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Abstract: Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) have shown
remarkable performance in computer vision tasks, including object detection and image recognition.
These models have evolved significantly in architecture, efficiency, and versatility. Concurrently,
deep-learning frameworks have diversified, with versions that often complicate reproducibility and
unified benchmarking. We propose ConVision Benchmark, a comprehensive framework in PyTorch,
to standardize the implementation and evaluation of state-of-the-art CNN and ViT models. This
framework addresses common challenges such as version mismatches and inconsistent validation
metrics. As a proof of concept, we performed an extensive benchmark analysis on a COVID-19
dataset, encompassing nearly 200 CNN and ViT models in which DenseNet-161 and MaxViT-Tiny
achieved exceptional accuracy with a peak performance of around 95%. Although we primarily
used the COVID-19 dataset for image classification, the framework is adaptable to a variety of
datasets, enhancing its applicability across different domains. Our methodology includes rigorous
performance evaluations, highlighting metrics such as accuracy, precision, recall, F1 score, and com-
putational efficiency (FLOPs, MACs, CPU, and GPU latency). The ConVision Benchmark facilitates
a comprehensive understanding of model efficacy, aiding researchers in deploying high-performance
models for diverse applications.

Keywords: convolutional neural networks; vision transformers; deep-learning framework; PyTorch;
COVID-19; ConVision Benchmark

1. Introduction

In computer vision (CV), the evolution of deep-learning (DL) models has revolu-
tionized image classification. Convolutional Neural Networks (CNNs), a class of neural
networks tailored for processing image data, have become pivotal in recognition tasks.
CNNs have demonstrated exceptional performance in efficiently extracting spatial fea-
tures from input images, making them indispensable in applications ranging from facial
recognition and autonomous vehicles to the early detection and diagnosis of various dis-
eases. The fundamental building blocks of CNNs are convolutional layers, which leverage
convolutional operations to detect spatial hierarchies of features within an image. This
hierarchical feature extraction process enables CNNs to discern patterns at different levels
of abstraction. Each convolutional layer consists of learnable filters or kernels that slide
across the input data, identifying low-level features such as edges, textures, and shapes.
The output of this convolution operation is passed through a non-linear activation func-
tion, producing feature maps that capture the presence and location of these detected
features. Pooling layers, interspersed between convolutional layers, play a pivotal role
in down-sampling and reducing the spatial dimensions of the data, thereby enhancing
computational efficiency and aiding in generalization.
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However, as datasets grow and tasks become more complex, the limitations of the
traditional convolutional approach become apparent. These limitations led to the explo-
ration of alternative architectures, such as Vision Transformers (ViTs) [1]. ViTs represent
a paradigm shift in computer vision, leveraging the self-attention mechanism traditionally
used in Natural Language Processing (NLP). By dividing input images into fixed-size
patches and treating each patch as a token, ViTs enable a global understanding of the
image, capturing long-range dependencies and intricate patterns. This approach is particu-
larly beneficial in medical imaging, where subtle visual cues and the spatial distribution
of abnormalities are critical for an accurate diagnosis. The capability of ViTs to capture
complex relationships between image patches makes them particularly effective for tasks
requiring detailed spatial analysis. Transformers rely heavily on massive datasets for large-
scale training. Furthermore, due to the lack of some inductive biases compared to CNNs,
data quality significantly influences the generalization and robustness of transformers in
computer vision.

The development and implementation of CNNs have historically relied on various
frameworks, each with advantages and limitations. AlexNet, one of the first CNNs to
achieve groundbreaking success in the ImageNet competition, was initially implemented
using CUDA [2], a parallel computing platform and programming model developed by
NVIDIA [3]. CUDA allowed AlexNet to leverage GPU acceleration, significantly speeding
up training times. However, CUDA’s low-level programming model posed challenges
regarding ease of use and accessibility for researchers without a deep understanding of
parallel computing. Following AlexNet, ResNet, a CNN architecture known for deep
residual networks, was implemented using Caffe [4]. Caffe, an open-source deep-learning
framework developed by the Berkeley Vision and Learning Center, gained popularity
due to its speed and modularity [5]. However, Caffe’s inflexibility and limited support
for dynamic computation graphs made it less suitable for more complex and iterative
model development processes. Researchers often faced difficulties modifying existing
models or implementing new architectures, leading to a steep learning curve and potential
reproducibility issues. The introduction of PyTorch in September 2016 marked a significant
shift in the deep-learning landscape. PyTorch, developed by Facebook’s AI Research lab,
provided a flexible and intuitive framework for building and training neural networks [6].
Its dynamic computation graph model allowed for more straightforward debugging and
iterative development. Since its alpha release, PyTorch has grown significantly, with contin-
uous updates and new features that enhance its usability and performance. It has become
the preferred framework for many researchers due to its flexibility and extensive support
for various neural network architectures.

Despite these advancements, the proliferation of deep-learning frameworks has intro-
duced challenges related to version mismatches, reproducibility, and the need for standard-
ized validation and performance metrics. Researchers often need help with discrepancies in
results when models are implemented across different frameworks or versions. This frag-
mentation hinders the ability to consistently benchmark and compare models, complicating
the evaluation of new architectures and their improvements. To address these challenges, we
propose ConVision Benchmark, a unified framework implemented in PyTorch that integrates
state-of-the-art CNN and ViT models. This framework standardizes the implementation and
evaluation process, bridging the gap between different frameworks and versions. Our study
conducts an extensive benchmark analysis using a COVID-19 image dataset as a proof of
concept. The methodology can be extended to any dataset, enhancing its applicability across
various domains. The ConVision Benchmark includes tools for evaluating performance
metrics such as accuracy, precision, recall, F1 score, and computational efficiency indicators,
including model runtime, FLOPs, MACs, CPU latency, GPU latency, and inference memory,
and training memory. This comprehensive evaluation is crucial for applications where
accuracy and computational efficiency are paramount.

Through rigorous experimentation and analysis, our study provides valuable insights
into the strengths and trade-offs of various CNN and ViT architectures. For instance,
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the DenseNet-161 CNN model achieves exceptional accuracy with a peak performance of
95.61% on the COVID-19 dataset, making it suitable for high-precision medical diagnoses.
Conversely, the MaxViT-tiny ViT model balances accuracy and efficiency. By offering
a competitive accuracy of 95.02% and lower computational demands, it is ideal for real-time
medical image classification. The ConVision Benchmark facilitates a deeper understanding
of model efficacy, aiding researchers in deploying optimal models for diverse applications.

The main research contributions of this paper are as follows:

1. We provide a comprehensive benchmark framework in PyTorch to address library
version mismatches and inconsistent validation metrics in existing frameworks;

2. We foster a deeper understanding of model architectures and their performance in
medical image classification;

3. We analyze and compare the validation performance and efficiency of CNN and ViT
models and provide insights into their strengths and weaknesses;

4. We incorporate an exhaustive set of performance metrics and computational complex-
ity factors in the evaluation process;

5. To the best of our knowledge, we benchmark the most extensive array of CNN and
ViT models extensively trained on the largest publicly available COVID-19 dataset in
our ConVision benchmark;

6. Our research can serve as a benchmark for understanding the effectiveness of specific
models, and the findings offer valuable insights to develop improved models for
image classification in various domains;

7. We open-source the implementation of our models and training methodology for
researchers to evaluate their custom dataset efficiently and effectively.

Organization of the Paper: The remainder of this paper is arranged as follows:
Section 2 reviews the fundamentals of the CNN and ViT models, while Section 3 provides
a brief overview of previous work. Section 4 outlines the benchmarking process of different
models on the COVID-19 dataset. In Section 5, we provide a detailed analysis of the results
and Section 6 concludes the ConVision Benchmark paper.

2. Background

CNNs have become a cornerstone in computer vision, revolutionizing tasks such as
image recognition and object detection. The fundamental building blocks of CNNs are
convolutional layers, which leverage convolutional operations to detect spatial hierarchies
of features within an image. This hierarchical feature extraction process allows CNNs to
discern patterns at different levels of abstraction, making them highly effective for image-
related tasks. Each convolutional layer in a CNN consists of a set of learnable filters or
kernels that slide across the input data. This sliding mechanism enables the network to
identify low-level features such as edges, textures, and shapes. As the filters move across
the image, they perform a convolution operation, producing feature maps highlighting
the presence and location of these detected features. The output of this convolution
operation is then passed through a non-linear activation function, such as the Rectified
Linear Unit (ReLU), which introduces non-linearity and enables the network to learn
intricate patterns and relationships. Pooling layers, interspersed between convolutional
layers, play a crucial role in down-sampling and reducing the spatial dimensions of the data.
This down-sampling is essential for improving computational efficiency and aiding the
model’s generalization. By reducing the spatial resolution, pooling layers make the network
more robust to distortions and variations in input images. Typical pooling operations
include max pooling and average pooling, which retain the most significant features
while discarding less relevant information. At the network’s end, fully connected layers
integrate the hierarchical features extracted by the convolutional and pooling layers. These
layers enable high-level abstraction and facilitate the final classification or regression task.
The hierarchical and layered structure of CNNs allows them to automatically learn and
adapt to intricate patterns in data, making them indispensable in modern deep-learning



AI 2024, 5 1135

applications. However, convolutional methods face limitations with large datasets and
complex tasks, requiring extensive labeled data and significant computational resources.

In recent years, ViTs have introduced a novel approach to image processing, challeng-
ing the traditional dominance of CNNs. ViTs leverage the Transformer architecture, initially
designed for NLP, to handle image data. This approach has proven effective, especially in
capturing long-range dependencies and global context within images. The Transformer
architecture consists of several essential components. Initially, the input image is divided
into fixed-size, non-overlapping patches, treating each patch as a token. These patches
are then linearly embedded to create a sequence of tokens, which form the input for the
subsequent Transformer encoder. Positional information is imparted to these tokens to
preserve spatial relationships, a crucial step since the Transformer architecture lacks the
inherent inductive biases present in CNNs. The Transformer encoder comprises multiple
layers, each containing a multi-head self-attention mechanism and a feed-forward neural
network. The self-attention mechanism allows each token to attend to all other tokens,
capturing long-range dependencies and providing a global image view. This global per-
spective contrasts with traditional architectures’ local receptive fields of convolutional
layers. Considering the entire image context is particularly beneficial in detecting subtle
visual cues and spatial distributions of abnormalities in medical imaging. The outputs from
each Transformer layer are aggregated and fed into a classification head, typically a linear
layer, for the final task-specific prediction. Unlike CNNs, where hierarchical features are
progressively extracted, ViTs leverage the self-attention mechanism to consider the entire
image simultaneously. This global understanding is crucial for applications such as disease
detection, where subtle details and their spatial relationships are of critical significance.

3. Related Work

The evolution of CNN models for image classification tasks has made significant
strides since their inception. Early CNNs such as LeNet [7] laid the foundation by intro-
ducing convolutional layers, pooling operations, and fully connected layers. The ground-
breaking AlexNet [2], with its deeper architecture, won the ImageNet Large Scale Visual
Recognition Challenge in 2012, marking a pivotal moment. It deepened the network, uti-
lized Rectified Linear Units (ReLUs) for activation, and used GPU acceleration, significantly
boosting performance. Following this, VGGNet [8] emphasized the importance of depth in
CNNs, advocating for more layers. Inception models, such as GoogLeNet [9], explored the
benefits of inception modules, employing parallel filters of varying sizes. The introduction
of residual connections by ResNet [4] brought about a revolutionary idea of residual learn-
ing, enabling the training of extremely deep networks by introducing skip connections.
DenseNet [10] proposed an architecture in which each layer receives direct input from all
preceding layers, fostering feature reuse and compact representation. The MobileNet [11]
series focused on lightweight models suitable for mobile and edge devices, employing
depth-wise separable convolutions. EfficientNet [12] introduced a holistic approach by
optimizing network depth, width, and resolution simultaneously for enhanced efficiency.

These advancements, coupled with transfer learning and fine-tuning techniques, have
propelled CNNs to remarkable performance, making them indispensable in various image
classification applications. However, the research of [13], introducing the Transformer
architecture, presents a notable shift in image classification. Adapting Transformers to
vision tasks led to the development of ViT models. One fundamental departure from CNNs
is that ViTs operate on the entire image as a sequence of patches, eliminating the need for
hierarchical features. Each patch is treated as a “token”, and the self-attention mechanism
allows the model to capture global dependencies efficiently [1].

The ViT architecture consists of stacked transformer blocks, performing self-attention
and feedforward operations. Several modifications and improvements have since been
proposed to enhance ViTs’ performance in image classification, such as patch embeddings,
positional encodings, and hybrid architectures. ViTs have shown competitive results on
large-scale image datasets, for example, ImageNet, challenging the supremacy of CNNs [14].
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This evolution in computer vision emphasizes the importance of attention mechanisms and
the potential to replace or complement CNNs in diverse image-related tasks.

The landscape of CNN models has also diversified, with ongoing research explor-
ing hybrid architectures, attention mechanisms, and efficiency improvements. Models
including Swin Transformer [15] and Twins-SVT [16] continue to push the boundaries of
image classification capabilities, highlighting the ever-evolving nature of DL architectures.
Benchmarking these models provides a systematic and objective means to evaluate and
compare their performance in terms of accuracy, computational efficiency, and suitabil-
ity for real-world applications, particularly in medical image classification tasks such as
COVID-19 detection from chest X-ray images.

The authors of [17] introduced an explainable AI system for early COVID-19 detec-
tion from chest X-ray (CXR) images by comparing a limited number of CNN and ViT
models. The system, designed for medical professionals, visualizes infected areas in CXR
images, enhancing decision support. The experimental results demonstrate comparable
performances between CNN and ViT models, with the EfficientNetB7 model achieving
the highest accuracy. Incorporating UNet-based segmentation and rotation augmentation
contributes to the system’s robustness and overall performance improvement.

