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Abstract: Recognising patterns and inferring nonlinearities between data that are seemingly random
and stochastic in nature is one of the strong suites of machine learning models. Given a set of features,
the ability to distinguish between useful features and seemingly useless features, and thereafter
extract a subset of features that will result in the best prediction on data that are highly stochastic,
remains an open issue. This study presents a model for feature selection by generating synthetic
features and applying Binary Particle Swarm Optimisation with a Long Short-Term Memory-based
model. The study analyses the correlation between data and makes use of Apple stock market data
as a use case. Synthetic features are created from features that have weak/low correlation to the
label and analysed how synthetic features that are descriptive of features can enhance the model’s
predictive capability. The results obtained show that by expanding the dataset to contain synthetic
features before applying feature selection, the objective function was better optimised as compared to
when no synthetic features were added.

Keywords: feature selection; synthetic features; LSTM; correlation; Particle Swarm Optimisation;
stock market

1. Introduction

In machine learning, a feature can be described as some input variable on which a
label (or output) is dependent. The terms feature and variable are used interchangeably
in this study. Measuring or calculating the importance of a feature prior to or during
training and prediction is not a new area of study and is relevant in various models such as
Random Forest and other decision tree-based models. Given a set of features, selecting a
subset of these features for training and discarding the rest is one approach which has been
adopted, particularly when addressing the curse of dimensionality. Studies have shown
that discarding some features based on feature importance ranking or correlation does not
always result in better prediction or classification. Various methodologies for selecting
important features, thus eliminating noise, have been proffered in the literature [1–3].

Fundamentally, the process of feature selection (FS) is aimed at improving predic-
tion and achieving greater speed of data (pre)processing. FS can be categorised into
three approaches, namely, the filter, wrapper, and embedded methods [4]. Filter methods
form part of a data pre-processing stage whereby features are selected prior to, and inde-
pendent of, the model training. Filter methods can be either univariate or multivariate,
scoring a single feature or a set of features. The wrapper approach to FS is an iterative
approach in which the optimal subset of features is selected as a function of the model’s
performance or accuracy and can be computationally intensive. The embedded method
involves selecting the features as part of the model’s training process.

The filter, wrapper, and embedded methods often rank features by a score using
various algorithms. One popular algorithm is the Pearson Correlation Coefficient (PCC) [5].
The PCC, r, is a measure of the associative strength between two variables that have some
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form of linear relationship. This measure can be computed by the following formula,
for some variables x and y:

r = ∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2

√
∑(yi − ȳ)2

(1)

where xi is the ith value of the variable x in a sample, x̄ is the mean of the x variable’s
values, yi is the ith value of the variable y in a sample, and ȳ is the mean of the y variable’s
values. The value of a PCC can indicate one of three facts: A negative value indicates
a negative correlation, meaning as one value decreases the other will increase, and vice
versa. A PCC value of 0 indicates no correlation at all. A positive value indicates a positive
correlation, meaning as one value increases, the other too will increase.

In this study, a model that adopts the filter approach to FS and makes use of the
definitions of relevance with respect to a feature being weakly relevant or strongly relevant
to the label is proposed. With the aid of Binary Particle Swarm Optimisation (BPSO) [6,7],
the proposed model selects the best combination of features that will minimise the objective
function. The model proposed by this study initially expands the dataset by creating
synthetic features generated from features that have a weak correlation to some output
label. In so doing, new (synthetic) features which are partially composed of weak features
and strong features are generated. Synthetic features are features that are not part of
the original dataset but are created through some mathematical operation of two or more
features. The synthetic features will be created by performing some mathematical operation
on features with weak correlation and other features with strong correlation to the label;
subsequently, a basic version of a Long Short-Term Memory network model is used with
BPSO to select the combination of features that minimise the objective function. These
selected features are then used to perform predictions for future values of the stock market
data. The results obtained show that by creating synthetic features with features having a
weak and strong correlation, features with a stronger correlation to the label are generated,
and by applying BPSO, the optimum combination of features that would minimise the
objective function are selected.

Two versions of an LSTM network model are used. The first LSTM network model is
a very basic version of the model which will provide values of the objective function for
subsets of features selected through BPSO, and the second LSTM network model will be
used to validate the selected features by training and making predictions.

