognition; minimally
distorted adversary

1. Introduction

Convolutional neural networks (CNNs) are popular to perform image recognition
tasks because CNNs can automatically learn the visual features from images or videos.
In previous research, these visual features are mostly handcrafted, potentially losing
significant information in the feature extraction process [1]. The CNNs overcame these
limitations and dramatically improved the efficiency of classifying images. However, the
performance of CNNs is highly influenced by the image quality, object visibility, and other
conditions during training [1]. For instance, in a medical application, such as recognizing
the surgical tools in laparoscopic surgery video streams, some visual challenges highly
influence the CNNs’ performance for object classification [1,2]. These visual challenges
are quite common in real medical applications, i.e., the surgical tools may be occluded by
tissue or smoke may be generated during surgery, lenses are stained by blood, and motion
blur is caused by movement or unstable camera position [1]. All these challenges threaten
the CNNs’ performance, making it difficult to recognize the surgical tool under these
challenging conditions. In addition, even a well-trained CNN can be easily confused by
some slight modifications added to legitimate images, and this vulnerability to adversarial
samples generalizes over all CNN architectures [2–6]. Therefore, some efforts need to be
spent to improve the model’s resilience to these adversarial perturbations.

Adversarial images can be easily generated by flipping the image [7] or adding in-
visible perturbations to the original input [3–6,8]. An efficient, targeted way to generate
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adversarial image perturbations is backpropagating the loss gradient as a directed mod-
ification to the input images [3–6,8,9]. The fast gradient sign method (FGSM) was first
proposed in [9], modified by incorporating extension methods, such as iteratively applying
the FGSM on the input [10], by adding momentum to the gradient (MI-FGSM) [11], or by
projecting the perturbation back to max norm box after every iteration (PGD) [12]. There
were further methods published that use the forward derivative to construct adversarial
saliency maps [13] or generative adversarial networks (GANs) [14].

To analyze convolution neural network robustness to these adversarial images, usu-
ally, a max norm constraint is assigned to the amplitude of perturbation. A high error
rate on these adversarial images indicates less robustness in convolution neural network
classification. Usually, as the amplitude of perturbation increases, the error rate is increases
too. But, the opposite, i.e., a measure based on a minimal perturbation, is sufficient for the
model to misclassify an input is another interesting direction. Related work can be found in
the literature, such as constructing the provably minimally distorted adversarial examples
with formal verification approaches [15], using fast adaptive boundary attacks to generate
minimally distorted adversarial examples [16], using an extremely limited scenario that
only modifies one pixel, which was proposed in [17], establishing an optimization model
to generate an adversary with controllable amplitude [18], and using an adaptive learning
rate to influence the modification [19].

This paper provides the following contributions:

• We propose the step size adaptive i-FGSM to generate adversaries with fewer pertur-
bations. Initially, the classic fast gradient sign method (FGSM) was applied to seek
a minimum perturbation individually for each input that is sufficient to change the
model decision. When the size of the perturbation is not large enough to change predic-
tion, the algorithm leads to an iterative form (i-FGSM) until the input is misclassified.
This method is rather crude and usually lacks a minimal solution. Therefore, we modi-
fied this minimum search and formulated an adaptive gradient descent problem [19].
To solve this problem, this paper further extends the method from our previous work
in [19].

• We introduce a loss adaptive algorithm to adjust the step size. Three decay algorithms
from the literature were applied to the step size (or learning rate in the context of
machine learning). Additionally, we also introduce a novel decay algorithm that
keeps track of the loss of the current iteration and uses it as feedback to adjust the
step size for the next iteration. In total, there are three different loss-tracking func-
tions: the loss rescale function, loss trigonometric function, and loss-related original
classification probability.

• We provide the experimental results that indicate the influence of different step sizes
in the adversary-generated process. The experiment includes two parts. Depending
on whether a target classification is given, i.e., the adversary can be generated by
moving the input away from its original classification or moving the input close to
a target classification. The experimental results illustrate that our loss adaptive step
size algorithms could efficiently generate adversaries with fewer perturbations while
maintaining a high adversarial success rate.