The study [18] comprehensively compares the performance of CNNs, ViTs, hybrid sys-
tems, and ResMLP architecture on fundus images for the detection of glaucoma. The com-
parative analysis reveals similar performance between CNNs and ViTs in the test set.
However, external test sets, particularly Drishti-GS1 and PAPILA, indicate CNNs’ supe-
rior generalization capacity. The study emphasizes the significance of dataset size and
composition, suggesting ViTs’ potential superiority with a more extensive training set.

A recent study [19] presented a comprehensive literature review comparing ViTs and
CNNs for image classification. The comparison involves dataset characteristics, robust-
ness, performance, evaluation, interpretability, and architecture. ViTs exhibit promising
performance in various applications, including pneumonia detection, breast ultrasound
classification, and skin cancer classification. However, challenges such as computational
complexity and generalization issues are noted. The study suggests that ViTs are efficient on
smaller datasets due to self-attention but may require more data for better generalization.

The research work of [20] addresses the challenge of auto-focusing in Digital Holog-
raphy (DH) using DL, specifically comparing CNNs and ViTs. The results indicate that
EfficientNetB7, a CNN architecture, outperforms ViT models, achieving better accuracy in
recognizing specific locations within holograms. CNNs focus on shape details, but ViTs
demonstrate robustness, particularly when considering arbitrary regions of interest.

The comparative study [21] explores the classification performance of CNNs and
ViTs on small datasets, critically analyzing their suitability for image classification tasks.
The study finds that Xception is suitable for high-performance tasks with limited data, ViT
for large-scale data training, and ShuffleNet-V2 for scenarios prioritizing storage space
over classification performance. This comparison underscores the need for further research
to refine network performance through novel data augmentation techniques and explore
hybrid CNN–Transformer models to enhance classification efficacy.

A unified, comprehensive framework is crucial as it standardizes the implementation
and benchmarking of various models, simplifies comparisons, ensures reproducibility,
and accelerates advancements by providing a common baseline for researchers. This
integration streamlines the evaluation process and enhances the accessibility and scalability
of model deployment across different applications. Further, benchmarking CNN and
ViT models using this framework is critical in evaluating the framework and refining the
selection criteria for image classification tasks, considering all these rich, diverse sets of
related work and the rapid advancements of DL models. The findings help identify models
that are accurate, efficient, and relevant for applications in different domains.
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4. ConVision Benchmark Process

The methodology for benchmarking CNN and ViT models in this research is shown in
Figure 1. It involves a systematic and comprehensive process to assess their performance on
image classification tasks related to COVID-19 detection. The dataset was carefully chosen,
with an unbalanced representation of COVID-19 cases, non-COVID-19 cases, and normal
lung conditions. We employed image augmentation techniques such as rotations and
scaling to create a robust dataset for evaluating models in a real-world scenario. The mod-
els, implemented using the PyTorch [6] framework, were initialized without pre-trained
weights to avoid leveraging prior learning. Using pre-trained models can significantly re-
duce training time and improve performance due to the rich feature representations learned
from large-scale datasets. However, training models from scratch ensures that performance
is solely attributed to the dataset and training process, providing a clear baseline for evalu-
ating different architectures. Subsequently, the models underwent a training phase using
the designated training set, allowing for the adaptation of parameters to the specific charac-
teristics of the dataset. Fine-tuning enhances model performance, and detailed information
on training parameters is presented. After completing the training phase, the models were
evaluated using the testing set, and a suite of performance metrics was calculated. These
metrics include top-1 accuracy, precision, recall, F1 score, Matthew’s Correlation Coefficient
(MCC), False Positive Rate (FPR), False Negative Rate (FNR), and loss, providing a nuanced
understanding of the models’ classification capabilities. In addition to classification perfor-
mance, the benchmarking process incorporated computational efficiency metrics such as
model training time, CPU and GPU latency, number of parameters, multiply–accumulate
operations (MACs), floating-point operations (FLOPs), training memory, and inference
memory to assess the models’ feasibility for integration into clinical workflows, where both
accuracy and speed are pivotal. These metrics ensure a holistic evaluation considering
both the efficacy and efficiency of CNN and ViT models. The comparison between CNN
and ViT models involves a detailed analysis of their trade-offs, aiming to identify models
that effectively balance accuracy and computational efficiency, providing insight into their
suitability for real-time image classification tasks.

Figure 1. Block diagram of benchmark process for CNN and ViT models.

4.1. Dataset

The COVID-QU-Ex Dataset [22] is a comprehensive resource used for the benchmark
process in this research. This extensive dataset includes 33,920 CXR images, providing
various cases crucial for training and evaluating our models. The dataset is classified into
three primary categories: 11,956 images of COVID-19 cases, 11,263 images representing non-
COVID-19 infections, including viral or bacterial pneumonia, and 10,701 images of normal
lung conditions. The dataset includes ground-truth lung segmentation masks, making
it the most extensive dataset for lung masks ever. The dataset layout ensures a robust
experimental framework for training, validation, and testing across various conditions,
contributing to the reliability and generalizability of the research findings.

In our experimental setup, we used an unbalanced case by taking a subset of samples
from the above dataset to test the system’s robustness in scenarios where images are
acquired under specific settings. The resilience and efficacy of our system were rigorously
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evaluated using this imbalanced dataset, ensuring its applicability across diverse image
settings and scenarios. The dataset, along with the associated codes and experiments, are
made publicly available for further research and validation purposes. Table 1 illustrates
each class’s total number of samples. Figure 2 shows a sample CXR image for each class.

Table 1. COVID-19 dataset classification.

Split Total COVID-19 Non-COVID-19 Normal

Training 21,706 7658 7208 6849
Test 6788 2395 2253 2140

Validation 5417 1903 1802 1712

(a) (b) (c)
Figure 2. Sample CXR images: (a) COVID-19. (b) Non-COVID-19. (c) Normal.

4.2. Data Augmentation

Data augmentation is essential for enhancing the performance of DL models when
training data are limited. This research implements a set of data augmentation techniques,
even though the dataset is large enough. The rationale is that increasing the dataset size
through augmentation can provide better training for ViTs, which tend to require more
data to outperform CNNs.

In our research, we implemented a set of data augmentation techniques using PyTorch.
These included resizing the images to a standard size (256), center cropping (224), random
horizontal flipping with a probability of 0.5, random rotation up to 15 degrees, and color
jittering for brightness, contrast, and saturation (each with a factor of 0.2). These transfor-
mations were designed to simulate variations encountered in real-world CXR images, such
as different orientations, lighting conditions, and subtle changes in contrast. The transfor-
mation pipeline concludes with standard operations of converting the images to tensors
and normalizing pixel values. These augmentation strategies exposed the model to diverse
CXR image variations during training, preventing overfitting and improving its ability to
generalize to new data.

4.3. CNN Processing

The preprocessing of input images in CNN models involves normalization, where the
pixel values are scaled to a standardized range to facilitate consistent model training. In the
case of gray-scale images, the single-channel representation is expanded to three channels
to match the expected input format of CNN models. The images and corresponding
labels indicating the disease category were divided into training, validation, and test sets.
The training set updated the model’s weights through a backpropagation algorithm coupled
with a stochastic gradient descent (SGD) optimization technique. The validation set helped
monitor and prevent overfitting during the training process. The test set was used to
evaluate the performance of the final model on unseen data. This meticulous processing
workflow ensured that the CNN model could effectively learn discriminative features for
accurate COVID-19 classification while being robust to variations in the input data.

Our study evaluated the performance of various CNN model families, as shown in
Table 2. The architectural details of the models used in this paper are not provided due to
space constraints. The exact topology is described in the original papers cited below.
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Table 2. Family of CNN models.

AlexNet [2] ConvNext [23] DenseNet [10] EfficientNet [12]
Ghost-resnet [24] GhostNetv2 [25] Inception [26,27] MNASNet [28]

MobileNet [11,29,30] NFNet [31] RegNet [32] ResNet [4]
ResNext [33] Wide-ResNet [34] ShuffleNetv2 [35] SqueezeNet [36]

VGG [8]

4.4. ViT Processing

Preprocessing input images in ViT models involves several distinct steps compared
to CNNs. Initially, images are resized to a standard resolution and then divided into
fixed-size patches, typically 16 × 16 pixels. Each patch is flattened into a vector and linearly
embedded into a higher-dimensional space. Unlike CNNs, ViTs typically handle color
images directly and do not require channel expansion for gray-scale images. ViTs treat the
sequence of these embedded patches as input tokens to a transformer model. Each token is
combined with positional encodings to retain spatial information, which is essential for
the self-attention mechanism. Similar to CNN preprocessing, images are normalized to
ensure a consistent range of pixel values. The dataset was divided into training, validation,
and test sets, serving the same purposes as outlined in the CNN preprocessing section.
This ViT preprocessing workflow enabled ViTs to effectively capture global context and
complex patterns for accurate COVID-19 classification, demonstrating their capability to
handle diverse image features and structures.

We evaluated various ViT versions in our work, as shown in Table 3. The architec-
tural details of all the neural networks used in this paper are not provided due to space
constraints. The exact topology is described in the original papers cited below.

Table 3. Family of ViT models.

BoTNet [37] CaiT [38] CCT [39] CrossFormer [40]
CrossViT [41] CvT [42] DeepViT [43] EdgeNeXt [44]

EfficientFormer [45] FocalTransformer [46] GC-ViT [47] LeViT [48]
LVT [49] Max-ViT [50] MLP-Mixer [51] MobileFormer [52]
PiT [53] PoolFormer [54] PVT [55] Region-ViT [56]

SepViT [57] Swin [15] T2T-ViT [14] TNT [58]
Twins [16] VAN [59] Vision Transformer [13]

4.5. Training Description

The training pipeline for CNNs and ViTs involves several vital steps to train on a given
dataset effectively. Setting up a training pipeline requires careful consideration of various
parameters and configurations to ensure that the model converges to optimal performance.
The training pipeline begins with loading the dataset and applying the necessary prepro-
cessing steps, such as resizing images, normalization, and data augmentation. The network
architectures are defined, specifying the network’s layers, filters, and connectivity for CNN
and attention mechanisms for ViT. Our training parameters included the learning rate
of 1 × 10−1, batch size of 256, and SGD optimization algorithm with momentum of 0.9.
The learning rate schedule followed a cosine annealing pattern, with a warmup phase of
25 epochs. This dynamic adjustment helped the model converge faster initially and fine-tune
more effectively later in training. Other hyperparameters, such as weight decay and gamma,
were utilized. Epochs, which represent the number of times the entire dataset is processed,
determine the duration of the training. We decided to run for 500 epochs empirically with
the validation set used to monitor performance and prevent overfitting. All models in our
study, including CNN and ViT, were trained using the “CrossEntropyLoss” function. Using
“CrossEntropyLoss” ensures that the loss values across different models are directly compa-
rable, thus providing a fair basis for evaluating model performance. The loss function was
minimized during training, and the model’s parameters were iteratively updated through
backpropagation. Performance was evaluated using loss, top-1 accuracy, F1 score, precision,
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recall, FPR, FNR, and MCC. To further understand the model’s computational efficiency,
we measured Training Time, MACs, FLOPs, CPU and GPU latency, and memory usage for
training and inference.

The experiments were conducted on a Linux system with an AMD EPYC 7543 32-core
processor, 512 GB hard disk, 1.5 TB RAM, and an NVIDIA A100 80 GB graphics accelerator
card. The models were implemented using PyTorch [6] libraries in Python 3.8.

4.6. Evaluation Method

Evaluating model performance is critical in deep learning, especially for COVID-19
image classification tasks. Performance metrics are quantitative measures that provide
information on neural network models’ accuracy, efficiency, and reliability. Different tasks
may require different metrics, and the choice of metrics depends on the problem’s nature.
This study employs a comprehensive set of performance metrics to benchmark CNNs
and ViTs for COVID-19 image classification. These metrics gauge the models’ abilities
and facilitate a robust comparative analysis. The following are the performance metrics
considered in this study, and their significance in benchmarking is described:

1. Top-1 accuracy: this metric represents the percentage of correctly classified instances
among the total predictions. It is a fundamental metric in classification tasks, indicat-
ing how well the model performs in assigning the correct class to an input sample.
In benchmarking, achieving a high top-1 accuracy is a primary goal, demonstrating
the model’s ability to make accurate predictions.

2. Precision: it measures the accuracy of positive predictions. It is calculated as the ratio
of true positive predictions to the total predicted positives. High precision is essential
when minimizing false positives is crucial, where precision reflects the model’s ability
to correctly identify instances of a specific class.

3. Recall: also known as sensitivity or true positive rate, it measures the ability of the
model to capture all positive instances. It is calculated as the ratio of true positives to
actual positives. High recall is essential when it is crucial to identify all instances of
a particular class, even at the cost of more false positives.

4. F1 score: the F1 score is the harmonic mean of precision and recall. It provides
a balanced measure between precision and recall, and is particularly useful when the
class distribution is imbalanced. A higher F1 score indicates a better balance between
precision and recall, reflecting a model’s overall performance.

5. FPR: it measures the proportion of actual negatives that are incorrectly predicted as
positives. It is calculated as the ratio of false positives to the total actual negatives.
In applications where minimizing false positives is critical, a lower FPR is desirable.

6. FNR: it measures the proportion of actual positives that are incorrectly predicted as
negatives. It is calculated as the ratio of false negatives to the total actual positives.
In scenarios where avoiding false negatives is crucial, a lower FNR is desired.