The model proposed in this study is based on the premise that generating synthetic
features that have a high correlation to the label would result in better predictions. A novel
approach to identifying weak features in a dataset and generating strong(er) features with
a higher correlation is presented. This study makes use of stock market price behaviour
prediction as a use case and the model presented is applicable for time series analysis and
prediction problems.

2. Literature Review

In this section, work relating to FS, determining feature relevance, Binary Particle
Swarm Optimisation, and LSTM networks is presented. These techniques form the basis of
the model presented in this study.

Several approaches for determining and measuring the strength of feature relevance
exist. The Chi-squared test measures the independence of two or more features [8]. Given a
categorical feature and label, the Chi-squared test measured the independence of the label
with respect to the feature. It can be denoted by the following:

χ2 = ∑
(O − E)2

E
(2)

where χ2 is the Chi-squared, O is the observed value and E is the expected value. The Chi-
squared test has been used extensively in use cases including measuring word importance
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when classifying textual data [9], cancer cell classification [10] and other areas where
determining feature relevance of categorical data is relevant. One of the advantages of the
Chi-squared test is that it does not require homoscedasticity in the data.

Tree-based models such as decision trees as well as ensemble models, such as Random
Forest and Gradient Boosting, are able to derive and measure the relevance of each feature
in a dataset by ranking each feature in terms of importance [11,12]. Decision trees generally
have several nodes and at each node perform a split based on which feature(s) minimises
Entropy or a Gini Index. Ensemble models are similar but instead of having a single
tree with many nodes, they create several trees through techniques known as Bagging
and Boosting. Each subsequent tree in an Ensemble model performs splits based on the
measures of feature impurity from the previous trees, and thus, each subsequent tree
aims to make improvements based on the decisions (splits) made by the previous trees.
Each individual tree performs splits on a random subset of the available features and
performs the decision as to which features are more important by calculating a Gini Index
or Entropy [13]. The Gini Index can be represented as follows:

G = 1 −
C

∑
i=1

(pi)
2 (3)

Entropy is calculated as follows:

E =
C

∑
i=1

−pi × log2(pi) (4)

where p is the probability of a class i.

2.1. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) comes from the family of evolutionary algorithms
that mimic the behaviours and social activities exhibited in nature. PSO looks particularly
at the behaviour of flocks of birds, schools of fish, and human social interaction, where
each agent of the collective (swarm) is represented as a particle [6,14]. The objective of
the swarm is to collectively work towards finding the best variables such as position and
velocity, at any given time, that will result in the swarm achieving a goal. For a particle
i in a swarm, a local best (pbesti) is shared with its neighbours based on its experiences.
A Nearest Neighbour algorithm is used to evaluate the neighbours with which information
is shared. A neighbouring particle with whom information has been shared can compare
this information with its local best and also the global best (gbest) and update its best value
with the shared value if the shared value is better. This optimisation process is iterative,
with each iteration producing some metric, and with the objective of finding the optimum
collection of features for which this metric is optimised. For a particle in an N dimensional
space, the updates to the position and velocity of a particle can be represented as follows:

vk+1
i = wvk

i + c1Rand()1(pbestk
i − xk

i ) + c2Rand()2(gbestk − xk
i ) (5)

xk+1
i = xk

i + vk+1
i (6)

where vk
i is the velocity of the ith particle for iteration k, c1 and c2 represent constants,

Rand()1 and Rand()2 are random numbers between 0 and 1, w is the weight of inertia as
a result of changing velocity, xk

i is the current position of the ith particle for iteration k, and
pbestk

i and gbestk represent the ith particles personal best and global best for iteration k,
respectively.

2.2. Long Short-Term Memory Networks

A Long Short-Term Memory (LSTM) network is a type of Recurrent Neural Network
(RNN) which, unlike the standard RNN, does not suffer from a problem known as the
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vanishing gradient problem in which data are lost overtime during training. Figure 1 shows
an LSTM cell, with the three sigmoid gates it uses to memorise long-term dependencies
between data and update its internal state:

• An Input gate (i): Responsible for determining the current state of the LSTM cell by
applying a sigmoid function and tanh function.

