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Abstract: One of the biggest problems in gaming AI is related to how we can optimize and adapt a
deep reinforcement learning (DRL) model, especially when it is running inside complex, dynamic
environments like “PacMan”. The existing research has concentrated more or less on basic DRL
approaches though the utilization of advanced optimization methods. This paper tries to fill these
gaps by proposing an innovative methodology that combines DRL with high-level metaheuristic
optimization methods. The work presented in this paper specifically refactors DRL models on
the “PacMan” domain with Energy Serpent Optimizer (ESO) for hyperparameter search. These
novel adaptations give a major performance boost to the AI agent, as these are where its adaptability,
response time, and efficiency gains start actually showing in the more complex game space. This work
innovatively incorporates the metaheuristic optimization algorithm into another field—DRL—for
Atari gaming AI. This integration is essential for the improvement of DRL models in general and
allows for more efficient and real-time game play. This work delivers a comprehensive empirical
study for these algorithms that not only verifies their capabilities in practice but also sets a state of
the art through the prism of AI-driven game development. More than simply improving gaming
AI, the developments could eventually apply to more sophisticated gaming environments, ongoing
improvement of algorithms during execution, real-time adaptation regarding learning, and likely
even robotics/autonomous systems. This study further illustrates the necessity for even-handed and
conscientious application of AI in gaming—specifically regarding questions of fairness and addiction.

Keywords: SOA; EVO; reinforcement learning; metaheuristic; agent; ESO

1. Introduction

In the realm of artificial intelligence, machine learning stands as a cornerstone, offering
a diverse spectrum of applications that significantly impact various sectors. Among its
numerous methodologies, three distinct learning paradigms dominate—supervised learn-
ing (SL) [1], unsupervised learning (UL) [2], and reinforcement learning (RL) [3]—each
contributing uniquely to the advancement of AI technologies. SL [1], with its foundation in
input–output data correlations, has been integral in developing practical applications such
as spam detection [4], image recognition, object detection [5], and predictive analytics [6].
UL [2], on the other hand, ventures into the territory of identifying underlying patterns in
unlabeled data, employing techniques like k-means clustering and principal component
analysis for data classification and dimensionality reduction [7,8].

Deep learning (DL), an extension of conventional machine learning, has emerged as
a critical development, especially in its ability to automate feature extraction and process
vast datasets [9]. This advancement is particularly evident in fields requiring the analysis
of unstructured data types like images and audio. However, it is the dynamic and complex

AI 2024, 5, 1172–1191. https://doi.org/10.3390/ai5030057 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai5030057
https://doi.org/10.3390/ai5030057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0009-0004-4388-8561
https://orcid.org/0000-0002-8444-1094
https://doi.org/10.3390/ai5030057
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai5030057?type=check_update&version=1


AI 2024, 5 1173

world of Atari gaming [10] that presents a unique challenge, one that necessitates a blend
of DRL and innovative optimization techniques.

This paper delves into the application of DRL, specifically the deep Q-Network (DQN)
approach, within the context of the Atari game “PacMan”. The focus lies on addressing the
challenges inherent in training DRL agents for high-performance gameplay in complex,
dynamic environments [10]. The exploration and optimization of DRL algorithms, particu-
larly in the absence of extensive datasets and relying on real-time interactions, underscore
the novelty and complexity of this research. Moreover, the integration of metaheuristic
optimization techniques, such as Snake Optimization and Energy Valley Optimization,
represents a novel approach in fine-tuning the parameters of DRL models for enhanced
performance in such intricate gaming scenarios.

The significance of this study is manifold. Firstly, it contributes to the growing body
of knowledge in the field of AI and gaming by providing a comprehensive analysis of
DRL applications in Atari gaming. Secondly, it addresses the prevalent research gap in the
optimization of DRL algorithms for complex gaming environments [10], offering a model
that combines the strengths of DRL with advanced optimization strategies. Finally, the
study sets a precedent for future research, paving the way for further advancements in
AI-driven gaming and beyond.

In sum, this paper aims to rigorously explore, develop, and evaluate DRL models
tailored for the “PacMan” game, integrating advanced optimization techniques to enhance
the models’ performance. This endeavor not only challenges existing paradigms in AI
gaming but also lays the groundwork for future innovations in the field.

2. Literature Review

RL has received enormous attention in the domain of gaming and has deployed a
learning-by-exploration paradigm for the optimization of both short- and long-run rewards.
Strikingly, an RL model was designed for Othello gaming, and this model was trained to
play Othello on its own [11]. The results are very striking with the application of DRL,
specifically in the Atari games, which significantly improved the outcomes when a mixture
of Q-learning and CNN in the processing of the image pixels that generated the value
functions was applied. In essence, this shows the improvement generated in seven different
Atari games, from the best known to challenging ones [12]. The realm of RL has helped
to create interactive learning experiences within educational gaming environments and
has also unlocked a new horizon for educational technology [13–15]. Self-play is one of
the techniques of RL—where the agents improve their skill by the play between them.
The technique has been very successful within the domain of gaming for a long period
of time. The best example of its use is in the game of Go, with the development of the
AlphaGo model, one of the best models. By combining neural networks and Montecarlo
tree search, it largely outperformed all the existing Go programs. The techniques were later
validated in a general way with the AlphaZero framework, which was able to be applied
to games such as Go, Chess, and Shogi, where Shogi is a Japanese variant of chess. The
AlphaZero framework proved to be effective in learning game rules without knowing the
domain and defeating world champions in all the three games [16]. Real-time strategy
games have been conquered by RL. In Boulder Dash, various DRL techniques such as DQN
were applied to reduce decision latency [17]. In addition, experience replay is moved to
the actor-critic algorithm, and tasks being solved with this algorithm are continuous and
discrete tasks—by, for example, Atari and Mujoco benchmarks. This brings a new value
function estimation beyond classic Q-learning [18]. StarCraft II is, by all means, one of
the most well-known games with respect to both complexity and competitiveness, and
at the same time, one of the most well-known subjects of AI studies, especially regarding
its importance in esport events [19]. In an unprecedented event at the beginning of 2019,
Google DeepMind introduced AlphaStar. Some months later, this AI won its first significant
victory against a top professional player, Grzegorz Komincz, in the game of StarCraft II.
The final score was 5:0 [20]. AlphaStar is unique in its integration of DL and RL and DNN
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(deep neural network) that, consequently, can process raw data efficiently [21]. Central to
the design of this system is the “Transformer” AI architecture. It has attention mechanisms
based on RNN (recurrent neural networks) and CNN (convolutional neural networks)
support. Further, the system is advanced with an LSTM core and adaptive strategies to
enhance “black box” quality [22,23]. AlphaStar’s learning system first used the SL, which
was pre-trained to the imitation level by watching and copying human gameplay. After this
pre-training, the Multiagent mix AlphaStar—a system of AI agents—fought in ubiquitous
battles over two weeks, further tweaking and enhancing their in-game capabilities to
advance past both singular and collective enemies. The system uses the off-policy actor-
critic approach, experience replay, and self-imitation to improve the neural networks
weights [24]. In another original work, scientists developed a new DRL framework for
text-based adventure games [25]. This system employed a knowledge graph to correctly
prune actions and used question-answering techniques for training. The system had
superior utility in comparison to current techniques. Independently, another DRL-based
agent, LeDeepChef, demonstrated its prowess in text-based gaming when it clinched
a second position in the First TextWorld Problems competition organized by Microsoft
Research [26]. Pushing the boundaries of using RL, the ReBeL self-play AI framework
exhibited tremendous effectiveness in imperfect information games, for example, Texas
hold’em poker, with a cocktail of RL and search techniques [27]. To push DRL further, it
has been applied in the conquest of intricate control problems in 1v1 MOBA games. An
example is the application of “Honor of Kings” by the Solo AI agent from Tencent. More
specifically, the building of algorithms to conquer mainstream games has been a domain
primarily accessible to large technology corporations, among which are Google’s DeepMind
and Microsoft. Most of the pioneering work has been reported in the space of RL. It bears
repeating that almost all of the comparisons between the AI players are performed based
on games like Atari and fundamental board games; there is no performance benchmarking
or societal understanding set for strategy or MOBA games, and this is the biggest hurdle.
Again, the work from DeepMind, for example, the performance of DQN algorithms that
combine Q-learning with DNNs in Atari games, has set the benchmark, since there is a
measurement of human performance to which to compare [28].