This paper is organized into the following sections. Section 1 introduced the impor-
tance of CNN safety in medical applications and how to generate adversaries with minimal
distortion to fool a CNN. Section 2 presents the experiment setting, the minimal-distorted
adversary generate technique, the algorithms, including different step size reduce functions,
and the adversary evaluation metric. Section 3 provides the result of a target adversar-
ial attack and non-target adversarial attack. Section 4 discusses the limitations of the
adversary-generated algorithms. Section 5 concludes with the contribution of this research.
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2. Methods
2.1. Material

In this study, our source dataset is the Cholec80 dataset [1], which contains 80 chole-
cystectomy videos, in which 7 surgical tools were used (see Figure 1), making up 7 different
classes (Table 1) to be detected in video frames [19–22]. To fulfill the SoftMax require-
ments [23], only 1-class image frames are used in this study and were extracted from the
dataset (in total 80,190 images). From this derived dataset, the first 40 videos (31,477 images)
were used as the training set, and the remaining 40 videos (48,713 images) were used as
the test set. The convolutional neural network model exemplarily used in this study is
Resnet-50 [24]. Resnet-50 has a plain baseline network that starts with down-sampling con-
volution and four convolution blocks, and ends with average pooling layer, fully connected
layer andSoftMax layer. The shortcut connections were inserted on the plain network to
perform the residual learning reformulation [24]. The model was trained for 30 epochs.
For adversarial perturbation evaluation, 200 correctly classified images of each class were
randomly selected from the test set, i.e., in total, there were 1400 images used.
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Table 1. The class index, corresponding surgical tool, and the number of frames in the derived 1-class dataset.

Class Surgical Tool Number of Frames

1 Grasper 23,507
2 Bipolar 3222
3 Hook 44,887
4 Scissors 1483
5 Clipper 2647
6 Irrigator 2899
7 Bag 1545

2.2. Adversarial Attack

As mentioned in the introduction, an ameliorated fast gradient sign method was
applied to search for the adversary with minimal perturbations. If a one-step update
cannot modify the input to another class, the program will automatically turn into basic
iterative form (i-FGSM) until the classification changes (see Figure 2). For instance, the
perturbation process can be started with a small amplitude and continuously applied to
the input until the input is misclassified; the difference between the original input and the
final adversary would be the smallest successful perturbation for this specific input. This
smallest successful perturbation also represents a minimal safe area around the original
input. However, the smallest successful perturbation depends not solely on the sample
properties, such as whether it is close to a decision boundary, but is also influenced by
the model performance, i.e., how well it approximates optimal decision boundaries. It
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is more difficult to fool a well-trained model than a less-trained model; different model
architectures might reach different robustness levels to the perturbations. At the same time,
the nonlinear optimization process in the high-dimensional input space (high-resolution
images) is difficult to solve, as the gradient search is error prone and sensitive to step size
and local minima.
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method (FGSM). The adversary (right) with minimal perturbation was generated exactly when the
classification changed.

It is practically not possible to explore the whole decision boundary around a class
center for a minimal distance to the next class. Therefore, an approximate method is
introduced that uses defined directions in the high-dimensional image space. The target
adversarial attack is a gradient search minimizing the cross-entropy loss between model
prediction and a chosen target class, i.e., it changes the image in the direction of the selected
target class [10,19]. A non-target adversarial attack maximizes the cross-entropy loss of
model prediction and original class, i.e., it implements the steepest ascent away from the
current class center [9,10,19]. In both approaches, the final perturbation should be the
closest successful perturbation in the relative direction. The cross-entropy loss is defined
as follows:

J(θ, x, y) = −∑N
i=1 y· log fθ(x) (1)

where θ represents the model parameters, N is the number of classes, x is the input image
presented to the model, fθ(x) is the model prediction of x, and y is the original label that
was assigned to x in case of a non-target attack or a target classification label that is used in
a targeted attack.