• A Forget gate ( f ): Responsible for determining which information is fed into an LSTM
cell and which information should be forgotten or discarded.

• An Output gate (o): Determines what information is passed out of the LSTM cell.

Figure 1. A Long Short-Term Memory network cell [15].

LSTM models have been developed and used successfully in several fields including
text classification and Natural Language Processing [16,17], sentiment analysis [18,19],
the prediction of future behaviour [20,21], and various other classification and regression
problem areas.

2.3. Related Work

In a study, Ref. [22] proposed an FS model that combines both the filter and embedded
approaches, using a decision tree model and the ReliefF algorithm [23]. A feature weight
is calculated as part of the decision tree and is used to determine which features to select.
The proposed algorithm was measured using the metrics accuracy, recall, and F1-score and
performed well in terms of all three values.

A study by Dhiman et al. [24] proposed an algorithm for FS using the binary meta-
heuristic algorithm, Binary Emperor Penguin Optimiser (EPO), which like PSO is modelled
after behaviours found in nature. EPO is modelled after the huddling behaviour of emperor
penguins found in the arctic as they move in a swarm. The proposed algorithm is compared
against other binary meta-heuristic algorithms and outperforms the other binary algorithms
using various benchmark functions.

3. Materials and Methods

This study presents a model for FS for the purpose of stock market behaviour predic-
tion by taking the correlation of features to the label into account, and creating synthetic
features that have strong(er) correlation to the label from features which have weak correla-
tion. The Binary Particle Swarm Optimisation (BPSO) algorithm is used to select the best
set of features that minimise the objective function with a very basic version of an LSTM
model having a single layer and dropout. The combination of this basic LSTM model and
BPSO is used as a filter mechanism for FS. The selected features are then used as input data
to train the main model.

3.1. Data Analysis and Pre-Processing

Apple stock market data for a 5-year period between 1 January 2015 and 31 December
2019 obtained from Yahoo Finance were used for the dataset. The dataset consists of six fea-
tures including Open, High, Low, Close, Adj Close prices, the Date recorded, and Volume.
The purpose of this study is to make use of a multivariate analysis of all these features to
predict the future price and behaviour of the “Adj Close” price. A label called “output”
is created which represents the next day’s Adj Close price for each day. Figure 2 shows a
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sample of the original dataset with the various features as well as a Date column indicating
a daily time-step, while Figure 3 shows a sample of the dataset with a new column “output”
introduced. This “output” column represents the next day’s Adj Close price and is the label
which is to be predicted.

Figure 2. Sample of Apple stock market dataset.

Figure 3. Sample of Apple stock market dataset with output label column.

Analysing the correlation between the individual features and the label is crucial
as part of understanding the effects of each feature on the label values. Figure 4 shows
the correlation matrix when PCC is applied for each of the features and output label.
Figures 5–9 all show a positive and high correlation between each feature and the label,
whereas Figure 10 shows a negative and low correlation between “Volume” and the label.

In analysing this correlation data, the absolute value of each feature’s correlation
against the “output” label is observed. In addition, the absolute value of each correlation is
measured on a scale from 0 to 1, where the closer to 1, the stronger the correlation value,
and the closer to 0, the weaker the correlation value. With the dataset used, the correlation
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matrix shows that the “Adj Close” feature has the highest correlation to the “output” label
and “Volume” has the lowest. The model proposed by this study aims to initially create
synthetic features from features with a weak correlation to the label, and thus generate
[synthetic] features with a stronger correlation in the dataset. The “Volume” feature is a
candidate for creating synthetic features for this dataset.

Figure 4. Correlation matrix.

Figure 5. High vs. Output.
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Figure 6. Low vs. Output.

Figure 7. Open vs. Output.



AI 2024, 5 1242

Figure 8. Close vs. Output.

Figure 9. Adj Close vs. Output.
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Figure 10. Volume vs. Output.