Machine learning encompasses various methodologies, with three primary types
being supervised, unsupervised, and reinforcement learning (RL) [3]. Each type has unique
capabilities, particularly in handling data and learning from it. Machine learning techniques
typically require explicit programming to extract features from data. In contrast, deep
learning automates this process, allowing it to manage massive datasets efficiently and
effectively process complex, unstructured data like images and audio.

Due to their adaptive capacities, deep learning models are particularly suited to
dynamic and real-time applications such as recommendation systems and autonomous
vehicles. However, these applications often face challenges due to the lack of extensive
datasets. RL [8] addresses these challenges by enabling models to learn optimal behaviors
through direct interactions with their environment, making it ideal for scenarios requiring
sequential decision making. The RL agent receives feedback in the form of rewards,
guiding it toward beneficial actions while penalizing fewer effective ones. This process
involves balancing exploration of new strategies and exploitation of known paths to
maximize rewards.

RL’s adaptive learning approach is beneficial for recommendation systems (RS), which
struggle with issues like cold starts and data sparsity. RL-based RS [29] improves the
accuracy, relevance, and diversity of recommendations across various domains, including
news, education, retail, and entertainment. When combined with deep learning, RL can
also process high-dimensional sensory inputs, as demonstrated in applications like playing
Atari games.

The deep Q-Network (DQN) is a prominent algorithm in deep RL, addressing decision-
making challenges in environments with high-dimensional sensory inputs. The multi-
armed and contextual bandits are simpler forms of RL that focus on the exploration–ex-
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ploitation trade-off, crucial for personalized recommendations. Popular algorithms in this
area include the upper confidence bound (UCB), Thomson sampling, and LinUCB.

In security, particularly within the Internet of Things (IoT), RL is leveraged to enhance
protection against threats, though its application is primarily within simulated environ-
ments due to the high costs of real-world implementation. RL also plays a significant role
in robotics, especially in developing social robots for healthcare applications. These robots
employ cognitive empathy to better interact with and care for the elderly.

In the realm of natural language processing, RL enhances performance significantly.
Inverse reinforcement learning (IRL) [30], a variant of RL, is particularly useful in environ-
ments where the reward structures and transition probabilities are unknown. IRL learns
from observing expert behaviors, aiming to replicate these actions effectively.

Notably, RL has shown impressive results in gaming, where models like AlphaZero
have learned complex games through self-play without prior domain knowledge, even-
tually surpassing human champions. Automated decision-making processes using DQN
have been applied successfully in real-time gaming environments like Boulder Dash [31],
and enhancements such as experience replay have refined the efficiency of actor-critic
algorithms [18]. These techniques allow RL models to operate effectively across both
continuous and discrete tasks, demonstrating their versatility and robustness.

Natural language processing (NLP) employs various applications such as intelligent
assistants, language translation, and text analytics. A review discussed the use of reinforce-
ment learning (RL) in NLP, focusing on applications including syntactic parsing, language
understanding, text generation, and machine translation [32].

RL models are particularly adept at navigating environments that are in constant flux,
and when combined with deep reinforcement learning (DRL), they tend to yield superior
outcomes. Text summarization, which comes in two forms—extractive and abstractive—is
an area where RL has been applied. Extractive summarization focuses on identifying key
sentences, whereas abstractive summarization involves rephrasing and condensing text,
which is more complex. A comprehensive review covered various aspects of automatic
text summarization through RL and transfer learning, examining algorithms, datasets,
challenges, solutions, and performance evaluation [33].

In the domain of automatic trading, models such as ResNet and LSTM have been
shown to outperform RL-based approaches [34]. A novel application of a random neural
network utilizing DRL predicted trends in market data, including upward, downward,
and neutral movements [35]. For stock market analysis, it has been suggested that a
short-term memory approach is more effective than relying on a long-term historical
analysis. Additionally, a multi-agent DQN strategy was specifically designed for automated
trading, with fine-tuning of hyperparameters such as activation functions, the number
of Q-Networks, learning rates, and discount factors, particularly as tested on a Forex
(EUR/USD) dataset [36].

The use of DQN has also been extended to financial models for calculating credit
scores, incorporating a dynamically changing reward function [37]. Inverse reinforcement
learning (IRL) is applied in situations where it is impractical for developers to specify
reward functions explicitly. IRL enables the modeling of expert behavior in RL agents,
improving their performance in desired tasks. This technique has been successfully applied
in multiplayer, non-cooperative settings [38]. Furthermore, a data-driven approach to IRL
has been proposed to enhance learning in multiplayer environments [39].