7. MCC: it provides a correlation coefficient between the observed and predicted binary
classifications by considering all four confusion matrix values (true positives, true
negatives, false positives, and false negatives). It is beneficial in imbalanced datasets.

8. Loss: the loss function quantifies the difference between predicted and actual values.
During training, the goal is to minimize this value. It serves as an optimization
objective, guiding the model to make better predictions. In benchmarking, comparing
the loss across models helps understand their relative performance.

The following computation efficiency metrics are considered in this study, and their
significance in benchmarking is described below:

1. Model training time: it is the total time required to train a model on a dataset. It is
a practical metric for assessing the efficiency of different models. When dealing with
large datasets or resource-intensive models, shorter training times are desirable.

2. CPU and GPU latency: latency measures the time taken for a model to process a single
input sample. CPU and GPU latency are essential metrics for real-time applications.
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Lower latency is critical for applications where predictions must be made quickly,
such as in autonomous vehicles or interactive systems.

3. Number of parameters: it reflects the complexity of a model. While more parameters
can lead to a more expressive model, it also increases the risk of overfitting, especially
in the presence of limited data. Comparing models based on the number of parameters
in benchmarking helps balance complexity and generalization.

4. MACs: they represent the number of multiply–accumulate operations performed
during inference. They offer insights into the computational efficiency of a model.
Lower MACs are generally desirable for applications with computational constraints.

5. FLOPs: they measure the number of floating-point operations performed during
inference. FLOPs, similar to MACs, provide information about the computational
workload of a model. Lower FLOPs are preferred for limited computational resources.

6. Training memory and inference memory: these metrics quantify the memory require-
ments during training and inference. Lower memory requirements are crucial for
deploying models on resource-constrained devices. In benchmarking, understanding
the memory footprint helps assess a model’s practical usability.

5. Results and Discussion
5.1. COVID-19 Dataset

This section presents the results of benchmarking various CNNs and ViTs on the
COVID-19 image classification task Our comprehensive evaluation included performance
metrics such as accuracy, precision, recall, and F1 score, alongside computational efficiency
metrics like model runtime, FLOPs, MACs, and CPU and GPU latency. By analyzing
these metrics, we provide insights into the strengths and weaknesses of different model
architectures and their applicability in real-world scenarios. The findings highlight vital
trade-offs between accuracy and computational demands, offering valuable guidance for
selecting optimal models for medical image classification and other domains.

Our analysis is presented in graph plots, making understanding the findings and rela-
tionship among different metrics easier. In all of the following graphs and in subsequent
sections, a circle represents CNN models, a square represents ViT models, models within
the green box are preferred models, and the size of the data point represents the number
of parameters of the model. The model size for each of the models used are presented
in Figure 3. Figure 4 shows the accuracy versus MACs. ViT-Small-patch8 stands out as
a model with high MACs (16.75 billion) but relatively low accuracy (88.4%). This behavior
is atypical, as higher MACs correlate with more complex models and better performance,
indicating potential inefficiencies and overfitting in ViT-Small-patch8’s design. Conversely,
ShuffleNetV2-x0-5 exhibits low MACs (0.04 billion), yet achieves a high accuracy of 92.85%,
which is unusual since simpler models with fewer MACs often struggle to maintain high ac-
curacy. This finding suggests that ShuffleNetV2-x0-5 is exceptionally optimized, leveraging
its architecture to achieve high accuracy efficiently. These anomalies highlight the impor-
tance of architectural innovations and careful tuning in achieving optimal performance in
deep-learning models.

In our analysis of Figure 5, which shows the accuracy versus FLOPs, the relationship is
not always linear and similar to accuracy versus MACs. A model such as ViT-Small-patch8,
which exhibits high FLOPs (16.76 billion), has relatively low accuracy (88.4%) due to ineffi-
ciencies and challenges in effectively leveraging the computational resources. Conversely,
the ShuffleNetV2-x0-5 model, having low FLOPs (0.04 billion), achieves high accuracy
(92.85%) due to its efficiency and effectiveness in leveraging the available resources.

Figure 6 shows the relationship between accuracy and accuracy epoch, indicating
the epoch at which the model achieved its highest accuracy during training. The rela-
tionship between epoch and accuracy is not strictly deterministic, as evidenced by the
extreme cases observed. For instance, the PoolFormer-S36 model with a high epoch (484)
and low accuracy (85.22%) could indicate convergence issues, overfitting, or suboptimal
hyperparameter tuning, leading to a longer training time without significant accuracy
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improvement. Contrarily, the RegNet-y-16gf model with a low epoch (45) reaches high
accuracy (93%) due to efficient architecture design, effective regularization techniques,
and optimal hyperparameter settings.
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64.64 M - TNT_Base
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60.48 M - Twins_PCPVT_Large

57.02 M - AlexNet

49.44 M - ConvNext_Small

45.78 M - Sep_ViT_Small

44.73 M - PvT_v2_b3

31.24 M - CvT_21

30.38 M - MaxVit_tiny

30.29 M - PoolFormer_S36

29.89 M - CrossFormer_small

29.79 M - RegionViT_Small

29.44 M - FocalTransformer_Tiny

27.5 M - Swin_ViT_Tiny_window7

27.48 M - CrossViT_15_dagger

26.84 M - DeepViT_S

26.48 M - DenseNet_161

26.2 M - CaiT_XS24

21.91 M - CCT_14_sine

21.86 M - NFNet_F0

21.37 M - ViT_Small_patch8

18.8 M - BoTNet

17.55 M - EfficientNet_b4

12.06 M - MobileFormer_508M

11.44 M - GCViT_xxTiny

11.18 M - ResNet18

10.16 M - PiT_XS

7.28 M - MLPMixer

5.6 M - GoogLeNet

4.88 M - GhostNetV2

3.85 M - VAN_b0

3.42 M - LVT

2.23 M - MobileNetV2

2.14 M - EdgeNeXt_BNHS_Xsmall

0.94 M - MNASnet_05

0.72 M - SqueezeNet_1_1

0.34 M - ShuffleNetV2_x0_5

Figure 3. Model sizes of CNNs and ViTs.

Figure 4. MACs vs. top-1 accuracy.

Figure 5. FLOPs vs. top-1 accuracy.
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Figure 6. Top-1 accuracy vs. epoch.

Figure 7 shows the CPU latency versus accuracy. ViT-Small-patch8 exhibits high CPU
latency (96.67 ms) and relatively low accuracy (88.4%). This anomaly suggests inefficien-
cies in model design or training, as higher latency typically indicates slower inference
times, which can hinder real-time applications. MobileNetV2 showcases low CPU latency
(9.13 ms) and high accuracy (93.97%). This exceptional performance is attributed to efficient
architecture design and optimization, allowing faster inference times.

Figure 7. CPU latency vs. top-1 accuracy.

The GPU latency versus accuracy is shown in Figure 8. The CvT-21 model has
high GPU latency (18.48 ms) but relatively low accuracy (89%). This behavior is not
typical, as higher latency usually correlates with more parameters and better perfor-
mance due to more complex computations. However, CvT-21’s lower accuracy suggests
inefficiencies and possible overfitting, where the model complexity does not translate
to improved prediction quality. On the other hand, Vgg-13-bn demonstrates low GPU
latency (1.08 ms) while achieving high accuracy (95.27%). Its performance indicates
exceptional optimization in its design, effectively balancing computational efficiency
with high predictive accuracy.

In the relationship between training memory and accuracy, as illustrated in Figure 9,
models with more parameters generally require more training memory and often achieve
higher accuracy due to their increased capacity to learn complex patterns. However, in our
analysis, the NFNet-F0 model exhibits high training memory usage (1.69 GB) but relatively
lower accuracy (90.64%). This discrepancy is due to overfitting and inefficiencies in the
model’s architecture. On the other hand, ShuffleNetV2-x0-5 stands out with low training
memory usage (0.02 GB) while achieving a relatively high accuracy (92.86%).
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Figure 8. GPU latency vs. top-1 accuracy.

Figure 9. Training memory vs. top-1 accuracy.

Analyzing the relationship between inference memory, accuracy, and the number
of parameters reveals interesting insights from the data. Figure 10 shows the inference
memory versus accuracy graph. Typically, models with more parameters and inference
memory tend to have higher accuracy due to their capacity to learn complex features.
The trend is similar to the training memory versus accuracy graph but on a smaller scale,
except for TNT-Base. TNT-Base has a high inference memory (247.23 MB) but a relatively
lower accuracy (89.4%), suggesting inefficiencies and overfitting despite its capacity.

Figure 11 shows the training time versus accuracy. ViT-Small-patch8 exemplifies the
case of high training time with low accuracy; it has a training time per epoch of 184.67 s, yet
achieves a modest accuracy of 88.4%. On the other hand, GoogLeNet presents an interesting
case of low training time with relatively high accuracy; it has a training time per epoch
of only 17.22 s and achieves an accuracy of 94.94%. Typically, models with such quick
training times do not achieve high accuracy due to the simplified architecture and fewer
parameters. These exceptions highlight that model efficiency and architecture optimization
play critical roles, sometimes allowing models with fewer parameters and faster training
times to perform exceptionally well or causing models with high computational demands
to underperform due to inefficiencies.

In examining the relationship between MCC, epoch, and the number of parameters
from Figure 12, we observed some interesting extremes from the given data. Typically,
a higher MCC correlates with more epochs and a more significant number of parameters
due to the increased complexity and training duration improving model performance.
However, the AlexNet model demonstrates an exceptional case of high MCC (indicative
of high accuracy and balanced class prediction) achieved in relatively few epochs (19)
and with a moderate number of parameters (57 Million). Conversely, the SqueezeNet-1-1
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model, with fewer parameters (0.72 Million) and lower MCC, requires many epochs (443)
to converge. These anomalies suggest that AlexNet is exceptionally efficient, optimizing its
architecture to quickly achieve high performance, whereas SqueezeNet-1-1’s prolonged
training indicates difficulties in learning the dataset effectively.

Figure 10. Inference memory vs. top-1 accuracy.

Figure 11. Training time vs. top-1 accuracy.

Figure 12. MCC vs. epoch.

The correlation between precision, epoch, and the number of parameters in deep-
learning models follows a trend where models with more parameters often achieve higher
precision but require more epochs to converge. This behavior suggests that larger models
can capture more complex patterns in the data but also need more training to optimize all
their parameters effectively. Figure 13 shows precision versus epoch. However, through
analysis, CCT-14-sine, having 21.91 million parameters, achieves a relatively higher preci-
sion after 18 epochs. Another extreme case is the MNASnet-05 model, which has 0.94 million
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parameters and reaches high precision after 487 epochs. These deviations are due to their
architectural differences.

Figure 13. Precision vs. epoch.

Figure 14 shows the recall versus epoch. The RegNet-y-16gf model achieves a high
recall of 0.93 with a relatively low epoch count of 45. This result indicates that RegNet-
y-16gf converges quickly during training, reaching high performance rapidly, which is
notable given its relatively high number of parameters (80.57 million). On the other
hand, MNASnet-05, with a relatively lower recall of 92% and a high epoch count of
499, takes significantly longer to converge, despite having a low number of parameters
(0.94 million). Typically, models with fewer parameters should train faster due to reduced
computational complexity, and models with higher parameters often require more epochs
to avoid overfitting. These observed extremes suggest that RegNet-y-16gf is highly efficient
and well optimized, whereas MNASnet-05’s prolonged training is due to suboptimal
training dynamics, both deviating from the expected behavior of deep-learning models.

Figure 14. Recall vs. epoch.

Figure 15 shows the CPU latency versus MACs. In analyzing the relationship be-
tween CPU latency, MACs, and the number of parameters, two extreme cases illustrate
abnormal behaviors in deep-learning models. The NFNet-F0 model exhibits high latency
(105.72 ms) despite having low MACs (22.2 million) and a moderate number of parameters
(21.85 million). Despite its computational simplicity, this high latency suggests potential
inefficiencies in how the model processes data or the operations are structured. On the
other hand, Vgg-13-bn showcases relatively low latency (50.98 ms) despite having relatively
high MACs (11.35 billion) and a substantial number of parameters (0.12 billion). Typically,
models with higher MACs have higher latencies due to the increased computational load.
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Figure 15. CPU latency vs. MACs.

Figure 16 shows the GPU latency versus MACs in which most of the models with
higher MACs and more parameters exhibit higher GPU latency due to increased computa-
tional complexity. MobileFormer-508M, with a high GPU latency of 15.85 ms but low MACs
(0.5 billion) and a moderate number of parameters (12.06 million), suggests inefficiencies
possibly due to the suboptimal use of GPU resources or architectural bottlenecks. On the
other hand, DenseNet-161, with a low GPU latency (14.4 ms), yet high MACs (7.84 billion)
and a significant number of parameters (26.48 million), indicates an efficient architecture
and excellent GPU optimization, resulting in faster computations despite its complexity.

Figure 16. GPU latency vs. MACs.

Figure 17 shows the training time versus MACs. The FocalTransformer-Tiny model
exhibits a high training time per epoch (146.15 s) despite having low MACs (4.66 billion)
and a relatively small number of parameters (29.44 million). This unusual behavior is due to
inefficient parallelization and bottlenecks in the data pipeline, making the training process
slower than expected for its computational complexity. On the other hand, Vgg-13-bn
shows a low training time per epoch (39.61 s) but has high MACs (11.35 billion) and
a large number of parameters (128.97 million). This finding is interesting because models
with higher MACs and parameter counts generally require more computational resources
and time to train. The efficient training time for Vgg-13-bn suggests highly optimized
implementations that minimize the expected computational burden.