3.2. Building Synthetic Features

An algorithm was developed to determine a weak feature for a given dataset and
identify potential candidate features from which synthetic features can be created. A bench-
mark needed to be defined that would computationally define what a weak correlation
meant for a specific dataset. To this end, a weak correlation is defined as any correlating
value which is less than the mean correlation of all features. This mean correlation rMean
can be represented by Equation (7).

rmean =
∑N

n=1|r( fn)|
N

(7)

where fn is the nth feature in a dataset of N features, and r( fn) is the correlation of the
nth feature.

In this study, a feature with a weak correlation is defined as one for which the absolute
value of its correlation against the label is less than rmean. Synthetic features are then created
from such features by performing a mathematical operation using this feature and all other
features in the dataset. The pseudocode for this operation is represented by Algorithm 1.

Algorithm 1: Create synthetic features from features with weak correlation to
the label

Data: D = Input dataframe of N number of raw features, L = Dataframe of output
label

Result: D′ = Dataframe of Raw and synthetic features: D ⊆ D′

D′ = D for fn ∈ D do
if | r( fn, L) | < rmean then

for do
D′

i = fn/Di
end

end
end

In Algorithm 1, a synthetic feature D′
i is created by dividing the value of a weak feature

fn by the value of a strong feature Di. In so doing, a new value which represents a fraction
made up of two of the values from the raw features is created. For data that are numerical,
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Algorithm 1 highlights a means by which synthetic data can be created by performing a
mathematical operation on weak and strong features. In Algorithm 1, D represents the raw
dataset as input, which contains N number of features. L is the label in the dataset, which
is represented as “output”. fn is a feature of the raw dataset D at position n. L is a dataset
containing only the label values, and D′ is the resulting dataset which contains the raw and
synthetic features. The overall process shown in Algorithm 1 involves looping through the
dataset of raw features and for each feature, computing the absolute value of the PCC of
the raw feature to the label, denoted as | r( fn, L) |. If the absolute value of the computed
PCC is less than rmean from Equation (7), then the value of the feature fn is divided by the
values of each of the other features at that specific index n that are deemed strong features,
resulting in a new (synthetic) feature that represents a fractional value made up of the weak
and strong feature. This process is repeated for each feature, producing a new expanded
dataset D′ that is made up of raw features and synthetic features that have a higher PCC
value to the label than the weak features. The premise of creating synthetic features is
that a model’s accuracy of prediction can be enhanced by expanding the dataset to contain
synthetic features that have a high correlation to the label.

For the dataset, it was observed that when Algorithm 1 was applied, the feature
“Volume” had the weakest correlation to the label. A dataset of raw and synthetic features
is then created based on this. The resulting dataset contains synthetic features with a
stronger correlation than “Volume”. A naming convention for these synthetic features is
adopted by concatenating the original feature name with an underscore and the name of
the feature with low correlation. Figure 11 shows the correlation matrix of the new dataset.
Taking the absolute value of each feature’s correlation to the label, it was observed that the
synthetic features (Open_Volume, High_Volume, Low_Volume, Close_Volume, and Adj
Close_Volume) have stronger correlation than the original Volume feature.

Figure 11. Correlation of new dataset containing synthetic features and the label.

3.3. Model Efficiency Considerations

Machine learning models are prone to lengthy training times and resource utilisation,
particularly when trained on complex or large datasets. It is therefore important to optimise
the design of a machine learning model by considering the amount of resources such as time
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used when training the model. In order to find a balance between accuracy and resource
efficiency, an experiment was carried out to determine the impact of model complexity on
training time. A stacked LSTM with a complex architecture (having multiple LSTM layers)
was developed and trained on the dataset and the time taken for training was observed.
Similarly, a simple LSTM model with a single LSTM layer was developed and trained
on the same dataset and the training time was observed. Figure 12 shows the complex
LSTM model, with several LSTM layers and dropout layers in between each LSTM layer.
Figure 13 shows the total time taken for the complex LSTM model to complete training on
the Apple stock market dataset. In comparison, Figure 14 shows the simple LSTM model
experimented with and evaluated for training time, with a single LSTM layer and a single
dropout layer. Figure 15 illustrates the associated training time for the simple LSTM model
on the Apple dataset.

Figure 12. Complex LSTM model.
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Figure 13. Complex LSTM model: training time per epoch.

Figure 14. Simple LSTM model.
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Figure 15. Simple LSTM model: training time per epoch.