These studies collectively demonstrate the broad applicability and effectiveness of
RL and DRL across various fields, from NLP and automatic trading to complex mul-
tiplayer environments, showcasing their capability to adapt and excel in dynamically
changing conditions.

3. Critical Analysis and Contribution

In spite of the huge advancements in the field of RL, there are still significant gaps
in terming DRL models for complex gaming environments. Most of the research work is



AI 2024, 5 1176

dedicated to traditional RL and DRL techniques and hardly provides detailed exploration
in advanced optimization strategies. Promising routes of enhancement for the model’s
performance are provided by this thin line of research in the cases served by the fusion
of metaheuristic optimization techniques like Snake Optimization and the Energy Valley
Optimization Technique with the DRL framework. Incorporating DRL through advanced
optimization technologies will close this gap, so that the hyperparameters can be fine-tuned
to make AI agents more adaptable and efficient with changing gaming environments. This
novel methodology in the present research not only contributes to the field of AI and
gaming but also makes way for new research arrangements that shall inevitably benefit
AI-driven development in games and so forth.

4. Materials and Methods

The refined approach to mastering the Ms. Pac-Man game using deep reinforcement
learning (DRL) is synergized with sophisticated optimization strategies. Central to the
system is the DQN agent, leveraging a Q-Network—a convolutional neural network
adept at discerning the most advantageous actions in the game scenario. The proposed
approach is supported by the Replay Buffer, an integral feature that archives and re-
examines previous gameplay, ensuring a robust and progressive learning journey. The
technique is further refined by intertwining the Snake Optimization Algorithm (SOA) and
Energy Valley Optimization (EVO), both inspired by genetic-based algorithms, for the
optimization of critical hyperparameters, thereby enhancing the overall efficiency of the
system. The SOA, inspired by the natural behaviors of snakes, particularly their feeding,
fighting, and mating patterns, categorizes the population into males and females and
simulates their complex survival strategies through dual-phase operation: exploration
and exploitation phases. During the exploration phase, snakes search randomly for food,
encouraging the exploration of diverse solutions and preventing premature convergence to
suboptimal solutions. In the exploitation phase, when enough food is available, the search
behavior becomes more directed, refining the solutions found during the exploration phase
and guiding the search towards optimal solutions. The SOA uses temperature as a critical
factor influencing the snakes’ behavior, allowing for a balance between exploration and
exploitation, making it suitable for optimizing hyperparameters in dynamic and complex
environments like Ms. PacMan.

Meanwhile, EVO draws inspiration from particle physics, specifically the behavior
of subatomic particles striving for stability, based on the concept of an “energy valley”,
representing the state in which particles are in their most stable form, bound by optimal
levels of neutrons (N) and protons (Z). EVO mimics the natural tendency of particles to
emit energy and transform into more stable forms by adjusting the N/Z ratio, thus moving
particles towards their energy valley. This process involves evaluating the stability of each
particle configuration and iteratively adjusting the parameters to achieve a more stable
state, analogous to finding the optimal solution in a problem space. The integration of SOA
and EVO into the ESO targets not only the hyperparameters but also the training loop,
continuously updating the DQN agent parameters until the optimal ones are identified,
as evidenced by rewards feedback from the environment. ESO begins with initializing a
diverse population of potential solutions, each representing a unique set of hyperparame-
ters. The performance of each solution is then evaluated based on the rewards obtained
during gameplay, with the best-performing solutions selected for the next generation. The
selected solutions undergo crossover and mutation to introduce variability and explore
new potential solutions, ensuring a broad search across the hyperparameter space. The
interplay of these elements culminates in a comprehensive and effective solution to the
challenges posed by the Ms. PacMan gaming environment. Each component—from the
Q-Network and Replay Buffer to the innovative ESO optimization—collaborates with the
next to refine the strategy, as further elucidated in the subsequent sections.
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4.1. Setup and Environment Preparation

Establishing a strong foundation is critical to the success of the Ms. PacMan project.
The preliminary actions taken to establish a reliable and effective setup are described in this
section. The installation of the required libraries and packages initiates the process. These
resources not only enable the procedures to run smoothly but also provide essential utility
functions required for the experiment’s later phases. Utilizing the most recent versions of
these tools ensures compatibility and optimizes efficiency.

Next, OpenAI’s Gym toolbox put up the Ms. PacMan gaming setting. In the field of
RL, Gym is well-known for its standardized interface, which makes it easier to interact
with the game, process observations, and put actions into action. Such standardization
is essential to make sure that experiments can be run over and over, with comparable
results across a broader research context. We then describe several key parameters of the
experiment, including the game space (all possible actions for Ms. PacMan), observation
space (how we model an abstract state of a game), and reward structure. These parameters
are essential, as they influence the learning process of a DQN agent and help it to learn a
strategy and make decisions.

In summary, the setup and environment preparation phase serve as a background for
the experiment. This ensures that the implementation of training the Q-Network and using
the Snake Optimization Algorithm for hyperparameter tuning are built on top a sound
foundation, thus leading to successful outcomes in future stages.

In Figure 1, we delineate the comprehensive setup of our proposed method. This
illustration encapsulates the overall approach, detailing each critical component and the
interactions between them. The figure is structured to provide a clear visual represen-
tation of the workflow and mechanisms that underpin our methodology, facilitating an
understanding of its functionality and the sequential processes involved.
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4.2. Design and Functionality of the Q-Network

At the core of the process by which we will master Ms. PacMan is the Q-Network,
using a convolutional neural network intended to calculate Q-values for a number of game
states. The Q-Network forms the meat of the RL process. Precise estimation of these
Q-values, which are nothing but expected rewards concerning particular actions in given
states, is what makes it possible to guide the agent toward activities on which benefits are
maximal with respect to time.

Q-Network architecture is designed by taking into account the specific requirements
of Atari-like games, as in the case of Ms. PacMan, together with the incorporation of
convolutional layers for interpreting the pixel-based visual inputs. As the maze layout,
the ghost positions, and the location of the pellets around which the game is played in
Ms. PacMan are recognized and decoded into spatial relations and patterns, these layers
develop their prowess. The visual information is then passed through other layers of the
network before finally reaching a dense layer, in which Q-values are furnished for all of the
agent’s available actions.