If a target classification is chosen for an adversarial attack [10,19], the input is updated
in every iteration following the gradient descent of J(θ, x, y), with y representing the
label of a target classification (class(x) ̸= y). The basic iterative fast gradient sign method
(i-FGSM) is formulated as follows:

x∗0 = x;
x∗n = x∗n−1 − α(n)·sign

[
∇x J

(
θ, x∗n−1, ytarget

)]
;

(2)

where x∗0 is the original input image, x∗n is the generated adversarial image at the nth
iteration, and x∗n−1 is the generated adversarial image at the (n − 1)th iteration. ytarget
is the chosen target label that must be different from the original class of image x. In
this paper, α is initialized as a constant and is then modified to different functionals α(n)
that adaptive to the iteration count. Thus, the step size of iterative image modifications
is adjusted according to different decay algorithms, and their effect on the amplitude of
perturbations is investigated, which is required to change the classification output. The
final perturbation is the result of summing up the changes imposed in the iteration process
and will be represented by δ. The search process for the minimal perturbation δ∗ can be
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described as a nonlinear optimization of Function (3) below, minimizing the cost until the
classification changed to the target label.

δ∗ = min
δ

(argminJ
(
θ, x + δ, ytarget

)
); (3)

When the non-target adversarial attack is chosen, the input is updated by ascending
the gradient of the original classification loss in order to change the model prediction to
another classification label [9,10,19]. The iteration is described as follows:

x∗0 = x;
x∗n = x∗n−1 + α(n)·sign

[
∇x J

(
θ, x∗n−1, yorigin

)]
;

(4)

Compared to the target adversarial attack, this non-target attack algorithm tries to
find a false classification by increasing the cross-entropy loss away from the original
classification yorigin. This is achieved by simply adding the loss gradient sign vector to the
image. α(n) was set to be adaptive to the iterations. With this condition, the optimization
problem for the least perturbation δ∗ would be a function that maximizes the cost until
classification changed.

δ∗ = min
δ

(argmaxJ
(
θ, x + δ, yorigin

)
); (5)

2.3. Step Size Decay Function

When the step size α is a constant, the modification size is the same at each iteration;
however, when the loss is close to a minimum (see Figure 3), this fixed size would be too
large to find an optimal solution; therefore, instead of applying a constant step size at every
iteration, the loss status would provide significant information as an index to control the
step size for the next iteration.
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Figure 3. Targeted modification of an image from Grasper (original class yorigin) to Bipolar (target
class ytarget) with a constant step size of 0.1. The target classification loss and original class probability
are decreasing while the target class probability is increasing. The angles θn in the loss axis are used
in the trigonometric functions to describe the loss status.

Although it is difficult to define the loss status, the current loss and previous loss
accomplish the trend, which can approximately predict the next loss; if, during the itera-
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tions, the perturbed image approaches the classification boundary, the step size should be
adapted to avoid overshooting. The step size α could be influenced by the loss status by
changing the loss status to a decay factor Fn. Three different functions are presented and
will be compared based on effectiveness and efficiency.

1. Rescale function.

Fn =
Ln − Lmin

Lmax − Lmin
(6)

When the target classification is assigned in the target adversarial attack, the loss in
the (n + 1)th iteration can be simply predicted as 0, and a loss vector [L1, L2, . . . Ln, 0] will
be rescaled to a vector between 0 and 1 [F1, F2, . . . Fn, 0]. The factor Fn is a multiplicative
scalar used to adjust the step size, the value will decrease when the target classification
loss decreases.

When increasing the original classification loss in a non-target adversarial attack, the
loss in the (n + 1)th iteration can be simply predicted as Ln + 1, and the loss vector [L1,
L2, . . . Ln, Ln + 1] will be rescaled to the vector [F1, F2, . . . Fn, 1]; the decay factor is (1 − Fn).
In both methods, the appendix 0 or Ln + 1 is added to adjust the range of value to make
sure that the current loss can be managed as a useful decay factor.

2. Trigonometric functions. The trigonometric function can rescale the loss vector with-
out adding a prediction, as there is an angle θn at each iteration to measure the loss
value (see Figure 3 for the loss axis).

Thus, when the target classification loss decreases in a target adversarial attack, the
function is as follows:

Fn = sin(tan−1(Ln)) (7)

When increasing the original classification loss in a non-target adversarial attack, the
function is as follows:

Fn = cos(tan−1(Ln)) (8)

3. Directly apply the probability score of the original classification. It is an efficient and
simple method to track the current loss status.