From the training times observed in Figures 13 and 15, the complex LSTM model took
approximately 28 s for training, while the simple LSTM model took about 5 s for training.
For the purpose of this study, balancing accuracy with resource utilisation was vital.
For algorithms in which a balance is required between accuracy and resource utilisation,
the use of a less resource-intensive model can be adopted. The applicability of this design
consideration is discussed further in Section 3.4 where the BPSO technique is applied.

3.4. Model Training and Binary Particle Swarm Optimization

With the expanded dataset containing synthetic features along with the original fea-
tures and label, Binary Particle Swarm Optimisation (BPSO) is applied to a very basic LSTM
network to determine the best combination of features that best optimise the objective func-
tion. BPSO works in the same way as the PSO previously described; however, the position
of a particle in BPSO is discrete. With respect to the problem of feature relevance, BPSO
will determine whether a feature is relevant or not. The position of a particle in BPSO can
be denoted by Equation (8) [7]:

Xij(t + 1) =

{
0, i f Rand() ≥ S(vij(t + 1))
1, i f Rand() < S(vij(t + 1))

(8)

where Rand() is a random number, vij is the velocity of the ith particle for iteration j,
and S(vij(t + 1)) is the sigmoid function:

S(vij(t + 1)) =
1

1 + e−(vij)
(9)

The BPSO is applied to a very basic LSTM network, which provides MSE values for
each iteration of the BPSO. The purpose of using a very basic LSTM network at this stage
is the BPSO algorithm is not interested in achieving an MSE value that is as close to 0 as
possible; for now, rather, it is interested in whether the MSE value with a set of features
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Fx is less than or greater than the MSE for another set of features Fy. In addition, a small
LSTM network will save us long computation times when trying to select the optimum
set of features. Ultimately, the BPSO and LSTM network will provide a set of features for
which the smallest MSE value overall is obtained. The BPSO algorithm is initialised with
the following values in relation to Equation (5): c1 = 0.5, c2 = 0.5, w = 0.9, and k = 5 with a
total of 10 iterations.

Table 1 shows the features that were selected as a result of the BPSO and LSTM
network FS process, with all features that have a value of 1 being part of the set of relevant
features that provide the smallest MSE value. From Table 1 it is observed that the BPSO
algorithm has selected High, Volume, Open_Volume, Low_Volume, Close_Volume, and Adj
Close_Volume as the combination of features that will result in the smallest MSE value.
Of the six features selected, four are synthetic features.

Table 1. Result of BPSO applied to LSTM network to select set of features that provide a minimal MSE.

Feature Relevance Indicator

Open 0
High 1
Low 0
Close 0

Adj Close 0
Volume 1

Open_Volume 1
High_Volume 0
Low_Volume 1
Close_Volume 1

Adj Close_Volume 1

To validate the relevance of the feature set selected by the BPSO algorithm, features
that are deemed relevant by the BPSO and LSTM network are selected as an input dataset
of relevant features to our main LSTM network model, which is a larger LSTM network
model that has more input neurons and layers. This LSTM network is trained on the dataset
of relevant features and is used to make prediction for future stock market behaviour.

3.5. Data Pre-Processing and Model Design

The LSTM model is developed in the Python programming language along with
the Tensorflow (V2.2.0) library for machine learning. Google Colaboratory is used to
develop and run the model on a GPU providing 13 GB of memory and 68.4 GB disk space.
The dataset of relevant features is scaled to values between 0 and 1, and split into 80%
training data and 20% test data. During training, 20% of the training data are reserved as
a validation set. Figure 16 illustrates the split of training data and test data for the Adj
Close daily price which the model will make predictions of. A stacked LSTM model is used
and the Adaptive Moment Estimator (Adam) algorithm [25] is adopted for updating the
internal network weights. Early stopping is used to prevent overfitting with 200 epochs
and a patience value of 20 epochs.
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Figure 16. Training and test data split of Adj Close daily price.