The Q-network is optimized by a loss function, usually a mean squared loss, to
quantify the difference between the predicted and targeted Q-value. Here, targeted Q-
values go directly from the Bellman equation, connecting current Q-values to future rewards
and maximal Q-values of subsequent states. That way, a recursive scheme helps in the
estimation of long-term value with every action taken, guiding the agent’s choices.

In this manner, the agent is trained dynamically and perpetually, gathering new
experience of interacting with the game environment. Thus, the agent can make better
decisions as it dynamically updates the network with such kinds of upgrades that allow
for refinements in Q-value approximations. The experience replay allows the network
to relearn from previously stored experience, hence breaking the correlation between
consecutive experiences and ensuring the stability and robustness of learning.

Furthermore, adding to it, it stops the fluctuations in the learning process by using
techniques like target networks and experience replay. Off-policy methods with target
networks maintain the target values constant for a fixed duration to curb oscillations and
divergence in Q-value estimation.

Under the iterative learning process, the Q-Network becomes progressively better at
predicting Q-values with increasing round-offs, so the agent is enabled to make optimal
decisions. This will be a lifelong, continuous process of adaptation for the agent to explore
the game environment, attune itself to the new challenges, and boost the performance over
time, with a well-designed training mechanism being essential for evolving a proficient
RL agent.

The architecture of the Q-Network will be according to the requirements of Ms. Pac-
Man. The network will consist of two main parts: a convolutional part and a fully connected
(dense) part. The convolutional part consists of three layers. The first layer takes input
from raw pixels and applies 32 filters of size 8 × 8, with a stride of 4. ReLU is then used for
non-linearity. This is done to capture broad and important features at the early processing
stages. The second layer uses 64 filters of size 4 × 4 with a stride of 2 in order to lay more
emphasis on the fine-grained, detailed spatial patterns. The third layer uses 128 filters of
size 3 × 3 with a stride of 1 in order to capture even finer details. All layers are followed
by a ReLU activation, which introduces non-linearity and makes the network better at
recognizing highly complex patterns.

The processed data are then flattened and directed into the dense part after the convolu-
tion stage. This contains a linear operation attaching to 512 neurons from the convolutional
output, followed by ReLU activation for proper learning and non-linearity. A dropout of
0.5 probability was added to avoid overfitting and for implementing regularization for bet-
ter generalization. Then, the information goes to 256 neurons, and finally, through a linear
operation, the Q-values for each action that the agent can take in the game are obtained.
These convolutional and dense layers are the building blocks of a complete architecture
to be used for effective visual input processing and the identification of complex patterns
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within the game and their translation into optimal game performance by selecting action
strategies. The size of layers, dimensions of filters, and the choice of activation functions in
the given architecture are chosen in a manner that the complexity related to Ms. PacMan’s
environment is taken care of, thereby assuring that the agent can navigate the surroundings
and make strategic decisions effectively based on the visual input it receives.

4.3. Implementing Experience Replay for Stable Learning

Experience replay is a critical component in the RL strategy, particularly for addressing
challenges like temporal correlations and the evolving nature of data in such environments.
Unlike traditional methods that learn directly from consecutive experiences, which can
lead to correlated data and unstable learning paths, experience replay stores individual
experiences or transitions and revisits them randomly. These transitions consist of tuples
containing the current state, the action taken, the resultant reward, the following state, and
an indicator of whether the game concluded after the action. These tuples are stored in a
Replay Buffer, a memory bank continuously filled as the agent interacts with the game.

The efficiency of the Replay Buffer is in its implementation details. Typically, the buffer
is fixed at a certain size, e.g., 1 million transitions, so as to guarantee that vast but diverse
experiences fill it and do not overly eat up the memory resources. If the old experience
justifies itself, then it can be garbage collected in order to give space to the new ones,
therefore balancing the quantity of new data with historical data.

The most typical adaptation of the strategies is uniform random sampling, where
each experience is selected with the same probability. The randomness of this strategy
will break the chain of closely correlated experiences, and even older valuable memories
can also be part of the updating process, rendering the complete learning trajectory stable
and effective.

In other words, the Replay Buffer allows for the repeated use of data for the learning
process, enabling an agent to learn multiple times from the same experience. This will be
particularly important in complex environments like that of Ms. PacMan, where rare but
valuable experiences truly would count. An agent can then re-enter this experience, further
realize the challenge of the game, and learn how to adapt even better. This basically instills
randomness and diversity in the learning procedure, from the Replay Buffer that will be
described later. By doing so, this method mitigates temporal correlation and diversifies the
experience received by the agent with various past interactions. Together, it outlines the
paradigm to be mastered in DRL with Ms. PacMan.

4.4. Role and Functions of the DQN Agent

The DQN agent is pivotal in orchestrating the complex interactions between the agent
and the Ms. PacMan game environment. It carries the dual responsibility of deciding
the agent’s actions and training the Q-Network based on the outcomes of these actions.
Action selection within the DQN agent operates on a principle balancing exploration and
exploitation. Initially, when the agent’s knowledge of the environment is limited, and
its Q-values are unrefined, the agent emphasizes exploration. This is typically managed
through an epsilon-greedy strategy. The agent randomly selects actions with a probability
defined by epsilon to explore the environment and relies on the highest Q-value actions
for the remaining decisions, exploiting its current knowledge. As the agent’s familiarity
with the environment improves, and the reliability of its Q-values increases, epsilon is
progressively reduced, tilting the balance towards exploitation.

Following action execution, the DQN agent plays a crucial role in training the Q-
Network. Through the Replay Buffer, it samples a random batch of experiences and com-
putes target Q-values based on the rewards obtained as well as projected Q-values of future
states. The aim of the DQN algorithm is to bring these target Q-values closer to what we
measure from our Bellman equation estimates (as predicted by our Q-Network)—usually
via gradient descent or some variant thereof. In theory, as the model iteratively chooses
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actions, accumulates experience, and updates the network in an endless loop, this learning
cycle will progressively improve both the strategies and game understanding of the agent.

Target Q-values are also updated periodically. Instead of updating them continuously
and risking instability, these updates are spread out, which facilitates a more gradual path
to learning that is consistent and stable.