Fn = fθ

(
x, yorigin

)
(9)

where fθ(x) is the model prediction of x and fθ

(
x, yorigin

)
is the prediction probability for

the original classification yorigin.
Additionally, the step size of the i-FGSM can be adjusted according to different de-

cay functions [19]. There are very common learning rate decay algorithms found in the
literature [25–28], such as iteration decay [29], exponential decay [30], and step decay [31];
hence, the total decay algorithms used in this paper are listed in Table 2.

Table 2. The decay functions used in this paper. Where α, α0, n represent the step size, initial step size,
and iteration, respectively.

Index Decay Algorithms Formulars

1 Constant α = α0
2 Iteration decay α = α0/(1 + 0.5(n − 1))
3 Exponential decay α = α0·e(−0.5(n−1))

4 Step decay α = α0·0.5 f loor((n−1)/1)

5 Loss rescales α = α0· Ln−Lmin
Lmax−Lmin

or α0·
(

1 − Ln−Lmin
Lmax−Lmin

)
6 Loss trigonometric α = α0· sin(tan−1(Ln)) or α0· cos(tan−1(Ln))

7 Loss probability α = α0· fθ

(
x, yorigin

)
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2.4. Evaluation Metric

The measurement of the shortest successful perturbation indicates which decay algo-
rithm could effectively change the model prediction. To calculate the distance between the
original image and the generated image, the L2-norm function was applied. Usually, the
distance of origin and adversary indicates the difficulty of changing the model prediction,
and a larger distance corresponds to more robustness. I.e., in our experiment, the algorithm
that generates a smaller perturbation to fool the model means that it is more effective at
breaking through the model defense. It should be mentioned that some class samples
are naturally far from the decision boundary influencing the required perturbation. Also,
limitations of the optimization algorithm, i.e., the decay function, may complicate finding
their adversary. To guarantee termination of the program, a limitation on the iterations was
applied (see Algorithm 1). If the input image cannot be misclassified within 100 iterations,
the algorithm fails to find its adversary. Thus, the success rate of finding an adversary is
another evaluation metric to compare the algorithms.

To investigate the sensitivity of the algorithm to initial step size, three tests were run
with the initial step size α0 set to 1, 0.1, or 0.01, respectively.

1. The maximum iteration is 100. The iteration was stopped when the generated image
was misclassified in case of the non-target attack or changed to the target class in case
of the target attack. When the iteration exceeds 100, it is considered a failed case.

2. The difference between the original image x and the final generated adversarial image
x∗ was calculated with L2-norm distance [3–5], which is also defined by Euclidean
distance, where m is the number of pixels.

D(x, x∗) = ||x∗ − x||2 =
(
∑m

i=1|x
∗ − x|2

) 1
2 (10)

3. There are also other common Lp-norm distance metrics, such as L0 distance, L1
distance, and L∞ distance [3–5], where L0 distance measures the number of pixels that
change in x∗ compare to image x; L1 distance measures the sum of pixel distance that
changes in x∗; and L∞ distance measures the maximum pixel change in x∗.

||x∗ − x||∞ = max(|x∗1 − x1|, . . . , |x∗m − xm|) (11)

2.5. Adversary-Generating Algorithm

The whole adversary-generating program can be summed up in Algorithm 1.

Algorithm 1: Generate adversarial images with adaptive step size

Input: Trained model fθ , test sample set {x, y}, original class yorigin, target class ytarget, the
generated image and its classification at current iteration {xn, yn}, the probability score of the
current input xn is fθ(xn), the cross-entropy loss at current iteration Ln, gradient sign map Sg,
step size α, the initial step size α0, iterations n, stopping criterion with maximum iteration
limitation nmax.
Output: The adversarial images around the classification boundary.
Part 1, Target Adversarial Attack:
For n < nmax:

If yn ~= ytarget,
Calculate the current cross-entropy loss Ln between the prediction fθ(xn) and ytarget.

Backpropagation through fθ to get the gradient sign map Sg.
Loss adaptive decay algorithms:

1. Concatenate with the previous loss {L1, L2, . . . Ln, 0}, rescale as the learning rate factor
between [0, 1]: {F1, F2, . . . Fn, 0}; α = α0 ∗ Fn;

2. Fn = sin(tan−1(Ln)); α = α0 ∗ Fn;
3. Fn = fθ

(
x, yorigin

)
; α = α0 ∗ Fn;

Update xn: xn+1 = xn − α ∗ Sg; n = n + 1;
Elseif yn == ytarget,
break;
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Algorithm 1: Cont.

