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Abstract: Proper nitrogen management in crops is crucial to ensure optimal growth and yield
maximization. While hyperspectral imagery is often used for nitrogen status estimation in crops, it is
not feasible for real-time applications due to the complexity and high cost associated with it. Much
of the research utilizing RGB data for detecting nitrogen stress in plants relies on datasets obtained
under laboratory settings, which limits its usability in practical applications. This study focuses on
identifying nitrogen deficiency in maize crops using RGB imaging data from a publicly available
dataset obtained under field conditions. We have proposed a custom-built vision transformer model
for the classification of maize into three stress classes. Additionally, we have analyzed the performance
of convolutional neural network models, including ResNet50, EfficientNetB0, InceptionV3, and
DenseNet121, for nitrogen stress estimation. Our approach involves transfer learning with fine-
tuning, adding layers tailored to our specific application. Our detailed analysis shows that while
vision transformer models generalize well, they converge prematurely with a higher loss value,
indicating the need for further optimization. In contrast, the fine-tuned CNN models classify the crop
into stressed, non-stressed, and semi-stressed classes with higher accuracy, achieving a maximum
accuracy of 97% with EfficientNetB0 as the base model. This makes our fine-tuned EfficientNetB0
model a suitable candidate for practical applications in nitrogen stress detection.

Keywords: computer vision; transfer learning; convolutional neural networks; vision transformers;
nitrogen stress detection; maize

1. Introduction

Nitrogen is an important nutrient for the growth and development of plants. Naturally
occurring nitrogen compounds absorbed by plants are not sufficiently available. Hence,
farmers apply nitrogen fertilizer to crops to enhance nitrogen absorption and increase crop
production. According to the study by Ritchie [1], 115 million tonnes of nitrogen fertilizer
are annually applied to crops but only 35% is utilized by the crops. The excessive amount
causes nitrogen pollution including the acidification of soil, water contamination, and
nitrous oxide emissions that contribute to global warming. China is the largest contributor
to this pollution, causing one third of the total pollution, followed by India with 18%, and
USA with 11% of the total.

Nitrogen use efficiency (NUE) measures how much of the applied nitrogen is utilized
by crops as opposed to being lost to the environment [2]. The overapplication of nitrogen
fertilizer can reduce NUE. By improving farming practices using the latest technology
advancements, we can work towards increasing NUE, which will increase crop yield
with reduced fertilizer application. Nitrogen fertilization is necessary for better yield
and crop production, but the excessive use of fertilizers decreases NUE, increases overall
fertilization costs without any improvement in crop yield, and has an undesirable impact
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on the environment. Therefore, it is necessary to prevent the overuse of nitrogen fertilizer
by the targeted application of fertilizer and its rate adjustment.

Nitrogen is critical for chlorophyll formation in plant leaves, which produces the green
color of vegetation. Nitrogen-deficient plants lack sufficient chlorophyll content, so the
early signs of nitrogen deficiency appear in mature leaves as slight discoloration to a lighter
green color in early stages, turning leaves to yellow later and further causing the premature
fading of older leaves. Apart from this, thin and weak vegetation, slow growth of stem, and
a purple hue are also signs of nitrogen deficiency. In later stages, it can cause premature
fading and necrosis, resulting in early plant death and crop loss. Different crops show
different symptoms of nitrogen deficiency. In maize, visual symptoms include a V-shaped
yellowing pattern on the leaves, smaller or poorly filled maize ears, glossy maize kernels
indicating low protein content, and premature browning of stover in the late season [3].
These visual symptoms can be used to identify nitrogen deficiency in maize crop images
using state-of-the-art computer vision techniques that are non-destructive and can be easily
automated for faster response.

In this study, we have developed a custom-built vision transformer (ViT) model
specifically designed for the classification of nitrogen stress levels in corn crops using RGB
(red, green, and blue) image data. We also utilize the transfer learning approach to fine-tune
some widely used classifiers for our application. Our approach focuses on leveraging the
power of deep learning and vision transformers to accurately classify images into three
distinct levels of nitrogen fertilization: no nitrogen applied, 75 kg nitrogen applied, and
136 kg nitrogen applied. Our contributions can be summarized as follows:

• We have designed and implemented a vision transformer model tailored for the
agricultural domain, specifically for nitrogen stress detection in corn crops.

• Our developed vision and CNN models exclusively use RGB image data, making
these models accessible and practical for widespread agricultural applications.