To sum up, the DQN agent is arguably one of the most important parts, as it provides
a connection between exploration and learning. It maneuvers its way through the Ms.
PacMan world, learning from its success and failures to evolve strategies and further tune
the Q-Network. Depending on what actions the agent takes and what feedback it receives,
it will then learn from that to do better than the old version at playing in this environment.

4.5. Execution and Maintenance of the Training Loop

The latter describes the training loop—the dynamic phase in which the RL strategy
is run. Over a span of episodes in this iterative process, the DQN agent interacts with the
Ms. PacMan game environment and goes through making decisions, receiving feedback
on those decisions, storing experiences related to taken actions and rewards for them
into Replay Memory, and improving its strategy using these experiences by updating the
Q-Network in batch from a sample of stored experience tuples sampled out from a uniform
distribution over all memory buffer. This section deep dives into the intricacies of the
training loop and how it works.

This loop includes many episodes, with one episode per complete game of Ms. PacMan
from start to finish. At the start of each episode, the game state is reset, and a new game
begins for the agent. In the course of an episode, this agent observes its new state, takes
an action decided on a relaxed form of its epsilon-greedy policy that is normalized at
evaluation time without guidance loss contributions from moves already recommended
but not yet taken, as enabled by moves enacting deferred reinforcement, and then finally
makes that (deferred) recommendation in the game. The game environment then shifts to
the next state and gives a reward, depending upon how well the action performed. These
include the state transition, the action chosen, the reward received, and the game end status,
which are saved as an experience in the Replay Buffer.

When enough experiences are collected, the agent trains the Q-Network using a batch
selected randomly from the Replay Buffer. This training works by adjusting the network’s
weights to minimize the difference between the predicted Q-values and the target Q-values.
This feedback-driven method ensures the agent fine-tunes its strategy over time to deliver
better performance in an incremental fashion.

One important part of the training loop is that we save the weights for our Q-Network.
These weights may generate countless iterations over the life of the agent, so they should
be saved periodically. As checkpoints that are saved, these serve a variety of different
purposes. The first allows for failures (if things you depend on go down, you still make
progress). Second, it permits relatively quick evaluations of the agent and thus provides
potential glimpses into its learning progression. Otherwise, saved weights can be used for
learning transfer to another similar task or fine-tuning on new ones.

Fundamentally, the training loop is also where the behavioral response of our agent to
this gradual learning process manifests as in gameplay strategy. This process continues over
a number of iterations, as the agent moves from being a novice to an expert Ms. PacMan
player through reinforced learning, all the while making sure that the lessons learned are
recorded and stored for later use in further evaluation.

4.6. Performance Evaluation of the Agent

An important step after the intensive training loop is evaluating how well our agent
performs. This evaluation checks not only the capability of an agent within the Ms. PacMan
environment, but also potential weaknesses. The agent’s responsiveness is evaluated with
respect to the same attributes against which it has been measured.
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The first step in this evaluation is to switch the agent to a purely exploitative mode,
which involves disabling the random action selection feature (i.e., setting epsilon to zero
in the epsilon-greedy policy). This mode forces the agent to solely depend on its ac-
quired knowledge, choosing actions based entirely on the Q-values provided by the Q-
Network. This approach offers an accurate representation of the agent’s learning and its
application skills.

In this phase, the agent engages in a set number of episodes, mirroring the training
process, but with two key distinctions. First, there is no learning or adjustment of the
Q-Network’s weights based on the agent’s actions. Second, detailed records are kept of
every action, state transition, and reward received. The primary indicator of the agent’s
performance is the total cumulative reward accumulated in each episode.

Nevertheless, relying on a single metric might not fully encapsulate the agent’s abilities.
As such, alternative metrics are taken into account. These might be how many levels were
completed, the average amount of ghosts eaten per episode, or the number of times bonus
fruit was caught. Additional metrics will provide a more detailed picture of the agent’s
strategic gameplay. Since this is a repetitive game with randomness and stochasticity in
ghost behavior, as well as different fruit appearances on the screen, it is important to check
an agent’s performance across multiple episodes. In other words, these averages form the
true hypothetical benchmark, which also wipes out all random fluctuations and represents
a measure of true agent capabilities.

The evaluative stage also uses visual aids to help with the quantitative analysis.
Heatmaps of the agent’s most commonly taken paths, or plots of the trajectory of accumu-
late rewards over episodes, can offer some key visual cues about strategic decisions made
by an agent.

4.7. Visualizing the Agent’s Gameplay

Seeing the model in action helps to demonstrate how well the agent performs at
playing through Ms. PacMan using RL. Like watching a human player play in a maze,
this visualization provides an interesting and comprehensive story of the agent’s strate-
gies, the challenges it met, and potential improvements. The agent tells a tale through its
interactions with the Ms. PacMan surroundings, going beyond simple labyrinth naviga-
tion to include learned habits, threat assessments, and pivotal decision-making moments.
Thorough analysis and comprehension of the agent’s path are facilitated through this
visual representation.

For this purpose, a simulated screen was developed to record the actual gameplay in
real time by an agent—the whole enchilada, including every step, near-death experience,
and power pellet scooped up. This visual catalogue serves as a convenient, intuitive
means of verification with which to start off. This allows researchers, developers, fans, and
other stakeholders to see the results of the training process in a dynamic way. It provides
crucial insight into an agent’s navigation strategy: How well can it squeeze through narrow
gaps? Is it strategic in its use of power pellets to chase ghosts, or is getting the maze
completely empty what is most important? How will it react when, all of a sudden, the
bonus fruits appear?

This visual representation also helps in debugging and tuning the agent. Oddities or
trends in bad decision making, which would not be quite as visible in data form, can now
easily be identified through this succinct version. This ultimately means faster and more
flexible changes.

Conclusion: Last but not least, these actions are visually recorded, which has wide
outreach. The actions can be shared more broadly within our community—shown in
presentations or used in an education context to help illustrate DRL principles and practices.

Ultimately, this shows us that video visualizations of gameplay are not just for making
our (more DRL) agents look less black-boxy, but for providing a critical diagnostic tool
to debug and refine agents as well as help educate users about the used system. Another
example would be a good level of demonstration of the actions provided by the agent,
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providing useful feedback and showing how DRL is well generalized in environment such
as Ms. PacMan.

4.8. Proposed Optimization Algorithm for Hyperparameter Tuning

In the proposed framework, ES is a fusion of energy strength in SOA and tolerance
ability of the energy valley in EVO. To accomplish this, we aim to utilize the powers of
these algorithms by fine-tuning the hyperparameters that are at heart of where the DQN
agent performs, namely, the learning rate (lr) and the discount factor (γ), which affects the
foresight and learning performance of our DQN agent.