In analyzing the relationship between training memory and MACs from Figure 18,
we observed two extreme cases that defy typical expectations. The NFNet-F0 model
has a high training memory usage of 1.69 GB but relatively low MACs at 22.2 billion.
Generally, a high training memory correlates with a high number of MACs and parameters,
reflecting the model’s complexity. NFNet-F0’s behavior indicates that it is highly parameter-
intensive without proportional computational efficiency. On the other hand, ViT-Small-
patch8 demonstrates low training memory usage (0.55 GB) but high MACs at 16.75 billion.
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This result suggests that ViT-Small-patch8 is designed to be memory-efficient despite
its computational complexity, leveraging advanced architectural strategies to optimize
memory usage during training. The trend follows inference memory versus MACs except
that the memory sizes are scaled down, as shown in Figure 19.

Figure 17. Training time vs. MACs.

Figure 18. Training memory vs. MACs.

Figure 19. Inference memory vs. MACs.

Figure 20 shows the training time versus CPU latency. The Vgg-13-bn model exhibits
a lower training time per epoch (39.61 s) with a relatively low CPU latency (50.98 ms) despite
having a significant number of parameters (128.97 million). Typically, a complex model has
a high training time and tends to have a higher latency due to the computational demands
during inference. The NFNet-F0 model demonstrates a low training time per epoch (38.26 s),
yet a high CPU latency (105.72 ms), despite having a minimal number of parameters
(21.85 million). Usually, a model with fewer parameters and a short training time should
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also have a lower latency, as simpler models usually require fewer computational resources.
These deviations suggest that Vgg-13-bn is highly optimized for inference despite its
complexity, while NFNet-F0 suffers from inefficiencies in its implementation that increase
latency despite its simplicity.

Figure 20. Training time vs. CPU latency.

Figure 21 shows the training time versus GPU latency. The ViT-Small-patch8 model
presents an unusual scenario, with a high training time (184.67 s per epoch) but a rel-
atively low GPU latency (4.80 ms). Usually, models with extended training times also
exhibit higher latencies due to their complexity. However, ViT-Small-patch8’s architec-
ture incorporates efficient mechanisms for inference, leading to its lower latency despite
prolonged training. On the other hand, MobileFormer-508M demonstrates a low training
time (29.69 s per epoch) but a higher GPU latency (15.84 ms). This behavior is also
atypical, as models with shorter training times generally have streamlined architectures
that should result in lower latencies. MobileFormer-508M’s higher latency stems from
specific architectural components that, while reducing training time, do not optimize
inference speed as effectively.

Figure 21. Training time vs. GPU latency.

The analysis of the training time versus training memory from Figure 22 shows that
the ViT-Small-patch8 model has a high training time per epoch (184.67 s) but a relatively
low training memory usage (0.55 GB), which is atypical since high training times usually
correlate with higher memory usage due to the complexity of operations involved. Vgg-13-
bn demonstrates a low training time per epoch (39.61) yet a high training memory usage
(2.03 GB). This behavior is also abnormal because models with high memory usage typically
involve extensive computations and, therefore, longer training times. A similar pattern
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is observed for training time versus inference memory. The memory sizes are also scaled
down, as shown in Figure 23.

Figure 22. Training time vs. training memory.

Figure 23. Training time vs. inference memory.

Figure 24 illustrates the training memory versus GPU latency, where models with more
parameters tend to have a higher training memory usage and GPU latency. MobileFormer-
508M has a high GPU latency (15.85 ms) but a relatively low training memory usage
(0.28 GB). This is due to MobileFormer-508M’s architecture having complex operations,
causing delays despite its efficient memory footprint. Vgg-13-bn demonstrates a low GPU
latency (1.26 ms) but a high training memory usage (2.03 GB), suggesting that Vgg-13-bn is
optimized for rapid execution at the cost of increased memory consumption.

In general, a model’s inference and training memory are influenced by its number
of parameters. Figure 25 shows the training memory versus inference memory in which
models with more parameters require more memory during training and inference. How-
ever, NFNet-F0 and AlexNet slightly deviate from this almost linear relationship by having
lower and higher inference memories, respectively, compared to their training memory.

Table 4 provides the performance results of some high-accuracy CNNs and ViTs for
COVID-19 detection among all the other trained models. The models were evaluated
based on top-1 accuracy, recall, and loss, with corresponding epochs indicating the best
performance for each metric. DenseNet-161 achieves the highest top-1 accuracy at 95.61%,
with a recall of 0.96, demonstrating its robustness for high-precision medical diagnoses,
albeit with increased computational complexity. Models like Vgg-13-bn and MaxVit-tiny
also perform well, balancing accuracy and computational demands effectively.
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Figure 24. GPU latency vs. training memory.

Figure 25. Training memory vs. inference memory.

Table 5 presents a detailed analysis of the computational efficiency of high-accuracy
CNNs and ViTs used for COVID-19 detection among all the other trained models. Key met-
rics such as the number of parameters, multiply–accumulate operations (MACs), floating-
point operations (FLOPs), training time per epoch, CPU and GPU latency, and memory
usage during training and inference are compared across models. The findings highlight
the trade-offs between accuracy and computational efficiency, guiding the selection of
appropriate models based on specific application requirements. For instance, DenseNet-161
provides robust performance for high-precision diagnostics, while models like MaxVit-tiny
and MobileFormer-96M are more suited for real-time deployment due to their lower com-
putational demands. This analysis underscores the importance of considering accuracy
and efficiency when choosing models for deployment in medical image classification and
other computationally intensive tasks.

The results show that high-accuracy models (accuracy > 90%) have minimal variation
in performance metrics: F1 scores range from 0.94 to 0.98, recall from 0.90 to 0.96, precision
stays nearly constant at 0.99, and MCC varies slightly from 0.04 to 0.06. This consistency is
due to the models’ robustness, optimization, and the large training dataset.

CNN models like AlexNet, GoogLeNet, and EfficientNet rely on convolutional layers
for feature extraction. Factors such as depth, width, and skip connections (ResNet) influence
their performance. EfficientNet uses compound scaling to balance network dimensions.
DenseNet-161 achieves the highest accuracy at 95.61% and an F1 score of 0.98, indicat-
ing strong precision–recall balance, making it effective for medical image classification.
However, its high computational complexity requires careful deployment consideration.
In contrast, MobileNetV2 is efficient with the lowest parameters (2,227,715), low MACs and
FLOPs, minimal training time, and low CPU and GPU latency, making it ideal for real-time
applications in resource-limited environments.
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Table 4. Performance results of CNN and ViT models for COVID-19 detection with accuracy ≥ 93%.

Model
Top-1

Accuracy
(%)

Top-1
Accuracy

Epoch

Recall
(%)

Recall
Epoch Best Loss Best Loss

Epoch

DenseNet-161 95.61 410 0.96 410 0.21 226
Vgg-13-bn 95.27 230 0.95 230 0.16 39

DenseNet-121 95.26 401 0.95 401 0.23 204
DenseNet-169 95.24 327 0.95 327 0.2 12

Vgg-19-bn 95.08 187 0.95 187 0.18 24
MaxVit-tiny 95.02 296 0.95 296 0.17 26
Vgg-11-bn 95.01 293 0.95 293 0.17 27
Vgg-16-bn 94.99 131 0.95 131 0.2 28

GoogLeNet 94.95 136 0.95 136 0.25 16
DenseNet-201 94.9 383 0.95 383 0.24 11

Vgg-16 94.27 130 0.94 130 0.21 20
EfficientNet-b4 94.25 290 0.94 290 0.19 30

MobileFormer-508M 94.15 129 0.94 129 0.25 24
MobileFormer-294M 94.11 125 0.94 125 0.26 9

Vgg-11 94.08 154 0.94 154 0.22 12
EfficientNet-b0 94.03 253 0.94 253 0.2 26

Vgg-13 94 90 0.94 90 0.22 11
MobileNetV2 93.97 442 0.94 442 0.26 17

Vgg-19 93.89 176 0.94 176 0.2 17
EfficientNet-b1 93.74 371 0.94 371 0.22 31
EfficientNet-b3 93.64 154 0.94 154 0.21 31

MobileFormer-151M 93.62 134 0.94 134 0.23 16
AlexNet 93.62 267 0.94 267 0.22 19

MobileFormer-214M 93.58 444 0.94 444 0.25 22
EfficientNet-v2-s 93.41 361 0.93 361 0.22 28

CCT-14-sine 93.3 120 0.93 120 0.24 33
MobileNetV1 93.27 154 0.93 154 0.3 460

MobileFormer-96M 93.21 89 0.93 89 0.3 26
CCT-7-sine 93.12 170 0.93 170 0.27 30
ResNet18 93.05 170 0.93 170 0.29 443

EfficientNet-b2 93 257 0.93 257 0.27 26
RegNet-y-16gf 93 45 0.93 45 0.31 11

Another high-performance CNN model, RegNet-y-16gf, achieves a commendable
accuracy, but its significantly higher number of parameters, MACs, and FLOPs result in
longer training times and increased latency. These results suggest that, despite its accuracy,
this model may be more suitable for scenarios where computational resources are not
a limiting factor. Efficient models exhibit relatively lower computational demands while
maintaining competitive performance.

ViT models split input images into fixed-size patches, embed them linearly, and process
them with Transformer layers. Factors such as the number of layers, attention heads,
and tokenization strategy affect ViT performance. Max-ViT achieves a top-1 accuracy of
95.02% but with higher parameters, MACs, and FLOPs, indicating a trade-off between
accuracy and computational cost. MobileFormer, with a competitive accuracy (94.15%) and
low parameters, achieves one of the shortest training times per epoch (17.61 s), making it
ideal for real-time applications.

Comparing the overall performance of CNN and ViT models, the findings indicate
that ViT models tend to have longer training times due to the self-attention mechanism,
which involves processing the entire sequence at once. CNNs, especially smaller ones,
converge faster. However, the accuracy of well-configured ViT models can be competitive
with CNNs. ViT models can learn global context, making them suitable for tasks where
understanding the entire input is crucial. At the same time, CNNs are known for their
hierarchical feature extraction, which can be beneficial for capturing local patterns.
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Table 5. Computation efficiency of CNN and ViT models for COVID-19 detection with accuracy ≥ 93%.

Model

Multiply–
Accumulate
Operations

(million)

MACs
(billion)

FLOPs
(billion)

Training
Time per
Epoch (s)

CPU
Latency

(ms)

GPU
Latency

(ms)

Training
Memory

(GB)

Inference
Memory

(MB)

DenseNet-161 26.48 7.84 7.78 52.73 73.24 14.4 0.63 103.1
Vgg-13-bn 128.97 11.35 11.33 39.61 50.98 1.26 2.03 492.01

DenseNet-121 6.96 2.9 2.86 29.16 34.84 9.91 0.23 27.03
DenseNet-169 12.49 3.43 3.4 35.04 46.82 14.04 0.34 48.48

Vgg-19-bn 139.59 19.69 19.66 51.7 73.04 1.71 2.21 532.56
MaxVit-tiny 30.38 5.46 5.61 91.16 64.36 17.1 0.75 118.93
Vgg-11-bn 128.78 7.63 7.62 25.71 40.52 1.08 1.99 491.3
Vgg-16-bn 134.28 15.52 15.49 45.63 62.06 1.52 2.12 513.16

GoogLeNet 5.6 1.51 1.5 17.23 18.13 4.57 0.2 38.12
DenseNet-201 18.1 4.39 4.34 43.93 61.95 17.11 0.46 70.19

Vgg-16 134.27 15.47 15.47 35.48 60.87 1.3 2.07 513.09
EfficientNet-b4 17.55 1.58 1.54 49.72 32.27 10.61 0.48 68.25

MobileFormer-508M 12.06 0.5 0.51 29.69 26.1 15.85 0.28 46.47
MobileFormer-294M 9.51 0.29 0.29 23.48 21.14 15.82 0.21 36.69

Vgg-11 128.78 7.61 7.61 20.46 40.37 0.95 1.97 491.25
EfficientNet-b0 4.01 0.41 0.4 20.93 12.67 5.37 0.14 15.7

Vgg-13 128.96 11.3 11.3 30.26 49.86 1.08 1.99 491.96
MobileNetV2 2.23 0.33 0.31 16.88 9.13 3.36 0.11 8.76

Vgg-19 139.58 19.63 19.63 41.03 73.43 1.52 2.16 532.47
EfficientNet-b1 6.52 0.61 0.59 29.56 19.09 7.48 0.21 25.43
EfficientNet-b3 10.69 0.97 0.95 36.41 24.44 8.72 0.31 41.52

MobileFormer-151M 6.32 0.15 0.15 18.74 19.1 15.93 0.14 24.49
AlexNet 57.02 0.71 0.71 17.03 8.95 0.51 0.85 217.5

MobileFormer-214M 7.83 0.21 0.21 20.64 20.91 16.17 0.17 30.29
EfficientNet-v2-s 20.18 2.9 2.88 32.62 36.04 11.8 0.46 79.03

CCT-14-sine 21.91 5.12 5.53 50.1 27.48 4.8 0.4 84.13
MobileNetV1 3.21 0.59 0.58 16.7 7.17 1.71 0.09 12.35

MobileFormer-96M 3.31 0.1 0.1 17.61 14.24 12.3 0.08 12.88
CCT-7-sine 4.5 1.47 1.61 17.46 9.7 2.52 0.09 17.38
ResNet18 11.18 1.82 1.82 17.69 9.42 1.57 0.19 42.7

EfficientNet-b2 7.71 0.7 0.68 30.98 19.95 7.5 0.24 30.01
RegNet-y-16gf 80.57 16.01 15.96 58.87 83.78 8.36 1.42 316.53

ViT models generally exhibit higher MACs and FLOPs than CNNs because ViT pro-
cesses the entire image as a sequence of patches, increasing computational requirements.
CNNs, on the other hand, demonstrate more parameter-efficient designs, achieving com-
petitive performance with fewer parameters compared to some ViT models. Additionally,
CNNs tend to have lower latency during CPU and GPU inference than ViT models, partly
due to the sequential processing nature of ViTs, which can lead to longer dependency
chains. ViT models often demand higher training and inference memory as they process
image patches independently, resulting in more significant intermediate representations.