• We have classified the nitrogen stress levels into three categories, providing detailed
insights into the nitrogen status of the crops. For this purpose, we have used a publicly
available dataset collected under field conditions.

• We have utilized a transfer learning-based approach to fine-tune widely used vision
transformer and CNN models for nitrogen stress level classification. This involved
adapting pre-trained models to our specific application, enhancing their performance.

• We have performed a detailed comparative analysis using two different image resolu-
tions (100 × 100 and 224 × 224) to evaluate the impact of image resolution on classifier
accuracy and identify the best-performing classifier.

Our research focuses on nitrogen-level classification from RGB images of maize crop,
which is a foundational step towards achieving the goal of developing a precision agricul-
ture system that can accurately determine the nitrogen fertilizer requirements for specific
areas within a maize crop field. By detecting different nitrogen levels in crops, detailed
nitrogen deficiency maps can be generated, which can then be used to divide the field into
management zones, each with specific fertilizer requirements. With the precise identifica-
tion of nitrogen-deficient areas, farmers can apply fertilizers only where needed, thereby
increasing NUE and reducing waste.

2. Related Works

Traditional nitrogen status analysis in plants is performed using destructive chemical
testing; therefore, the research community has been focused on exploring visual analysis
techniques based on optical properties and machine learning models to approach the
problem of nitrogen stress detection in crops. Hyperspectral imaging is a widely used
method for stress detection in crops. Being a non-destructive method, it can capture
detailed spectral information across various narrow spectral bands. Nitrogen affects
the overall health of plants, which is reflected in the spectral properties of their leaves.
Hyperspectral imaging is sensitive to these changes related to nitrogen deficiency, and
therefore, many researchers have utilized hyperspectral imaging and vegetation indices
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associated with spectral properties of leaves for nitrogen stress detection. Authors in [4–7]
used hyperspectral remote sensing to extract nitrogen information in cucumber, hemp,
potato and tea leaves. Wang et al. [8] used hyperspectral imagery data to determine
nitrogen deficiency and its relation with crop yield in maize crop. The authors in [9]
determined nitrogen status in maize for variable rate fertilizer application using spectral
vegetation indices. Wu et al. [10] used a combination of spectral and texture-based features
for estimating maize nitrogen content.

Even though hyperspectral imaging sensors have improved with time, due to the
large volume of data requiring exhaustive processing and specialized expertise as well as
high cost, hyperspectral imaging is not very feasible for real-time processing as compared
to RGB imaging [11]. Multispectral imaging, on the other hand, is relatively feasible for
real-time applications due to the lower data volume and lesser computational cost. Burns
et al. [12] gave an overview of commonly used vegetation indices for assessing plant
nitrogen stress. They used multispectral data to study the relationship between various
vegetation indices with nitrogen stress and fertilizer rate application in maize. According
to their study, chlorophyll index green (CIgreen), the green normalized difference vegetation
index (GNDVI), and the red edge normalized difference vegetation index (RENDVI) are the
best vegetation indices for the detection of nitrogen deficiency in maize. Zheng et al. [13]
used a five-band multispectral camera to obtain images of winter wheat using a drone
during five growth stages of winter wheat. They compared various parametric and non-
parametric modeling algorithms for nitrogen content determination, where parametric
modeling is based on 19 vegetation indices. The best vegetation index for nitrogen content
detection was reported to be the modified renormalized difference vegetation index (RDVI)
with a coefficient of determination (R2) of 0.73 and root mean squared error (RMSE) of
0.38. For non-parametric models, random forest performed best with R2 of 0.79 and RMSE
of 0.33. The authors in [14] used a combination of hyperspectral and multispectral data
for nitrogen content estimation in tea plants and reported an R2 and RMSE of 0.9186 and
0.0560, respectively.

In contrast to the multispectral and hyperspectral imaging techniques, many recent
studies have explored the use of advanced machine learning algorithms, particularly
convolutional neural networks (CNNs), applied to RGB imaging data for nitrogen stress
detection in crops. This approach utilizes the valuable information provided by RGB images,
which, when combined with the deep learning capabilities of CNNs, has shown promising
results in accurately identifying nitrogen stress indicators in plants. Moreover, RGB images
are more amenable for real-time processing compared to other approaches. Azimi, Kaur,
and Gandhi [15] proposed a CNN for nitrogen stress indication in sorghum plant shoot
images. The dataset they used for their study comprises RGB images of three classes: a
healthy plants class representing 100% nitrogen treatment available, a semi-stressed class
with 50% nitrogen treatment, and a severely stressed class with 10% nitrogen treatment
available to the plants. They used a publicly available dataset obtained under laboratory
conditions, consisting of images of plant shoots captured against a white background. They
proposed a 23-layered CNN model with 5 convolutional layers, respectively, each followed
by batch normalization and ReLU activation, where the first four convolutional layers
are followed by max pooling layers. The fifth convolutional layer is followed by fully
connected, softmax, and classification output layers. They reported a maximum accuracy
of 84%.