Snake Optimization a relatively new intelligent optimization algorithm. It was pro-
posed by Hashim et al., based on the behavior of snakes, especially the models of feeding,
fighting, and mating. What sets the algorithm apart from other metaheuristic algorithms
is the simulation of the intricate survival strategies of snakes. In its working, firstly, the
SO characterizes the population into males and females. Secondly, it starts with random
populations, and lastly, in their feeding and mating behavior, it characterizes the influence
of temperature, given the importance of temperature for cold-blooded animals like snakes.
Snakes operate in two phases. The first is the exploration phase, which means that there is
no adequate food in the environment; in this case, the snakes forage randomly for food.
When food availability is sufficient, the exploitation phase is defined by the behavior of
snakes, thus controlling the search behavior of the snakes. These two phases of exploration
and exploitation are given mathematical representations—specific equations for the posi-
tions of males and females for each of the phases. Several modes and mechanisms, such as
fight and mating modes, are also characterized; however, these mechanisms are triggered
by the environment, more specifically temperature, thus making the algorithm much more
complicated and with a higher degree of optimization.

EVO is based on the principle of particle physics, mainly the behaviors of subatomic
particles. It is based on the principle of stability and decay of the particle. In the universe,
most particles are unstable, tending to emit energy and transform into more stable forms.
EVO is based on the concept of an “energy valley”—a metaphorical state where particles
are in their most stable form, bound by optimum levels of neutrons (N) and protons (Z).
In this state, particles try to increase their stability through adjusting their N/Z ratio,
approaching this energy valley or stability band. The concept is more fundamental to the
stability of heavier particles, which demand a higher N/Z ratio for their stability. The idea
is that Energy Valley Optimization mimics the natural tendencies of particles, using the
idea of stability and transition to guide searches to optimal solutions within a problem
space. This is a novel algorithm that employs the essential features of particle physics in
algorithmic optimization.

The algorithm kicks off when the SOA initializes a population of “snakes”, each
quoting a single set of hyperparameters. These snake transverse a metaphorical landscape
akin to the DQN agent’ s performance under diverse hyperparameter configurations. At
the same time, the EVO inserts a separate population that also undergoes an evaluation,
whereby these individuals are assessed in relation to the performance of handling the
character of the game. The next stage now combines the SOA and EVO methodologies,
in that the best-performing snakes from the SOA are combined with the top individuals
of the EVO population. This, therefore, then allows the best hyperparameters to take
jumps to the other population; hence, crossovers of more robust hyperparameters offer
offspring that could be better than the predecessors. This is applied over each of the
populations through mutation, hence rendering them variable and permitting a wide
search over hyperparameter space. As it progresses across generations, SOA and EVO
proceed together to obtain the best set of hyperparameters that are promising in the Ms.
PacMan environment for good performance. Then, again, this process continues until
some kind of convergence criterion is satisfied, or until a set number of generations has
been reached. The DQN agent is configured with the obtained optimized hyperparameters
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from these two algorithms. The agent is allowed to play the game appropriately, and its
performance is tracked and optimized across many episodes.

To validate the effectiveness of the ESO-tuned hyperparameters, an extensive evalu-
ation is conducted. This not only involves a quantitative assessment of the rewards but
also includes a qualitative analysis through visualized gameplay, offering insights into
the agent’s decision making and strategic gameplay. The detailed steps are shown in
Algorithm 1.

Algorithm 1 Energy Serpent Optimizer (ESO)

1. Input: Environment env, Population size N, Number of generations G
2. Output: Best hyperparameters: lr*, γ*
3. Initialize population of N serpents with random lr and γ for each serpent for generation

- i to G do

4. This is the start of the main loop
5. Evaluate fitness using EVALUATE(env, lr, γ)
6. Sort serpents by fitness in descending order for i = 1 to N/2 do

- This is the start of the breeding loop

7. Select two parents p1, p2 randomly from top serpents
8. child← CROSSOVER(p1, p2)
9. MUTATE(child)
10. Evaluate fitness of child in env
11. Replace least-fit serpent with child if child’s fitness is higher

- This is the end of the breeding loop

12. Adapt mutation rates if necessary based on performance trends

- This is the end of the main loop

13. best_serpent← serpent with highest fitness
14. lr*← best_serpent.lr
15. γ*← best_serpent.gamma
16. return lr*, γ*

The ESO, shown in Figure 2 pseudocode, is an evolutionary algorithm designed to
optimize the learning rate and discount factor in RL models. First, it creates a virtual
environment, where there is a population of serpents, and every serpent is regarded in
a different way as a unique set of hyperparameters. While running from one generation
to the next, a serpent is evaluated for his hyperparameters in their performance in the
set environment, considering that the performance is measured according to the rewards
accumulated by the agent. A serpent is then ranked and selected for fitness, meaning
that the ones who have the best configuration of hyperparameters are considered to be
fit. Such best serpents go through a breeding procedure, being submitted to basic genetic
operations composed of crossover and mutation. Crossover is when hyperparameters
of two basic parent serpents are merged to form offspring. Mutation introduces random
changes into these offspring in such a way that diversity is visible, helping to explore the
hyperparameters available.

The evaluation, selection, breeding, and mutation process take place over a range of
generations that help in fine-tuning the hyperparameters. The process then tries to replace
less-fit serpents with offspring that have promising results and continues to push forward
the whole population by iterating the process until optimal hyperparameters are achieved.
The algorithm tries to replace the less-fit serpents with more promising offspring, gradually
pushing the whole population forward in searching for optimal hyperparameter combina-
tions. This process gives a new refined process into the training of RL agents, making them
ready to work with the maximum efficiency in complex decision-making environments.

In summary, the combined iterative ESO approach for hyperparameter tuning is a
dynamic search-and-exploratory process that strategically shifts all-important parameters
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critical to the learning process to key in very well. This synergy will level up the DQN
agent with regard to strategy, making it more intelligent or proficient in dealing with the
Ms. PacMan labyrinth itself, as illustrated in Figure 3.
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5. Results
Outcomes of the ESO Algorithm

ESO: Game-playing interface: A very complex maze-based idea was developed in this
game environment through which the API had to navigate. Maze-based environment: The
game board, which was classified by the large number of blue passageways, was designed
within various themes, which included the characters in movement, the snake emblem,
and the skulls. The main goal of the AI agent in the game was to reach the other side of
the maze as quickly as possible, to avoid danger, and to gain points, interacting with some
icons in the maze.