These results support decision-making about which models might suit specific use
cases based on computational requirements, memory consumption, and performance.
The hierarchical and layered structure of CNNs and the self-attention mechanism of ViTs
have enabled these models to achieve state-of-the-art performance in COVID-19 CXR
image classification tasks. However, as the dataset grows and tasks become more complex,
the limitations of the traditional convolutional approach and the challenges of integrating
transformers into computer vision will need to be addressed through continued research
and development.
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5.2. Additional Dataset Analysis

To demonstrate the broad applicability of our framework across various domains in
computer vision, we conducted performance evaluations on two additional datasets: the
flower recognition [60] and Multi-class Weather datasets [61]. These evaluations provided
insights into how both CNN and ViT models performed in different contexts, offering
a comprehensive analysis that further substantiates our framework’s adaptability. The re-
sults and analysis of these evaluations are detailed below, highlighting the strengths and
weaknesses of each model type in handling diverse visual data and tasks.

5.2.1. Flower Recognition Dataset

The flower recognition dataset consists of 4242 labeled images of various flowers,
sourced from Flickr, Google Images, and Yandex Images [60]. The dataset is divided into
five classes: chamomile, tulip, rose, sunflower, and dandelion, each containing approxi-
mately 800 photos. The images are in different proportions and roughly have a resolution
of 320 × 240 pixels, without being resized to a uniform dimension. This dataset is useful
for training models to recognize and identify different types of flowers from photographs.
Figure 26 shows sample images of the flower recognition dataset.

(a) (b) (c) (d) (e)

Figure 26. Sample flower images: (a) daisy; (b) dandelion; (c) rose; (d) sunflower; (e) tulip.

In examining the relationship between accuracy and epoch from Figure 27, we notice
that GoogLeNet leads with the highest accuracy (78.01%), followed closely by MaxVit-tiny
(75.93%) and then DenseNet-161 (73.73%). MaxVit-tiny achieves its peak performance
faster (248 epochs) compared to GoogLeNet and DenseNet-161, both of which require
274 epochs. MNASnet-05 achieves an accuracy of 36.11% on the flower dataset, with its
peak performance reached after 273 epochs of training. MNASnet-05 is designed with
a focus on mobile efficiency, emphasizing reduced computational complexity and power
consumption. While this makes it suitable for deployment on resource-constrained devices,
it also means that the model lacks the depth and capacity to capture intricate patterns and
features in the data as effectively as larger, more complex models.

When comparing training time versus accuracy from Figure 28, we find that GoogLeNet
emerges as the most efficient, achieving the highest accuracy with a training time per epoch
of just over 3.2 s. MaxVit-tiny and DenseNet-161 also deliver strong performances but they
require significantly longer training times per epoch of approximately 11.75 and 7.21 s.
Vgg-13-bn and MobileFormer-508M provide competitive accuracies of around 73.38% and
72.57%, with moderate training times per epoch of 5.56 and 4.47 s, making them efficient
choices for accuracy relative to training time. In contrast, T2T-ViT-T-24 lags behind with
an accuracy of 51.39%, despite an extensive training period of 19.38 s, indicating a less
favorable trade-off between accuracy and training time compared to the other models.

In terms of FLOPs versus accuracy, the analysis of Figure 29 shows GoogLeNet as
the most efficient, achieving the highest accuracy with only 1.5 billion FLOPs. MaxVit-
tiny, with a slightly lower accuracy, requires significantly more computational power
at 5.6 billion FLOPs. DenseNet-161 also has a high accuracy but with an even higher
computational cost of 7.7 billion FLOPs. MobileFormer-508M strikes a balance with a good
accuracy and a relatively low computational requirement of 5 billion FLOPs, making it
an efficient choice. In contrast, T2T-ViT-T-24 has one of the lowest accuracies and the
highest computational demand, indicating a less favorable trade-off between accuracy and
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computational efficiency. Analyzing MACs versus accuracy from Figure 30, we observe
that the behavior follows a similar trend as FLOPs versus accuracy.

Figure 27. Top-1 accuracy vs. epoch.

Figure 28. Training time vs. top-1 accuracy.

Figure 29. FLOPs vs. top-1 accuracy.

Finally, examining F1 score versus epoch from Figure 31 reveals that GoogLeNet and
MaxVit-tiny show strong performance with high F1 scores, indicating their effectiveness
in balanced classification tasks. GoogLeNet achieves the best F1 score but requires more
epochs, while MaxVit-tiny provides a competitive F1 score with fewer epochs. In contrast,
MNASnet-05 underperforms significantly, indicating potential issues with its architecture
or suitability for the task.
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Figure 30. MACs vs. top-1 accuracy.

Figure 31. F1 score vs. epoch.

For the flower recognition task with the chosen dataset, GoogLeNet emerges as a con-
sistently strong performer across multiple performance metrics, particularly in achieving a
high accuracy with the efficient use of computational resources. MaxVit-tiny and DenseNet-
161 also show strong performance in specific metrics, highlighting the importance of
architecture design in balancing training time, accuracy, and computational efficiency.

5.2.2. Weather Classification Dataset

The Multi-class Weather Dataset [61] is designed for image classification tasks focused
on recognizing various weather conditions. It includes 1125 images distributed across
four categories: sunrise (357 images), shine (253 images), rain (215 images), and cloudy
(300 images). This dataset supports outdoor weather analysis by providing a platform for
extracting features to identify different weather scenarios. Figure 32 shows sample images
of the weather classification dataset.

Figure 33 shows accuracy versus epoch. MaxVit-tiny achieves the highest accuracy at
98.21%, reaching this peak at epoch 338. The large number of epochs suggests that MaxVit-
tiny benefits from extended training to fine-tune its parameters, leading to high accuracy.
MobileNetV2 follows with an accuracy of 96.8%, obtained at epoch 52. MobileNetV2
converges much faster, indicating its efficiency in learning and adjusting its parameters
early in the training process making it efficient for scenarios where training time is limited.
MNASnet-05, however, shows considerably lower accuracy, suggesting that it may not be
suitable for the task at hand.
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(a) (b) (c) (d)

Figure 32. Sample weather images: (a) cloudy; (b) rain; (c) shine; (d) sunrise.

Figure 33. Top-1 accuracy vs. epoch.

The relationship between training time and accuracy is shown in Figure 34. ResNet18
achieves an accuracy of 96.43% with a training time per epoch of 1.97 s. This demonstrates
ResNet18’s ability to quickly and effectively learn from the data, offering high accuracy in
a relatively short training period. MobileNetV2 slightly outperforms ResNet18 with a train-
ing time of 2.13 s. While it takes marginally longer to train, MobileNetV2’s architecture,
optimized for mobile and edge devices, provides a highly accurate model without a signif-
icant increase in training time. On the other hand, T2T-ViT-T-24 achieves a considerably
lower accuracy of 75% and requires a much longer training time of 5.8 s.

Figure 34. Training time vs. top-1 accuracy.

Figure 35 shows the FLOPs versus accuracy graph. MobileNetV2 stands out for its
exceptional balance of high accuracy and low computational cost, making it highly effi-
cient. MobileFormer-508M also provides a high accuracy but with a higher computational
cost. T2T-ViT-T-24 exhibits a much lower accuracy and significantly higher computational
requirements, indicating that it may not be the most efficient choice for tasks where compu-
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tational efficiency and high accuracy are both critical. The trend of MACs versus accuracy,
as shown in Figure 36, follows a similar trend as FLOPs versus accuracy.

Figure 35. FLOPs vs. top-1 accuracy.

Figure 36. MACs vs. top-1 accuracy.

The analysis of F1 score versus epoch is presented in Figure 37. MaxVit-tiny achieves
an impressive F1 score of 0.98 at epoch 389, indicating a robust performance in precision
and recall metrics. This model likely benefited from extensive training, allowing it to
consistently improve its performance across multiple evaluation metrics. MobileNetV2,
with a slightly lower but still strong F1 score of 0.97 at epoch 52, demonstrates a rapid
convergence and an effective utilization of training epochs.

In summary, for weather classification tasks with the chosen dataset, MaxVit-tiny ex-
cels in achieving a higher accuracy and F1 score metrics, making it suitable for applications
demanding high precision and recall. Conversely, MobileNetV2 offers efficient training
and competitive performance metrics early in the training process, making it suitable for
applications requiring rapid deployment and operation under resource constraints.

Overall, the analysis for all the datasets identifies the unique strengths of each archi-
tecture and underscores the importance of aligning the choice of model with a specific
task. The study emphasizes the need for a wise selection process, ensuring that the cho-
sen architecture optimally balances accuracy and computational efficiency based on the
demands of the particular application in various domains. As the field continues to evolve,
further research could explore efficient hybrid approaches that leverage the strengths of
both architectures, potentially leading to even more nuanced and efficient solutions for
image classification.
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Figure 37. F1 score vs. epoch.

6. Conclusions

In this paper, we established ConVision Benchmark, a robust framework to address
common challenges in deep-learning research, such as library version mismatches, difficul-
ties reproducing results, and a lack of unified validation and hardware performance metrics.
The ConVision Benchmark is implemented in PyTorch, integrating state-of-the-art CNN
and ViT models to standardize the implementation and evaluation process across various
datasets. It includes tools for assessing performance metrics and computational efficiency
indicators. We presented a detailed comparative analysis to show the effectiveness of the
framework and demonstrated the differences between CNNs and ViTs using three different
datasets for image classification.

The analysis indicates that CNNs demonstrate a high accuracy and computational
efficiency, making them suitable for real-time applications and resource-constrained en-
vironments. For example, DenseNet achieves a higher accuracy with a robust F1 score,
but its computational complexity requires careful consideration for deployment. In contrast,
GoogLeNet and MobileNet excel with minimal parameters and latency, striking an excellent
balance between performance and efficiency. ViT models, including MaxViT and Mobile-
Former, can capture global context and learn complex patterns, making them advantageous
for tasks requiring comprehensive understanding. However, these models often demand
more computational resources and exhibit higher latency. MaxViT, despite its high accuracy,
involves a trade-off with its increased computational cost. MobileFormer, though compu-
tationally efficient, achieves competitive accuracy with one of the lowest training times
per epoch, highlighting its potential for real-time processing. The choice between CNN
and ViT models hinges on specific task requirements, computational resources, and the
trade-off between accuracy and efficiency. Hybrid models that combine the strengths of
both architectures present a promising future direction, potentially revolutionizing image
classification by enhancing accuracy and efficiency.

These findings underscore the versatility and applicability of our framework across
different datasets and highlight the importance of selecting appropriate model architectures
based on specific task requirements. This research serves as a foundational exploration, paving
the way for further investigations into optimized image classification architectures as DL
advances. The findings provide valuable insights for guiding the selection of appropriate
models for diverse image classification applications in the medical field and other domains.

Author Contributions: Conceptualization, K.T.C.-V.; methodology, K.T.C.-V.; software, K.T.C.-V.,
S.B.V. and K.A.; validation, K.T.C.-V. and S.B.V.; formal analysis, K.T.C.-V.; investigation, K.T.C.-V.,
S.B.V. and K.A.; resources, A.K.S.; data curation, K.T.C.-V., S.B.V. and K.A.; writing—original draft
preparation, S.B.V.; writing—review and editing, K.T.C.-V. and A.K.S.; visualization, K.T.C.-V. and
S.B.V.; supervision, A.K.S.; project administration, A.K.S.; funding acquisition, A.K.S. All authors
have read and agreed to the published version of the manuscript.



AI 2024, 5 1160

Funding: This research received support from the Philip and Virginia Sproul Professorship at Iowa
State University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original data presented in the study are openly available at
https://github.com/krishnateja95/COVID19_Benchmarking accessed on 9 June 2024.

Acknowledgments: The authors would like to thank Yiming Bian for constructive criticism of the
research work and Himani Kohli for the thorough review of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Appendix A.1. Performance Results of CNN and ViT Models for COVID-19 Detection

In Appendix A.1, we present a detailed performance comparison of various CNN
and ViT models on the COVID-19 detection task. The results are summarized in Table A1,
highlighting key performance metrics such as the best top-1 accuracy, the epoch at which
this accuracy was achieved, the best recall, the epoch at which the best recall was achieved,
the best loss, and the epoch corresponding to the best loss. These metrics provide insights
into the effectiveness and convergence characteristics of different models, allowing for
a thorough evaluation of their performance in detecting COVID-19 from medical images.

Table A1. Performance results of CNN and ViT models for COVID-19 detection.