Part 2, Non-target Adversarial Attack:
For n < nmax:

If yn == yorigin,
Calculate the current cross-entropy loss Ln between the prediction fθ(xn) and yorigin.
Backpropagation through fθ to get the gradient sign map Sg.

Loss adaptive decay algorithms:
4. Concatenate with the previous loss {L1, L2, . . . Ln, Ln + 1}, rescale as the learning rate

factor between [0, 1]: {F1, F2, . . . Fn, 1}; α = α0 ∗ (1 − Fn);
5. Fn = cos(tan−1(Ln)); α = α0 ∗ Fn;
6. Fn = fθ

(
x, yorigin

)
; α = α0 ∗ Fn;

Update xn: xn+1 = xn + α ∗ Sg; n = n + 1;
Elseif yn ~= yorigin,
break;

Return: The generated image with minimal perturbations.

3. Results

As mentioned in the experimental settings, we use different decay functions to find
adversaries. Each image has its unique ‘smallest perturbation’ within the experimental
settings. To compare the efficiency of different decay functions, the mean smallest pertur-
bation of all the successfully misclassified samples was calculated. In the target adversarial
attack, the image is ‘perturbed’ in different directions according to the six different target
classes. The weight space is sampled in those different directions (from the original class to
a target classification boundary) by searching for the least perturbations.

Figure 4 depicts the success rate of finding adversaries using the target adversarial
attack. When the initial step size is 1 (α0 = 1), only the fourth function (step decay) and
seventh function (using the original classification probability) failed to reach the target
classification in 10 and 286 cases respectively; while there are 1400 samples times six target
classes. In total, 8400 cases were presented in the target adversarial attack. When the
step size is set to 0.1 and 0.01, as in the second function (iteration decay), third function
(exponential decay), and fourth function (step decay), a clear drop in the success rate is
found. A smaller initial step size and a rapid decline factor are slowing down the search
process for the local minima, aggravating the negative impact on efficiency.

Figure 5 shows the shortest perturbation to find the target adversaries. The mean
L2-norm distances were calculated based only on the successfully generated adversaries.
When the initial learning rate is 1 and 0.1, the first function (constant) and the sixth (loss
trigonometric function) generated larger perturbations than others, and the fifth (loss
rescale function) showed the fewest perturbations. When the initial learning rate is 0.01,
the calculation was based only on thirty-seven joint successful cases, as the fourth (step
decay) has a relatively low success rate to reach the target within 100 iterations. In this
case, perturbations were approximately evenly distributed, indicating that the solution was
strongly influenced by image properties (close to the classification boundary) rather than
the decay algorithms.
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Figure 5. The smallest perturbation generated by different adaptive decay algorithms in the target
adversarial attack. The calculation was based only on the joint successful cases (with the α0 = 1,
0.1, 0.01; the numbers of the joint success cases are 8104, 1768, and 37, respectively). The decay
functions, in order, are constant, iteration decay, exponential decay, and step decay; the last 3 decay
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classification probability.

In the non-target adversarial attack, the input image is automatically modified to
the nearest adversarial classification region (see Table 3); thus, the distance should show
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the least perturbation compared to target adversaries. In total, there are 1400 cases in the
non-target adversarial attack, and the success rate of finding adversaries shows similar
results as in the target adversarial attack case.

Table 3. The nearest adversarial classification region when generating adversaries by the sixth (loss
trigonometric function) in the non-target adversarial attack.

Final Class with Maximum Percentage

Origin Class α0 = 1 α0 = 0.1 α0 = 0.01

1 7-(30.5%) 7-(30.5%) 7-(31.0%)
2 1-(60.5%) 1-(61.0%) 1-(60.5%)
3 1-(69.0%) 1-(64.5%) 1-(64.5%)
4 1-(42.0%) 1-(43.5%) 1-(44.0%)
5 1-(51.5%) 1-(46.0%) 1-(46.5%)
6 1-(45.0%) 1-(44.5%) 1-(43.5%)
7 1-(77.5%) 1-(78.5%) 1-(78.5%)

When the initial step size is 1, in 100% of the cases, a misclassification is found,
regardless of the used step size adaption. If the initial step size is 0.1 and 0.01, the success
rate of the second, third, and fourth decay functions abruptly declines (see Figure 6).
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Figure 6. The success rate to reach a non-target misclassification within 100 iterations. The decay
functions in order are constant, iteration decay, exponential decay, and step decay; the last 3 decay
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classification probability.