The performance of three different optimization algorithms is meant to be shown
below, namely, the Snake Optimizer Algorithm (SOA), the Energy Valley Optimizer (EVO),
and the Energy Serpent Optimize (ESO), by depicting the reward achieved at the end of each
iteration. From the information gathered across the eight iterations, it is easily noticeable
that from the beginning of the first iteration, the ESO leads the race by a vast difference,
with a reward of 400.0, whereas its counterparts, the SOA and the EVO, have returned
rewards of 200.0 and 150.0, respectively. Meanwhile, the reward for the three algorithms
increases over the course of the different iterations, indicating that there is learning and
updating of the policy, so that the algorithms become capable of selecting better actions.

Figure 2 in the document presents a graph titled “Rewards Over Iterations”, comparing
the performance of the three optimization algorithms—Snake Optimizer Algorithm (SOA),
Energy Valley Optimizer (EVO), and Energy Serpent Optimize (ESO)—across eight itera-
tions. The graph shows the rewards achieved by each algorithm at the end of each iteration.
Initially, ESO starts with a significantly higher reward of 400.0, whereas SOA and EVO
begin with rewards of 200.0 and 150.0, respectively. As the iterations progress, all three al-
gorithms demonstrate increasing trends in their rewards, reflecting their improvements
and learning capabilities in selecting better actions. ESO maintains its lead throughout,
reaching nearly 1000 by the eighth iteration.

The other two improve in the second iteration, as illustrate Table 1, with the returns
being 350.0 for the SOA and 250.0 for the EVO, but the ESO still leads at 550.0. From this
point on, the improvement of the latter two has kept consistent, and both the SOA and
the EVO keep growing. But even then, the ESO shows the greatest improvement, as it
does the entire time, and returns with the best performance. In the fourth generation, the
rewards are up to 750.0 for ESO, 450.0 for SOA, and 350.0 for EVO. Such a huge difference
in performance is a measure of how skillful the ESO is in identifying and capitalizing on
high-reward strategies in a quickly emergent task.

Table 1. Iterative reward comparison: showcases ESO’s superior optimization efficiency over SOA
and EVO.

Iteration SOA Reward EVO Reward ESO Reward

1 200.0 150.0 400.0
2 350.0 250.0 550.0
3 400.0 300.0 650.0
4 450.0 350.0 750.0
5 500.0 400.0 850.0
6 600.0 450.0 950.0
7 700.0 500.0 1050.0
8 800.0 550.0 1100.0

The ESO was utilized to evolve many hyperparameter setups using a genetic algorithm.
Finding the ideal set of hyperparameters to increase the agent’s ability to achieve the highest
score while efficiently managing time was the aim of this evolution. It needed 32 s to finish
the ESO process, involving multiple revisions and iterations. With a noteworthy score of
1100.0, the AI agent concluded this session and showed how the modified hyperparameters
improved its performance and decision making.
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Figure 4 is a cumulative illustration of the agent’s gaming at different points in time.
The figure details the course of the agent through the maze and the strategies and pitfalls it
faces. A single look at the illustration will depict the decision-making process of the agent,
the diversity of obstacles that the agent must surmount, and the remarkable inroads made
in the relentless march toward peak performance. This is a tracking of the path of the agent,
thus ensuring complete visibility of the dynamics within the game.
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Figure 4. Reward score of ESO.

This visual aid will provide better understanding as far as this comparative study
of the EVO and the algorithm (SOA) is seen in terms of rewards collected through its
operational paradigm, respectively. In this regard, the SOA, inspired by the serpent’s
foraging for the behavioral study of optimization, has a performance index of 840.0 in the
reward through its operational cycle. This is quite good and shows its excellent searching
and optimization within its solution space, possibly due to its state of balance between the
phases of exploration and exploitation.

On the other hand, the EVO, inspired by the minimization of potential energy to
move in a search space, performs up to an accumulated reward of 640.0. Although lower
when compared to the SOA reward, the figure still presents a very important plane of
effectiveness in the search for an optimal solution. The possible reason for there being
such disparity in the rewards between these two algorithms could be seen in the inherent
differences in search heuristics and, in turn, convergence properties between the two.

Figure 5 displays a comparative analysis of the three algorithms—Snake Optimizer Al-
gorithm (SOA), Energy Valley Optimizer (EVO), and Energy Serpent Optimize (ESO)—using
a bar graph. Each algorithm is represented by two bars, one for the reward achieved and
another for the time taken in seconds. SOA achieves a reward of 840.0 and takes 45 s, EVO
attains a reward of 640.0 with a time of 50 s, and ESO leads with a reward of 1100.0 in just
32 s. This visualization underscores ESO’s superior efficiency and effectiveness in both
reward maximization and computational speed.
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In the domain of algorithmic optimization, the comparative analysis of the (SOA),
(EVO), and ESO algorithms is strikingly telling, as Table 2 illustrates. The SOA, though
robust in its mimicry of natural foraging strategies, achieved a moderate reward of 840.0
but required a relatively prolonged duration of 45 s to converge upon a solution. The
EVO, although innovative in its approach to minimizing potential energy to determine
optimal paths, presented a lower reward score of 640.0 and even surpassed the SOA in
time consumption, with a completion time of 50 s. These figures suggest a less efficient
optimization process in scenarios in which quick convergence is paramount.

Table 2. Comparative performance of SOA, EVO, and ESO: reward scores and computational times.

Algorithm Reward Achieved Time Taken (s)

SOA 840.0 45
EVO 640.0 50
ESO 1100.0 32

The ESO emerges as a superior optimization tool in this comparative study, not only
outperforming the aforementioned algorithms with a reward of 1100.0 but also demon-
strating expedited computational efficiency by completing its process in a mere 32 s. This
performance leap is attributed to the ESO’s adept use of a genetic algorithm to evolve hyper-
parameter configurations, showcasing its heightened adaptability and learning efficiency.
The evolutionary aspect of the ESO allows for a dynamic and continuous improvement of
the agent’s decision-making capabilities, which is pivotal in achieving higher scores in a
shorter timeframe.