Model Top-1
Accuracy (%)

Top-1 Accuracy
Epoch Recall (%) Recall

Epoch Best Loss Best Loss
Epoch

DenseNet-161 95.61 410 0.96 410 0.21 226
Vgg-13-bn 95.27 230 0.95 230 0.16 39

DenseNet-121 95.26 401 0.95 401 0.23 204
DenseNet-169 95.24 327 0.95 327 0.2 12

Vgg-19-bn 95.08 187 0.95 187 0.18 24
MaxVit-tiny 95.02 296 0.95 296 0.17 26
Vgg-11-bn 95.01 293 0.95 293 0.17 27
Vgg-16-bn 94.99 131 0.95 131 0.2 28

GoogLeNet 94.95 136 0.95 136 0.25 16
DenseNet-201 94.9 383 0.95 383 0.24 11

Vgg-16 94.27 130 0.94 130 0.21 20
EfficientNet-b4 94.25 290 0.94 290 0.19 30

MobileFormer-508M 94.15 129 0.94 129 0.25 24
MobileFormer-294M 94.11 125 0.94 125 0.26 9

Vgg-11 94.08 154 0.94 154 0.22 12
EfficientNet-b0 94.03 253 0.94 253 0.2 26

Vgg-13 94 90 0.94 90 0.22 11
MobileNetV2 93.97 442 0.94 442 0.26 17

Vgg-19 93.89 176 0.94 176 0.2 17
EfficientNet-b1 93.74 371 0.94 371 0.22 31
EfficientNet-b3 93.64 154 0.94 154 0.21 31

MobileFormer-151M 93.62 134 0.94 134 0.23 16
AlexNet 93.62 267 0.94 267 0.22 19

MobileFormer-214M 93.58 444 0.94 444 0.25 22
EfficientNet-v2-s 93.41 361 0.93 361 0.22 28

CCT-14-sine 93.3 120 0.93 120 0.24 33

https://github.com/krishnateja95/COVID19_Benchmarking
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Table A1. Cont.

Model Top-1
Accuracy (%)

Top-1 Accuracy
Epoch Recall (%) Recall

Epoch Best Loss Best Loss
Epoch

MobileNetV1 93.27 154 0.93 154 0.3 460
MobileFormer-96M 93.21 89 0.93 89 0.3 26

CCT-7-sine 93.12 170 0.93 170 0.27 30
ResNet18 93.05 170 0.93 170 0.29 443

EfficientNet-b2 93 257 0.93 257 0.27 26
RegNet-y-16gf 93 45 0.93 45 0.31 11

CCT-14 92.9 206 0.93 206 0.24 26
EfficientNet-b5 92.87 382 0.93 382 0.26 38

ShuffleNetV2-x0-5 92.86 278 0.93 278 0.23 25
GhostNetV2 92.81 160 0.93 160 0.29 9

ResNet34 92.81 271 0.93 271 0.3 8
ShuffleNetV2-x2-0 92.78 395 0.93 395 0.31 12
RegNet-y-800mf 92.77 58 0.93 58 0.31 16
RegNet-y-1-6gf 92.75 61 0.93 61 0.25 14

ShuffleNetV2-x1-5 92.75 236 0.93 236 0.31 5
RegNet-y-8gf 92.72 41 0.93 41 0.29 15

RegNet-y-3-2gf 92.72 68 0.93 68 0.31 11
ShuffleNetV2-x1-0 92.6 488 0.93 447 0.28 15
MobileFormer-26M 92.58 95 0.93 95 0.26 18

ResNext50 92.53 58 0.93 58 0.28 10
MobileNet-V3-large 92.47 422 0.92 422 0.36 61

PvT-v2-b3 92.43 56 0.92 56 0.24 19
RegNet-x-8gf 92.43 218 0.92 218 0.32 5

RegNet-x-1-6gf 92.38 254 0.92 254 0.33 467
RegNet-y-32gf 92.34 64 0.92 64 0.3 13

MobileFormer-52M 92.34 135 0.92 135 0.26 16
RegNet-y-400mf 92.32 110 0.92 110 0.3 23
RegNet-x-16gf 92.24 434 0.92 434 0.3 8

ResNet50 92.15 233 0.92 233 0.31 19
MNASnet-05 92.15 499 0.92 499 0.39 499

RegNet-x-400mf 92.13 437 0.92 437 0.33 22
RegNet-x-32gf 92.09 488 0.92 488 0.32 452
RegNet-x-3-2gf 92.02 107 0.92 92 0.32 15

FocalTransformer-Tiny 91.99 392 0.92 392 0.28 32
MNASnet-13 91.99 499 0.92 499 0.45 499

PvT-v2-b2 91.97 121 0.92 121 0.25 16
CCT-7 91.96 78 0.92 78 0.27 28

Swin-ViT-Tiny-window7 91.84 378 0.92 378 0.28 24
MNASnet-075 91.82 499 0.92 499 0.46 499

RegNet-x-800mf 91.81 401 0.92 401 0.33 14
FocalTransformer-Small 91.76 269 0.92 269 0.29 35

EfficientNet-v2-m 91.74 450 0.92 450 0.31 38
wide-ResNet50 91.74 286 0.92 286 0.27 13

mobilenet-v3-small 91.74 469 0.92 469 0.39 34
PvT-v2-b4 91.63 80 0.92 80 0.26 46

GCViT-xxTiny 91.62 349 0.92 349 0.26 29
Swin-ViT-Base 91.6 340 0.92 340 0.27 31
MNASnet-10 91.56 499 0.92 499 0.42 499

Swin-ViT-Small-window7 91.56 369 0.92 369 0.28 33
PvT-v2-b5 91.48 46 0.91 46 0.25 19
ResNet101 91.44 481 0.91 481 0.32 14
DeepViT-S 91.44 340 0.91 340 0.27 32
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Table A1. Cont.

Model Top-1
Accuracy (%)

Top-1 Accuracy
Epoch Recall (%) Recall

Epoch Best Loss Best Loss
Epoch

Swin-ViT-Large-window7 91.37 402 0.91 402 0.29 33
Swin-ViT-Small 91.34 437 0.91 437 0.28 31

PvT-v2-b2-Linear 91.32 54 0.91 54 0.29 26
VAN-b0 91.32 257 0.91 257 0.28 238

PvT-v2-b1 91.32 35 0.91 35 0.25 22
GCViT-xTiny 91.28 169 0.91 169 0.26 33
ResNext101 91.25 358 0.91 358 0.33 6

Swin-ViT-Base-window7 91.15 407 0.91 407 0.29 34
T2T-ViT-T-24 91.12 130 0.91 130 0.3 32

Swin-ViT-Tiny 91.07 389 0.91 389 0.26 29
T2T-ViT-19 90.95 169 0.91 169 0.3 32
GCViT-Tiny 90.93 111 0.91 111 0.27 24

wide-ResNet101 90.9 456 0.91 456 0.4 5
GCViT-Tiny2 90.87 81 0.91 81 0.25 31

ResNet152 90.81 108 0.91 108 0.37 17
T2T-ViT-14-wide 90.79 121 0.91 114 0.32 15

CrossFormer-small 90.72 232 0.91 232 0.29 24
T2T-ViT-14 90.69 133 0.91 133 0.29 31

LVT 90.65 60 0.91 60 0.28 28
NFNet-F0 90.65 20 0.91 20 0.27 20

CrossFormer-base 90.63 332 0.91 332 0.28 40
PvT-v2-b0 90.62 71 0.91 71 0.28 24

CrossFormer-large 90.6 192 0.91 192 0.27 30
DeepViT-L 90.54 214 0.91 214 0.3 87

CrossFormer-tiny 90.54 419 0.91 419 0.3 31
PvT-Large 90.48 150 0.9 150 0.31 32
T2T-ViT-10 90.34 245 0.9 245 0.3 32

RegionViT-Small 90.32 135 0.9 135 0.29 15
T2T-ViT-14-resnext 90.26 236 0.9 236 0.29 26

VAN-b1 90.17 64 0.9 64 0.31 11
Twins-PCPVT-Large 90.11 58 0.9 58 0.28 21

Twins-SVT-Base 90.04 52 0.9 52 0.31 18
Sep-ViT-Small 90.03 71 0.9 71 0.31 25

VAN-b2 89.97 43 0.9 43 0.33 14
T2T-ViT-24 89.95 221 0.9 210 0.32 28

Sep-ViT-Base 89.85 104 0.9 104 0.28 22
Twins-PCPVT-Base 89.81 57 0.9 57 0.31 18

T2T-ViT-7 89.81 191 0.9 191 0.29 39
PvT-Tiny 89.79 153 0.9 153 0.32 36

RegionViT-Base 89.7 140 0.9 140 0.3 25
Twins-SVT-Large 89.7 63 0.9 63 0.3 13

Sep-ViT-Tiny 89.7 56 0.9 56 0.29 23
PvT-Small 89.67 87 0.9 87 0.32 32

RegionViT-Medium 89.64 179 0.9 179 0.3 17
T2T-ViT-T-19 89.58 104 0.9 104 0.32 24
T2T-ViT-12 89.54 229 0.9 229 0.29 33

PiT-XS 89.5 97 0.89 97 0.33 21
RegionViT-Tiny 89.47 157 0.89 157 0.32 19

TNT-Base 89.41 215 0.89 215 0.32 38
Twins-SVT-Small 89.39 57 0.89 57 0.31 21

T2T-ViT-T-14 89.39 134 0.89 134 0.31 31
Twins-PCPVT-Small 89.3 49 0.89 49 0.29 18
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Table A1. Cont.

Model Top-1
Accuracy (%)

Top-1 Accuracy
Epoch Recall (%) Recall

Epoch Best Loss Best Loss
Epoch

CrossViT-15-dagger 89.25 236 0.89 236 0.32 31
PiT-Small 89.11 103 0.89 103 0.34 18

CrossViT-9-dagger 89.04 135 0.89 135 0.33 34
CvT-21 89.04 286 0.89 286 0.37 24

CrossViT-Small 88.85 254 0.89 254 0.32 41
CrossViT-15 88.77 207 0.89 207 0.33 36

PiT-TI 88.74 120 0.89 120 0.35 16
CrossViT-Base 88.74 179 0.89 179 0.34 33

EdgeNeXt-BNHS-Xsmall 88.74 54 0.89 54 0.3 38
TNT-Small 88.72 171 0.89 171 0.31 45

ConvNext-Small 88.67 59 0.89 59 0.32 59
CrossViT-18 88.57 265 0.89 265 0.33 41

ViT-Small-patch8 88.41 43 0.88 43 0.32 43
Sep-ViT-Lite 88.35 27 0.88 27 0.32 27

ViT-Small-patch16 88.29 204 0.88 204 0.34 37
EdgeNeXt-BNHS-Small 88.27 253 0.88 253 0.35 42

CvT-13 88.21 68 0.88 68 0.35 27
CaiT-XS24 88.16 108 0.88 108 0.33 80

CrossViT-Tiny 87.99 218 0.88 218 0.32 46
CaiT-XS36 87.95 84 0.88 84 0.33 72
CrossViT-9 87.82 200 0.88 200 0.33 41

ViT-Tiny-patch16 87.67 182 0.88 182 0.36 39
CaiT-XXS24 87.51 102 0.88 102 0.35 88

ConvNext-Tiny 87.48 68 0.87 68 0.35 68
CaiT-S24 87.46 74 0.87 74 0.34 59

MLPMixer 87.43 60 0.87 60 0.37 6
ViT-Base-patch16 87.29 186 0.87 186 0.36 34
ConvNext-Base 87.24 47 0.87 47 0.35 47

ResMLP 87.11 38 0.87 38 0.36 31
EdgeNeXt-Small 87.09 69 0.87 69 0.35 54

CaiT-XXS36 87.05 74 0.87 74 0.35 74
EdgeNeXt-Base 86.93 54 0.87 54 0.36 46

ViT-Large-patch32 86.73 167 0.87 167 0.4 33
EdgeNeXt-Xsmall 86.65 57 0.87 57 0.37 42
ViT-Base-patch32 86.34 155 0.86 154 0.41 36
ViT-Small-patch32 86.06 129 0.86 129 0.43 25

EdgeNeXt-BNHS-Xxsmall 85.92 58 0.86 58 0.4 38
GCViT-Small 85.75 65 0.86 65 0.39 32

PoolFormer-S36 85.22 484 0.85 484 0.39 442
SqueezeNet-1-1 85.11 463 0.63 445 0.59 437
PoolFormer-S12 83.91 37 0.84 37 0.42 37

NFNet-F1 83.44 10 0.83 10 0.44 10
BoTNet 83.38 294 0.83 294 0.45 151
PiT-Base 81.51 20 0.82 20 0.47 20

PoolFormer-M36 81.38 20 0.81 20 0.48 14
PoolFormer-S24 80.38 38 0.8 38 0.49 33

PvT-Medium 75.84 4 0.76 4 0.6 4
SqueezeNet-1-0 45.54 2 0.46 9 1.02 1

Inception-Resnet-v2 34.69 18 0.35 18 1.06 16
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Appendix A.2. Computation Efficiency of CNN and ViT Models for COVID-19 Detection

This section provides a comparative analysis of the computational efficiency of various
CNN and ViT models used for COVID-19 detection. Table A2 summarizes critical metrics
such as the number of parameters, multiply–accumulate operations (MACs), floating-point
operations (FLOPs), training time per epoch, CPU latency, GPU latency, training memory,
and inference memory. These metrics are essential for understanding the computational
demands and efficiency of different models, which are crucial factors when deploying these
models in real-world applications where resources may be limited.

Table A2. Computation efficiency of CNN and ViT models for COVID-19 detection.