The shortest perturbations are slightly different from the target adversarial attack.
Figure 7 shows that the step decay function remains the smallest perturbation, regardless
of the initial step size, and the first function (constant) remains the largest perturbation; our
three loss-tracking functions generate fewer perturbations than the first function (constant)
but more than the second, third, and fourth decay functions.
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Figure 7. The smallest perturbation generated by different adaptive decay algorithms in the non-
target adversarial attack. The calculation was based only on the joint successful cases (with the α0 = 1,
0.1, 0.01; the numbers of the joint success cases are 1400, 751, and 31, respectively; in total, there are
1400 cases in the non-target adversarial attack). The 7 decay functions are listed in the following order:
constant, iteration decay, exponential decay, and step decay; the rescale function, the trigonometric
function, and the original classification probability. The last 3 decay functions all depend on the loss.

4. Discussion

According to the results, when the initial step size is 0.01, the difficulty increased to
find an adversarial classification for the image samples, especially for the second iteration
decay, third exponential decay, and fourth step decay functions. A ‘difficult’ image that
failed to find its target adversary with all seven algorithms is shown in Figure 8. Although
none of the decay functions could successfully find the target classification adversary, there
are a few differences between them: the loss remains the same within 100 iterations when
the step size uses the second, third, and fourth decay functions. Because the decayed
step size drops down to nearly zero within ten iterations, these smaller and smaller step
sizes stuck the algorithms for the local minima search; meanwhile, even with the constant
function, the loss starts to move downward after twenty iterations. Compared with a
rapidly decreased step size, the three loss-tracking functions are more stable. The loss
rescale function has a similar trend with loss value, while the trigonometric function and
loss probability are relatively slow to move downward; nevertheless, a more ‘flat’ step size
gives these four functions (including the constant step size) the chance to find the final
target classification after 100 iterations.
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Figure 8. An example image that failed to obtain a target classification within 100 iterations (initial
step size is 0.01, original class is 1; target class is 3). The left-side axis represents the trend of target
classification loss, and the right-side axis represents the decaying step size.

Another difficult image with a non-target adversary search presents the loss and step
size slope in Figure 9. Similarly, the original classification loss remains unchanged when
the step size decreases too fast (with the 2nd, 3rd, and 4th decay functions), while the
original loss starts to increase after the 30th iteration with constant step size and loss-
tracking functions. Compared to the target classification adversary search, the fifth (loss
rescale function) generates a smaller step size and fewer perturbations (see Figure 5). In the
non-target adversary search process, the seventh (original class probability) drops faster
than the other two loss-tracking functions, generating relatively fewer perturbations (see
Figure 7). For this reason, the trigonometric function has step size drops that are not as
steep as other functions (see Figure 9), and it generated relatively higher perturbations.

Although using original classification probability to shorten the step size is efficient,
there are drawbacks that question its reliability, especially in the target-class adversarial
attack. Unlike the target classification loss value, which usually appears to be gradually
decreasing in the target attack, the original probability does not always have a steadily
decline, instead, sometimes it is shaped like a polyline or decreases suddenly when a third
classification pops up in between the original and the target classification. Especially, when
the initial step size is too large, increasing the risk of stepping into a wrong misclassification
region (not the target classification), the step size goes down to nearly zero and thus cannot
move forward to the target classification. For this reason, a larger initial step size would
contrarily reduce the success rate (96.6%) when using the original classification probability
to control the step size (see Figure 4).
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Figure 9. A difficult image to find the non-target misclassification within 100 iterations (initial step
size is 0.01, original class is 3; only the 1st constant, 5th loss rescale function, and 6th trigonometric
function succeed at 86, 99, and 89 iterations, respectively). The left-side axis represents the trend of
the original classification loss, and the right-side axis represents the decaying step size.