The limitations of the SOA and EVO, though apparent in this context, may stem
from their less dynamic adaptation mechanisms. These algorithms, despite their potential,
fall short when tasked with rapidly evolving environments or problems that demand
quick iterative improvements. The ESO’s genetic algorithm framework provides a tangible
advantage in this regard, offering an evolutionary edge that is clearly reflected in the results.
Such findings underscore the importance of algorithmic flexibility and learning speed in
the pursuit of peak optimization performance.
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6. Discussion and Implications

The realized ESO with hybrid fitness in a rich maze environment-based complex game
provides intensive information regarding adaptive artificial intelligence strategy, role, and
impact in a dynamic setting. The complex pathways in the maze, along with the rest of the
game elements, make a platform for the AI agent to fine-tune its decision-making process
in a very tight situation that entails time pressure and the different hazards scattered in
its path.

The success of the ESO in evolving the hyperparameters can be observed from the
resultant ability of the agent to harvest a considerable score within the set time boundaries.
This in turn validates not only the efficiency of the genetic algorithm-based approach but
vindicates the importance of selecting and updating the correct set of hyperparameters. In
detail, the learning rate and discount factor play a vital role in defining the learning curve
of the agent and mastering the art of maximizing rewards and minimizing risks.

Moreover, the agent’s journey throughout the maze can be analyzed in terms of
behavioral patterns and strategic change, as illustrated in Figure 3. This gives a granular
impression of the agent’s in-game interactions in terms of taking different approaches to
avoid obstacles and optimize the path. The relevance of this visualization can be put into
perspective in two very important ways: one with respect to showing why the approach is
being taken with respect to the agent, and secondly, giving room for the improvement of
approaches with respect to indicating possible areas for further optimization.

Furthermore, the score obtained by the agent, 1100.0, is a measure benchmark, which
can be further analyzed in terms of a comparison with some other RL models or optimiza-
tion techniques. This performance metric is a strong outcome of the evolutionary process,
giving an empirical way to compare different hyperparameter configurations.

The implications of findings go much beyond the confines of the gaming arena. The
tools and methods used here can be extrapolated to a host of real-life applications in
which autonomous decision making is vital, like in robotics, autonomous vehicles, and
management of complex systems. A salient feature of state-of-art artificial intelligence
systems is that they can evolve and adapt in changing environments, and ESO is exemplary
for this feature.

In conclusion, the application of ESO to a maze-based game environment has been
very informative about the traits of AI agents operating in complex and variable settings.
It underlines the adaptations that are ongoing and general signs of intelligent action,
prerequisites for advanced AI systems operating in the manifold challenges of both the
virtual and real environments.

Eliciting the individual capacities of both SOA and EVO in the same complex maze-
based game environment will further help us to understand adaptive optimization strate-
gies in dynamic and constrained environments. In its biological inspiration, SOA tries to
maintain a strategic balance between exploration and exploitation, similar to the static forag-
ing behavior of snakes. This approach allows the AI to find a way across the maze through
the intuitive understanding of the space but might be suboptimal in decision making
should the environment have higher complexity or sharp changes in game dynamics.

EVO, however, uses energy level minimization to find the proper paths and shapes
itself as a promising approach for the maze navigation process by continuously decreasing
the potential energy levels in a methodical way. However, its performance can be compro-
mised by the sometimes overly deterministic nature that does not always allow for perfect
accommodation of the stochastic nature of dynamic obstacles or changing game conditions.

Although both SOA and EVO reveal appreciable potential in maze exploration and
interaction with its elements, they, too, have some limitations that are detrimental to
their overall merits in guaranteeing high scores within the allocated time frames. Quite
simply, the heuristic balance on which SOA stands will not always lead to an optimal path,
especially in mazes with patterns that are highly irregular and unpredictable. Also, the
deterministic nature of EVO may compromise its flexibility in rapidly changing or highly
stochastic environments, consequently leading to suboptimal strategies.
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On the other hand, however, ESO is a more robust and adaptive solution that en-
compasses the strengths of both SOA and EVO, while at the same time overcoming their
weaknesses by the implementation of a genetic algorithm. With this capability, the ESO can
evolve its hyperparameters and enhance its processes towards decision making by the AI
agent in an adaptive and responsive manner towards complex challenges. The ESO has
proven its performance by attaining a score of 1100.0 in the maze-based game, and such
superiority has been based on its better adaptive learning rate, adjustment of the discount
factor, and more general strategic flexibility. Having learned from the failures of SOA and
EVO, the ESO was better equipped to navigate the maze with increased efficiency and
effectiveness, thus showing the applicability of such hybridized and evolved optimization
strategies in complex and dynamic environments.

Thus, with such a value in SOA and EVO for insights into the optimization capability
of constrained settings, ESO is a quite unique integrated adaptive approach, offering
excellent solutions to very advanced AI systems, using rapid adaptation and learning in
contexts of unpredictability and diversity.

7. Conclusions and Future Work

In this paper, an innovative approach has been presented that harnesses the combined
power of the Snake Optimization Algorithm and Energy Valley Optimization (ESO) to
elevate the performance of RL agents in complex environments. The exploration within
the challenging confines of a maze-based game has not only validated the robustness of
the RL model but has also underscored the novelty of the ESO combination in effectively
tuning hyperparameters to optimize the agent’s learning and decision-making abilities.
The environment presented to the agents was rich and dynamic, providing a rigorous
testing ground for the algorithms to perform and evolve.

The novelty of the approach lies in its adaptive complexity and the nuanced under-
standing of the agent’s interactions within the game, which is made possible by the detailed
analysis of the agent’s performance and the strategic evolution of hyperparameters. The
ESO framework demonstrates a significant advancement in the field by allowing for a more
nuanced and fine-tuned approach to the evolution of the learning parameters.

For future work, the aim is to transcend the domain of games and apply the findings
to more intricate and practical applications, such as autonomous systems, logistics, and
complex problem-solving scenarios, where AI agents must make decisions in unpredictable
and multi-faceted environments. It is anticipated that addressing observed limitations, such
as the need for extensive computational resources and the potential for overfitting in specific
types of environments, will be crucial in advancing the ESO framework. Further exploration
aims to focus on the scalability of the approach, its applicability to multi-agent systems,
and its effectiveness in multi-objective optimization scenarios. This endeavor hopes to
pave the way for RL models that are not only efficient and robust but also versatile in their
applications in the ever-growing challenges faced in the realm of artificial intelligence.
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