Model
Number of
Parameters
(Million)

MACs
(Billion)

FLOPs
(Billion)

Training
Time per
Epoch (s)

CPU
Latency

(ms)

GPU
Latency

(ms)

Training
Memory

(GB)

Inference
Memory

(MB)

ShuffleNetV2-x0-5 0.34 0.04 0.04 17.4 5.87 4.36 0.02 1.46
SqueezeNet-1-1 0.72 0.26 0.26 17.36 5.17 1.5 0.03 2.78
SqueezeNet-1-0 0.74 0.73 0.73 17.16 7.43 1.55 0.04 2.83

MNASnet-05 0.94 0.12 0.11 16.97 6.62 3.16 0.04 3.78
EdgeNeXt-BNHS-Xxsmall 1.16 0.2 0.2 17.81 7.27 4.1 0.04 4.52

ShuffleNetV2-x1-0 1.26 0.15 0.15 18.21 8.59 4.46 0.04 4.95
mobilenet-v3-small 1.52 0.06 0.06 17.22 5.03 3.43 0.04 5.99

MNASnet-075 1.89 0.23 0.22 17.2 8.17 3.3 0.07 7.43
EdgeNeXt-Xsmall 2.14 0.4 0.41 18.29 12.06 5.5 0.07 8.31

EdgeNeXt-BNHS-Xsmall 2.14 0.41 0.41 18.09 10.66 5.21 0.07 8.32
MobileFormer-26M 2.21 0.03 0.03 17.44 12.1 12.18 0.05 8.72
MobileFormer-52M 2.21 0.03 0.03 17.3 12.51 12.23 0.05 8.72

MobileNetV2 2.23 0.33 0.31 16.88 9.13 3.36 0.11 8.76
ShuffleNetV2-x1-5 2.48 0.31 0.3 17.19 9.62 4.25 0.07 9.66

MNASnet-10 3.11 0.33 0.32 17.5 9.71 3.46 0.09 12.08
MobileNetV1 3.21 0.59 0.58 16.7 7.17 1.71 0.09 12.35

MobileFormer-96M 3.31 0.1 0.1 17.61 14.24 12.3 0.08 12.88
Sep-ViT-Lite 3.4 0.49 0.57 18.94 12.79 6.75 0.08 13.08
PvT-v2-b0 3.41 0.53 0.57 25.2 13.22 4.72 0.1 13.09

LVT 3.42 0.73 0.76 27.65 17.16 4.68 0.1 13.12
VAN-b0 3.85 0.87 0.87 26.11 20.39 6.84 0.14 14.91

RegNet-y-400mf 3.9 0.42 0.41 17.43 11.59 6.14 0.09 15.21
T2T-ViT-7 4 0.98 1.16 21.85 11.11 3.95 0.1 15.51

EfficientNet-b0 4.01 0.41 0.4 20.93 12.67 5.37 0.14 15.7
mobilenet-v3-large 4.2 0.23 0.22 17.19 8.98 4.14 0.1 16.31

CCT-7-sine 4.5 1.47 1.61 17.46 9.7 2.52 0.09 17.38
CCT-7 4.5 1.47 1.61 17.43 9.71 2.55 0.09 17.38
PiT-TI 4.54 0.5 0.5 16.95 8.98 3.41 0.09 17.66

GhostNetV2 4.88 0.18 0.18 23.17 21.16 9.38 0.13 19.14
MNASnet-13 5.01 0.55 0.54 19.98 12.04 3.31 0.13 19.36

RegNet-x-400mf 5.1 0.43 0.42 17.47 11.02 5.39 0.1 19.85
EdgeNeXt-Small 5.27 0.96 0.97 23.73 16.06 5.58 0.14 20.29

EdgeNeXt-BNHS-Small 5.28 0.96 0.97 20.22 13.87 5.22 0.13 20.3
ShuffleNetV2-x2-0 5.35 0.6 0.59 17.32 12.92 4.34 0.12 20.62
ViT-Tiny-patch16 5.49 1.08 1.08 17.36 10.78 3.18 0.11 21.22

T2T-ViT-10 5.58 1.29 1.53 26.47 14.23 5.01 0.13 21.55
GoogLeNet 5.6 1.51 1.5 17.23 18.13 4.57 0.2 38.12

RegNet-y-800mf 5.65 0.86 0.85 18.23 13.3 5.49 0.13 21.87
MobileFormer-151M 6.32 0.15 0.15 18.74 19.1 15.93 0.14 24.49

EfficientNet-b1 6.52 0.61 0.59 29.56 19.09 7.48 0.21 25.43
RegNet-x-800mf 6.59 0.82 0.81 17.21 12.13 3.92 0.14 25.45

T2T-ViT-12 6.63 1.5 1.77 29.52 16.16 5.68 0.15 25.58
CrossViT-Tiny 6.65 1.3 1.57 26.52 17.51 7.96 0.15 25.84
DenseNet-121 6.96 2.9 2.86 29.16 34.84 9.91 0.23 27.03
EfficientNet-b2 7.71 0.7 0.68 30.98 19.95 7.5 0.24 30.01

MobileFormer-214M 7.83 0.21 0.21 20.64 20.91 16.17 0.17 30.29
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Table A2. Cont.

Model
Number of
Parameters
(Million)

MACs
(Billion)

FLOPs
(Billion)

Training
Time per
Epoch (s)

CPU
Latency

(ms)

GPU
Latency

(ms)

Training
Memory

(GB)

Inference
Memory

(MB)

CrossViT-9 8.07 1.54 1.85 28.48 16.75 7.16 0.17 31.28
RegNet-x-1-6gf 8.28 1.63 1.62 19.06 17.01 4.7 0.19 31.98

CrossViT-9-dagger 8.29 1.68 1.99 29.22 17.61 7.43 0.18 32.14
MobileFormer-294M 9.51 0.29 0.29 23.48 21.14 15.82 0.21 36.69

PiT-XS 10.16 1.1 1.1 18.32 12.31 3.5 0.18 39.2
RegNet-y-1-6gf 10.32 1.65 1.63 21.78 24.06 10.79 0.22 39.87
EfficientNet-b3 10.69 0.97 0.95 36.41 24.44 8.72 0.31 41.52

ResNet18 11.18 1.82 1.82 17.69 9.42 1.57 0.19 42.7
PoolFormer-S12 11.38 1.81 1.82 17.48 17.63 3.36 0.23 44.42
GCViT-xxTiny 11.44 1.96 2.14 47.39 27.75 9.31 0.28 46.19

CaiT-XXS24 11.72 2.18 2.53 54.46 37.67 11.8 0.28 45.11
MobileFormer-508M 12.06 0.5 0.51 29.69 26.1 15.85 0.28 46.47

PvT-Tiny 12.33 1.86 1.94 27.91 18.65 4.34 0.26 48.7
DenseNet-169 12.49 3.43 3.4 35.04 46.82 14.04 0.34 48.48

RegionViT-Tiny 13.31 2.31 2.43 52.56 31.93 11.85 0.3 50.98
VAN-b1 13.34 2.51 2.5 35.84 29.37 5.48 0.32 51.57

PvT-v2-b1 13.5 2.04 2.12 45.28 25.29 4.76 0.29 51.56
RegNet-x-3-2gf 14.29 3.22 3.2 24.6 27.22 6.37 0.3 55.01

ResMLP 14.94 3.01 3.01 32 14.76 2.93 0.27 58.06
CaiT-XXS36 17.06 3.24 3.77 80.26 57.31 17.66 0.42 65.6

EfficientNet-b4 17.55 1.58 1.54 49.72 32.27 10.61 0.48 68.25
EdgeNeXt-Base 17.91 2.92 2.95 45.6 26.18 5.54 0.38 69.99
RegNet-y-3-2gf 17.93 3.22 3.2 28.75 30.39 8.31 0.37 69.61
DenseNet-201 18.1 4.39 4.34 43.93 61.95 17.11 0.46 70.19

BoTNet 18.8 4.02 4.06 23.98 28.94 4.86 0.37 72.1
GCViT-xTiny 19.42 2.71 2.94 62.8 37.31 12.06 0.43 76.8

CvT-13 19.61 4.08 4.58 58.61 39.41 11.54 0.4 75.07
EfficientNet-v2-s 20.18 2.9 2.88 32.62 36.04 11.8 0.46 79.03
PoolFormer-S24 20.84 3.39 3.41 23.6 33.95 6.59 0.42 80.66

T2T-ViT-T-14 21.08 4.35 6.11 74.47 38.4 5.92 0.44 80.8
T2T-ViT-14 21.08 4.35 4.8 55.18 28.44 6.35 0.4 80.81

T2T-ViT-14-resnext 21.08 4.35 4.8 87.15 30.72 6.4 0.46 80.81
ResNet34 21.29 3.68 3.67 17.28 17.02 2.62 0.35 82.18

ViT-Small-patch8 21.37 16.76 16.76 184.67 96.67 4.8 0.55 83.08
ViT-Small-patch16 21.59 4.25 4.25 41.85 23.29 3.11 0.38 83.09

NFNet-F0 21.86 0.02 9.18 38.27 105.73 10.76 1.69 263.07
CCT-14-sine 21.91 5.12 5.53 50.1 27.48 4.8 0.4 84.13

CCT-14 21.91 5.12 5.53 50.08 27.86 4.89 0.4 84.13
PvT-v2-b2-Linear 22.04 3.76 3.91 87.54 44.64 10.11 0.49 85.04
ViT-Small-patch32 22.48 1.12 1.12 17.68 10.95 3.16 0.35 85.94

PiT-Small 22.78 2.42 2.42 31.43 21.77 3.65 0.39 87.48
ResNext50 22.99 4.29 4.26 28.87 32.07 4.12 0.45 88.61
TNT-Small 23.3 4.85 5.24 118.45 43.93 10.97 0.49 91.95
ResNet50 23.51 4.13 4.11 22.31 27.27 3.95 0.43 89.95

Twins-SVT-Small 23.55 2.82 2.82 42.83 31.37 8.28 0.44 90.98
PvT-Small 23.58 3.69 3.83 49.5 33.56 8.27 0.48 91.69

Twins-PCPVT-Small 23.59 3.68 3.68 47.79 36.44 7.33 0.47 90.47
T2T-ViT-14-wide 24.23 4.97 5.24 52.51 23.82 3.17 0.42 93.39

PvT-v2-b2 24.85 3.9 4.05 80.47 43.29 9.24 0.53 94.93
VAN-b2 26.06 5.01 5 64.12 57.48 10.47 0.6 100.61

CrossViT-Small 26.13 5.08 5.63 65 33.22 7.91 0.5 100.72
CaiT-XS24 26.2 4.87 5.4 84.85 59.42 11.93 0.56 100.48

DenseNet-161 26.48 7.84 7.78 52.73 73.24 14.4 0.63 103.1
CrossViT-15-dagger 27.48 5.49 6.13 67.44 37.02 8.9 0.53 106.18

Swin-ViT-Tiny-window7 27.5 4.37 4.51 62.9 30.61 6.26 0.52 106.45
Swin-ViT-Base-window7 27.5 4.37 4.51 62.94 31.31 6.45 0.52 106.45
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Model
Number of
Parameters
(Million)

MACs
(Billion)

FLOPs
(Billion)

Training
Time per
Epoch (s)

CPU
Latency

(ms)

GPU
Latency

(ms)

Training
Memory

(GB)

Inference
Memory

(MB)

Swin-ViT-Tiny 27.5 4.38 4.64 65.37 32.72 5.9 0.54 108.14
GCViT-Tiny 27.58 4.32 4.79 90.34 59.13 19.18 0.62 112.12

ConvNext-Tiny 27.81 4.46 4.47 60.66 25.91 3.65 0.52 107.11
EfficientNet-b5 28.35 2.46 2.41 67.67 45 12.76 0.72 110.67

FocalTransformer-Tiny 29.44 4.66 5.22 146.14 65.75 17.82 0.62 116
RegionViT-Small 29.79 5.19 5.35 84.44 44.81 11.9 0.59 114.75

CrossFormer-small 29.89 4.79 4.92 63.15 37.44 9.12 0.56 114.42
PoolFormer-S36 30.29 4.97 5 33.99 50.58 9.5 0.62 116.89

MaxVit-tiny 30.38 5.46 5.61 91.16 64.36 17.1 0.75 118.93
Sep-ViT-Tiny 30.4 4.28 4.53 60.46 32.76 6.82 0.56 116.46

CvT-21 31.24 6.54 7.21 89.71 60.54 18.49 0.63 119.56
GCViT-Tiny2 33.84 5.56 6.21 110.91 67.88 23.66 0.76 139.19
RegNet-y-8gf 37.17 8.04 8 41.54 49.33 6.97 0.71 143.66
RegNet-x-8gf 37.66 8.05 8.02 33.09 46.26 6.53 0.67 144.42

CaiT-XS36 38.19 7.25 8.05 125.61 87.81 16.97 0.81 146.36
T2T-ViT-T-19 38.64 7.8 9.81 111.49 54.7 7.3 0.75 147.87
T2T-ViT-19 38.64 7.8 8.5 91.81 43.65 8.18 0.71 147.88

RegionViT-Medium 40.41 7.22 7.43 106.99 55.75 16.46 0.76 155.33
CrossViT-18 42.42 8.21 9.05 99.93 48.94 9.79 0.78 163.05
ResNet101 42.51 7.86 7.83 33.93 49.66 7.91 0.75 162.89

PvT-Medium 43.31 6.46 6.69 76.58 53.59 14.11 0.82 167.01
Twins-PCPVT-Base 43.32 6.46 6.46 72.79 57.61 12.48 0.8 165.82

NFNet-F1 43.7 0.04 16.92 66.52 189.01 20.18 3.17 500.84
PvT-v2-b3 44.73 6.7 6.92 116.41 68.55 15.47 0.88 170.85

Sep-ViT-Small 45.78 7.07 7.48 93.93 50.93 11.43 0.84 176.7
CaiT-S24 46.44 8.63 9.35 118.42 80.53 12.09 0.91 177.99

Swin-ViT-Small-window7 48.79 8.54 8.77 107.99 56.78 12.5 0.9 188.27
Swin-ViT-Large-window7 48.79 8.55 8.77 125.08 58.6 12.65 0.92 188.46