The decay algorithms only affect the adversary that generated the use of more than
one iteration. There are a number of cases that only rely on the initial step size when one
iteration is sufficient to change the classification (see Table 4); therefore, finding the proper
‘initial step size’ is essential when searching for the minimal-distorted adversary.

Table 4. The number of cases that require only one iteration to find an adversary.

Decay Algorithms Target Attack Non-Target Attack

α0 = 1 α0 = 0.1 α0 = 0.01 α0 = 1 α0 = 0.1 α0 = 0.01

1st Constant 2621 453 10 1050 317 9
2nd Iteration decay 2621 453 10 1050 317 9

3rd Exponential decay 2621 453 10 1050 317 9
4th Step decay 2621 453 10 1050 317 9

5th Loss rescales 2621 453 10 1050 317 9
6th Loss trigonometric 2617 447 10 1050 317 9

7th Loss probability 2608 434 6 1050 313 6

In addition to setting a smaller initial step size, there are a few other transformations
of the algorithms that could reduce the final perturbation; for instance, the modification
can be restricted to half, a quarter, or other portions of the image, or to fewer pixels (see
Figure 10). In this way, the quantified modification would be fewer than the way of evenly
applying the perturbation on the whole image. For example, when we choose to modify
half or a quarter of the image at each iteration, the L-norm distance is less than modifying
the whole image; when the modification is applied on fewer pixels, the L-norm distance
can be even less (see Table 5).
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Figure 10. Non-target adversarial attack an image from Grasper (class 1) with the i-FGSM (the initial
step size is 1, with the 6th trigonometric function used to reduce step size) while only modifying the
top 100 pixels with larger gradients at each iteration. As the final perturbation shows, only 1.2% of
the image was modified, but this is still sufficient to change the classification.

Table 5. The different thresholds used to filter pixels with larger gradients affect the final perturbations
that could change the model’s classification.

Threshold Origin Class Final Class Iteration L1-Norm L2-Norm Modify Portion

0 1 7 2 15.31 × 104 545.89 99.55%
1/2 1 4 2 6.70 × 104 270.15 49.30%
1/4 1 4 2 2.82 × 104 181.21 18.65%

Top 5000 pixel 1 4 3 1.25 × 104 127.61 7.71%
Top 500 pixel 1 4 12 5.00 × 103 119.13 2.04%
Top 100 pixel 1 7 55 4.08 × 103 158.33 1.18%

Additionally, there are some other limitations of the algorithm in finding the minimal-
distorted adversary. In our experiment, the step-adaptive iterative fast gradient sign
method (i-FGSM) was applied, accompanied by different kinds of decay functions. There-
fore, at each iteration, the modification amplitude for all the pixels is the same, and only the
modified directions are different based on the gradient sign. Additionally, our loss-tracking
functions consider the ‘loss’ as a single variable that is independent from the cross-entropy
loss function J(θ, x, y), thusthe predicted step size might lead the gradient search to a bad
local minimum. Some other methods that could generate individual adaptive step sizes
for every pixel would be helpful in finding a shorter adversarial perturbation. There are
some high-dimensional step size adaptive methods proposed in machine learning [32],
which can be implemented in the algorithm to precisely change the pixels. Anyway, the
high-dimensional input space and high-dimensional parameter space of the CNN model
still challenge the algorithm to find the global minimal perturbation to change an input
image classification. As well as using Resnet-50 for image classification, this step-adaptive
i-FGSM can be applied to different CNN model architectures.

5. Conclusions

In this research, we proposed the step-adaptive iterative fast gradient sign method to
generate adversarial samples. The loss-tracking functions represent a relatively stable and
shorter modification compared to the constant step size i-FGSM. Nevertheless, to generate
more accurate and less-distorted adversaries, there are improvements possible that can be
achieved by combining other search techniques. Adversarial training is a popular method
to improve the CNN model robustness, but at the same time, if the generated adversarial
samples for adversarial training are overmodified, they might reduce the model’s accuracy
on legitimate images. In future work, in the context of adversarial training, this step-
adaptive iterative fast gradient sign method can be used to generate adversarial images with
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the smallest perturbations while investigating the trade-off problem between robustness
and accuracy.
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