3.6. Model Evaluation

To evaluate the model’s performance, values of the Mean Absolute Error (MAE) and
Mean Squared Error (MSE) were computed. These evaluation metrics are expressed by
Equation (10) and Equation (11), respectively [26]:

MAE =
1
N

N

∑
t=1

|yt − ŷt| (10)

MSE =
1
N

N

∑
t=1

(yt − ŷt)
2 (11)

where N is the number of observed values, yt is the set of actual values, and ŷt is the set of
predicted values.

4. Results

In this section, the results of applying the most relevant features selected by the
BPSO algorithm for predicting the future behaviour of the stock market are presented as
compared with making use of a dataset with no synthetic features and no FS model applied.

Figure 17 shows the observed loss for the duration of training. Due to the adoption
of the early stopping strategy, the model completed training after 17 epochs. If the early
stopping strategy was not in place, the model would have gone beyond 17 epochs and
this would have possibly caused overfitting. In addition, Figure 18 and Figure 19 show
the observed MSE and MAE, respectively, for the duration of training. The figures also
show the model completed training after 17 epochs and that the MSE and MAE values
for training and validation gradually decrease and eventually come to a place of near
convergence towards the end of the training cycle.

Predictions are made based on the test dataset and evaluate our model’s prediction
by analysing the MSE and MAE values. In addition, the LSTM network model is trained
on the original dataset for which no synthetic features were created and was not subjected
to the FS process proposed by this study, and evaluated using the same metrics. Table 2
shows the metrics from both experiments. The metrics show that by subjecting the dataset
to the FS model proposed, smaller values for the MSE, MAE, and MAPE were obtained,
indicating that by applying the proposed model as a filter approach prior to model training
and prediction, the LSTM model’s predictability was enhanced.
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Figure 17. Training and Validation Loss.

Figure 18. Training and Validation MSE observed for the duration of training.

Figure 19. Training and Validation MAE observed for the duration of training.
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Table 2. LSTM model MAE, MSE, and MAPE with and without proposed feature selection model.

Proposed Feature Selection MAE MSE

YES 0.000305 0.012886

NO 0.000433 0.016486

The future behaviour of the Adj Close price is predicted using the test data. Figure 20
shows the Adj Close training, test, and predicted values plotted for each day. Figure 21
shows an enhanced plot of the test and predicted values of the daily Adj Close price.
Additionally, Figure 22 shows a plot of the Adj Close training, test, and predicted values
when the FS model was not applied, and Figure 23 shows an enhanced plot of the test and
predicted values when the FS model was not applied.

Figure 20. Training, test, and predicted daily Adj Close price with proposed feature selection applied.

Figure 21. Test and predicted daily Adj Close price with proposed feature selection applied.
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Figure 22. Training, test, and predicted daily Adj close price without feature selection.

Figure 23. Test and predicted daily Adj Close price without feature selection.

From the metrics in Table 2 and the plots in Figures 20–23, it was observed that
the model performed well in making predictions of the future Adj Close price when the
proposed FS model was applied as compared with when no feature selection was applied.
From the results obtained, when the proposed FS model was used, the LSTM model had
better prediction and achieved values of 0.000305 and 0.012886 for the MAE and MSE,
respectively. When compared with the MAE and MSE of 0.000433 and 0.016486 when the
FS model was not applied, the overall predictions were improved through the application
of the FS model.

5. Conclusions

In this study a model for FS was presented, making use of synthetic features, Pearson
Correlation Coefficient, and Binary Particle Swarm Optimization. The results show that
by initially expanding the dataset to create synthetic features that have a greater PCC to
the label, and when the FS model was applied before training an LSTM network model,
the predictive capability of the LSTM network was enhanced and the evaluation error
metrics (MSE and MAE) were smaller than when the FS model was not used. As part of
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future work, the use of synthetic features with Pearson Correlation Coefficient without
Binary Particle Swarm Optimisation can be experimented with for other models which
have feature importance/ranking such as Random Forest and other tree-based models,
the results of which can be compared with the FS model presented by this study. In addition,
the use of wrapper and embedded approaches to FS may provide better results. The study
does not provide any techniques to evaluate the continued relevance of a feature overtime
as more (new) data become available for training. As more data become available, it may be
necessary to periodically evaluate the degree of a feature’s relevance in an effort to ensure
the model is continuously able to generalise and provide predictions with a high accuracy.
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