Swin-ViT-Small 48.79 8.58 9.43 121.63 64.03 10.84 0.98 196.6
ConvNext-Small 49.44 8.7 8.7 108.96 45.36 6.8 0.91 189.73

GCViT-Small 50.11 7.87 8.57 135.43 73.2 18.98 1.05 199.24
FocalTransformer-Small 50.74 8.87 9.75 244.35 115.78 35.54 1.07 201.32

CrossFormer-base 51.2 8.96 9.19 107.93 63.41 17.06 0.94 196.1
RegNet-x-16gf 52.24 16.04 15.99 53.72 74.41 6.54 0.98 202.09

EfficientNet-v2-m 52.86 5.45 5.41 53.7 65.57 16.43 1.05 207.29
Inception-Resnet-v2 54.31 6.5 6.48 39 82.18 19.93 0.91 210.51

Twins-SVT-Base 55.3 8.36 8.36 92.75 58.72 11.19 0.99 214.47
PoolFormer-M36 55.32 8.76 8.8 48 75.19 9.47 1.07 211.63

AlexNet 57.02 0.71 0.71 17.03 8.95 0.51 0.85 217.5
ResNet152 58.15 11.6 11.56 46.75 72.23 12.03 1.04 222.54
DeepViT-L 58.38 12.16 13.19 184.18 82.44 13.83 1.12 223.34
PvT-Large 60.47 9.53 9.85 109 79.53 20.33 1.14 232.44

Twins-PCPVT-Large 60.48 9.52 9.53 102.84 82.13 18.06 1.12 231.77
PvT-v2-b4 62.04 9.82 10.14 165.58 97.98 23.3 1.22 237.76

T2T-ViT-T-24 63.49 12.7 15 154.36 71.54 9.34 1.17 243.59
T2T-ViT-24 63.49 12.7 13.69 134.95 63.92 10.35 1.13 243.6
TNT-Base 64.64 13.44 14.09 196.07 80.53 11.11 1.19 247.23

wide-ResNet50 66.84 11.45 11.42 33.16 60.34 4.02 1.11 257.28
Swin-ViT-Base 70.09 12.75 13.69 164.92 89.29 15.83 1.36 278.57

RegionViT-Base 71.67 12.79 13.07 161.49 85.48 16.52 1.3 276.61
PiT-Base 72.5 10.55 10.56 105.05 59.57 3.98 1.22 279.65

RegNet-y-16gf 80.57 16.01 15.96 58.87 83.78 8.36 1.42 316.53
Sep-ViT-Base 81.33 12.54 13.08 144.88 73.92 11.35 1.42 312.46

PvT-v2-b5 81.44 11.38 11.76 170.68 109.8 29.59 1.5 311.92
ViT-Base-patch16 85.65 16.86 16.87 136.99 65.71 4.78 1.39 327.43

ResNext101 86.75 16.54 16.47 69.47 95.97 7.93 1.55 336.15
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MACs
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FLOPs
(Billion)

Training
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Epoch (s)

CPU
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GPU
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(ms)

Training
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ViT-Base-patch32 87.42 4.37 4.37 35.79 27.77 3.3 1.33 333.75
ConvNext-Base 87.55 15.37 15.38 171.72 73.34 6.8 1.53 334.24

CrossFormer-large 90.95 15.85 16.15 168.25 90.3 16.84 1.61 351.68
Twins-SVT-Large 98.25 14.83 14.84 146.98 85.83 11.1 1.69 379.97

CrossViT-Base 103.57 20.13 21.22 188.87 90.13 7.96 1.79 407.83
RegNet-x-32gf 105.3 31.88 31.81 100.28 132.68 6.82 1.85 402.73

wide-ResNet101 124.84 22.84 22.79 55.16 107.95 8.07 2.05 484.85
Vgg-11 128.78 7.61 7.61 20.46 40.37 0.95 1.97 491.25

Vgg-11-bn 128.78 7.63 7.62 25.71 40.52 1.08 1.99 491.3
Vgg-13 128.96 11.3 11.3 30.26 49.86 1.08 1.99 491.96

Vgg-13-bn 128.97 11.35 11.33 39.61 50.98 1.26 2.03 492.01
Vgg-16 134.27 15.47 15.47 35.48 60.87 1.3 2.07 513.09

Vgg-16-bn 134.28 15.52 15.49 45.63 62.06 1.52 2.12 513.16
Vgg-19 139.58 19.63 19.63 41.03 73.43 1.52 2.16 532.47

Vgg-19-bn 139.59 19.69 19.66 51.7 73.04 1.71 2.21 532.56
RegNet-y-32gf 141.34 32.4 32.34 88.81 146.35 8.37 2.41 551.99

ViT-Large-patch32 305.46 15.26 15.27 114.15 90.16 6.2 4.63 1165.68

Appendix A.3. Performance and Computational Results of CNN and ViT Models for
Flower Recognition

In this section, we provide a comprehensive performance and computation metrics
comparison of different CNN and ViT models for the flower recognition task. The sum-
marized results, found in Table A3, include crucial metrics such as the accuracy, F1 score,
MACs, FLOPs, and training time per epoch.

Table A3. Performance results of CNN and ViT models for flower recognition.

Model
Number of
Parameters
(Million)

MACs
(Billion)

FLOPs
(Billion)

Training
Time per
Epoch (s)

Top-1
Accuracy

(%)

Top-1
Accuracy

Epoch
F1 Score F1 Score

Epoch

SqueezeNet-1-1 0.73 0.26 0.26 3.06 35.07 3 0.35 3
ShuffleNetV2-x0-5 0.35 0.04 0.04 3.03 66.78 194 0.75 194

MobileNetV2 2.23 0.33 0.31 3.24 69.91 78 0.79 78
MNASnet-05 0.94 0.12 0.11 3.28 36.11 273 0.43 273

EdgeNeXt-BNHS-Xsmall 2.14 0.41 0.41 3.23 49.19 111 0.58 224
DenseNet-161 26.48 7.84 7.78 7.21 73.73 274 0.82 274

ResNet18 11.18 1.82 1.82 3.17 69.33 144 0.78 144
GoogLeNet 5.61 1.51 1.5 3.2 78.01 274 0.85 274
MLPMixer 7.28 2.59 2.59 3.16 50.23 11 0.61 7

PiT-XS 10.17 1.1 1.1 3.2 64.12 47 0.74 87
GhostNetV2 4.88 0.18 0.18 3.69 68.17 131 0.78 131

VAN-b0 3.85 0.87 0.87 4 60.3 88 0.7 88
BoTNet 18.81 4.02 4.06 3.74 53.47 320 0.64 375

LVT 3.42 0.73 0.76 4.17 61.46 84 0.71 89
MobileFormer-508M 12.06 0.5 0.51 4.47 72.57 186 0.81 186

GCViT-xxTiny 11.44 1.96 2.14 6.5 64.12 199 0.74 199
EfficientNet-b4 17.56 1.58 1.54 6.82 66.32 301 0.76 301
PoolFormer-S36 30.29 4.97 5 4.97 44.79 64 0.55 53

NFNet-F0 21.86 0.02 9.18 5.46 41.9 1 0.48 2
CCT-14-sine 21.91 5.12 5.53 6.88 56.48 7 0.66 4

Swin-ViT-Tiny-window7 27.5 4.37 4.51 8.35 59.61 272 0.69 56
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Model
Number of
Parameters
(Million)

MACs
(Billion)

FLOPs
(Billion)

Training
Time per
Epoch (s)

Top-1
Accuracy

(%)

Top-1
Accuracy

Epoch
F1 Score F1 Score

Epoch

CrossFormer-small 29.89 4.79 4.92 8.44 62.38 182 0.72 182
CrossViT-15-dagger 27.48 5.49 6.13 8.9 62.96 80 0.73 80

RegionViT-Small 29.79 5.19 5.35 10.7 37.15 5 0.41 5
DeepViT-S 26.84 5.9 6.38 11.29 65.97 415 0.75 335
CaiT-XS24 26.2 4.87 5.4 10.99 61 52 0.71 52

MaxVit-tiny 30.38 5.46 5.61 11.75 75.93 248 0.83 248
AlexNet 57.02 0.71 0.71 3 55.56 31 0.66 26

ViT-Small-patch8 21.37 16.76 16.76 22.8 63.19 127 0.73 127
FocalTransformer-Tiny 29.44 4.66 5.22 18.33 63.43 374 0.72 178

CvT-21 31.24 6.54 7.21 11.65 56.25 85 0.66 56
Sep-ViT-Small 45.78 7.07 7.48 12.17 56.02 75 0.66 75
RegNet-y-16gf 80.58 16.01 15.96 7.88 68.06 288 0.77 307

PvT-v2-b3 44.73 6.7 6.92 14.87 62.73 72 0.72 99
ConvNext-Small 49.44 8.7 8.7 13.87 51.27 156 0.62 156

Twins-PCPVT-Large 60.48 9.52 9.53 13.15 57.99 331 0.68 331
TNT-Base 64.64 13.44 14.09 24.24 62.04 93 0.71 93

T2T-ViT-T-24 63.49 12.7 15 19.38 51.39 350 0.62 350

Appendix A.4. Performance and Computational Results of CNN and ViT Models for
Weather Classification

In this section, we provide a comprehensive performance and computation metrics
comparison of different CNN and ViT models for the weather classification task. The sum-
marized results, found in Table A4, include crucial metrics such as the accuracy, F1 score,
MACs, FLOPs, and training time per epoch.

Table A4. Performance results of CNN and ViT models for weather classification.

Model
Number of
Parameters
(Million)

MACs
(Billion)

FLOPs
(Billion)

Training
Time per
Epoch (s)

Top-1
Accuracy

(%)

Top-1
Accuracy

Epoch
F1 Score F1 Score

Epoch

SqueezeNet-1-1 0.72 0.26 0.26 1.87 72.77 10 0.65 10
ShuffleNetV2-x0-5 0.35 0.04 0.04 1.89 95.09 55 0.95 55

MNASnet-05 0.94 0.12 0.11 2.03 56.25 96 0.48 96
EdgeNeXt-BNHS-Xsmall 2.14 0.41 0.41 2.03 84.82 28 0.85 28

MLPMixer 7.28 2.59 2.59 2.07 87.05 14 0.87 14
MobileNetV2 2.23 0.33 0.31 2.13 96.88 52 0.97 52
GoogLeNet 5.6 1.51 1.5 2.12 95.54 66 0.95 66
ResNet18 11.18 1.82 1.82 1.97 96.43 57 0.96 122

LVT 3.42 0.73 0.76 2.41 83.93 100 0.84 100
GhostNetV2 4.88 0.18 0.18 2.31 95.09 46 0.95 46

PiT-XS 10.17 1.1 1.1 2.25 85.71 63 0.86 63
VAN-b0 3.85 0.87 0.87 2.36 93.75 284 0.94 324

MobileFormer-508M 12.06 0.5 0.51 2.53 96.43 89 0.96 89
BoTNet 18.81 4.02 4.06 2.35 95.54 40 0.96 159

GCViT-xxTiny 11.44 1.96 2.14 2.96 89.73 131 0.9 131
EfficientNet-b4 17.56 1.58 1.54 3.01 88.39 248 0.88 248

CCT-14-sine 21.91 5.12 5.53 2.98 81.25 2 0.81 2
NFNet-F0 21.86 0.02 9.18 2.82 75 3 0.72 3

DenseNet-161 26.48 7.84 7.78 3.19 96.43 69 0.96 69
Swin-ViT-Tiny-window7 27.5 4.37 4.51 3.38 87.95 149 0.88 184

CrossViT-15-dagger 27.48 5.49 6.13 3.52 85.27 91 0.85 117
DeepViT-S 26.84 5.9 6.38 3.96 89.73 142 0.9 226
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Table A4. Cont.

Model
Number of
Parameters
(Million)

MACs
(Billion)

FLOPs
(Billion)

Training
Time per
Epoch (s)

Top-1
Accuracy

(%)

Top-1
Accuracy

Epoch
F1 Score F1 Score

Epoch

CaiT-XS24 26.2 4.87 5.4 4.14 76.79 20 0.76 25
ViT-Small-patch8 21.37 16.76 16.76 6.46 88.84 206 0.89 206
PoolFormer-S36 30.29 4.97 5 2.63 88.84 184 0.89 184

CrossFormer-small 29.89 4.79 4.92 3.38 81.7 136 0.81 136
RegionViT-Small 29.79 5.19 5.35 4.15 58.04 5 0.46 12

AlexNet 57.02 0.71 0.71 1.87 64.29 14 0.58 14
MaxVit-tiny 30.38 5.46 5.61 4.21 98.21 338 0.98 389

CvT-21 31.24 6.54 7.21 4.52 86.16 102 0.86 102
FocalTransformer-Tiny 29.44 4.66 5.22 5.84 90.63 176 0.9 176

Sep-ViT-Small 45.78 7.07 7.48 4.38 65.63 2 0.63 30
PvT-v2-b3 44.73 6.7 6.92 5.43 75 16 0.74 15

ConvNext-Small 49.44 8.7 8.7 5.06 85.27 343 0.85 399
Twins-PCPVT-Large 60.48 9.52 9.53 4.73 87.05 76 0.87 76

RegNet-y-16gf 80.58 16.01 15.96 3.34 95.54 251 0.96 252
Vgg-13-bn 128.97 11.35 11.33 2.73 95.98 77 0.96 77

T2T-ViT-T-24 63.49 12.7 15 5.8 75 359 0.74 359
TNT-Base 64.64 13.44 14.09 7.05 87.05 180 0.87 180
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