Zermas et al. [16] proposed an annotation assistant tool, which identifies plant areas
demonstrating nitrogen deficiency. The tool provides a recommendation to the annotator
to create a training set that is then used to train a deep learning model. The images in
their work were collected through a drone. The annotator tool uses k-means clustering
and support vector machine (SVM) models in various steps to divide pixels in green
(healthy), yellow (stressed), and brown (soil) pixels. This step generates a training set with
bounding boxes representing nitrogen-stressed areas in images. This set is then used to
train a Faster RCNN architecture with a ResNet50 feature extractor for detection. They
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reported a mean average precision of 82.3% and an intersection over union percentage of
50%. Zhang et al. [17] used RGB (red, green, and blue) imaging from a drone for nitrogen
stress detection in rapeseed leaves during seedling stage. They used a U-Net model for
purple rapeseed leaf segmentation and to establish a relationship between leaf purple
area and nitrogen deficit. They reported that the purple area increases as the nitrogen
application level decreases, suggesting a greater stress on the plants due to lower nitrogen
levels. They determined the relationship between the purple area and nitrogen content
to be negative exponential with an R2 of 0.858, indicating a strong correlation between
these factors.

Haider et al. [18] also proposed a vision-based analysis technique for nitrogen content
estimation in spinach leaves. They used a specially designed board with white background
and two reference colors that are represented by green and yellow circles.The first step of
their methodology involves using Otsu’s thresholding and the bounding box method to
extract the region of interest, which includes the reference circles and the leaf. The leaf and
reference circles are then distinguished from each other using the width-to-height ratio of
their corresponding bounding boxes. The next step of their methodology uses the Gaussian
mixture model technique for background segmentation of the leaf. Their methodology then
computes the mean color value of the reference circles and leaf. The decision is made on
the basis of distance of leaf mean color from the mean color of the reference circles. They
reported an R2 of 0.92 and RMSE of 0.0845.

3. Materials and Methods

Figure 1 depicts the flowchart of our methodology. The dataset utilized in this research
is presented by Salaić et al. [19] and is publicly available through the Mendeley data
repository [20]. The dataset is composed of 1200 images of maize canopy annotated
by an agricultural expert. The images were collected in July 2023 over a 5-day period
encompassing the flowering stage of maize. They were captured randomly along the
rows between 7:30 a.m. and 11:00 a.m., with each image sized at 2400 × 1600 pixels. The
images are categorized into three distinct classes, each representing a different nitrogen
fertilization level. The classes include N0 (no fertilization), N75 (75 kg of nitrogen fertilizer
applied), and NFull (136 kg of fertilizer applied), with 400 images per class. The images are
captured using a digital single-lens reflex (DSLR) camera positioned at a 45° angle relative
to the plots.

Figure 1. Flowchart of proposed methodology for nitrogen stress detection.

3.1. Pre-Processing

Pre-processing is a critical step in preparing data for classifier training. This process
involves several key steps, including resizing the images to a uniform resolution. We per-
formed experimentation using two image resolutions: 100 × 100 pixels and 224 × 224 pixels.
Additionally, segmentation is performed to isolate the plant region. To achieve this, a thresh-
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old value of 30 is applied to the inverted blue image channel in the RGB color space to
segment the sky. For removing the soil part, thresholding on the hue image is applied in the
HSV color space. Two threshold values are selected based on the lighting and shadowing
in the images. Images with higher exposure to sunlight are segmented using a threshold
of 75, while images with lower exposure use a threshold of 40. Following thresholding,
morphological closing is applied to refine the segmentation mask using a cross-shaped
5 × 5 kernel. All the values were determined empirically after extensive experimentation.
Figure 2 shows sample images from the dataset before and after segmentation.

(a) (b) (c) (d) (e) (f)

Figure 2. Samples of maize images: (a) sample image from class N0 with no fertilization, (b) sample
image from class N75 with 75 kg of fertilizer applied, (c) sample image from class NFull with 136 kg
of fertilizer applied, (d–f) same images as (a–c) after segmentation.

3.2. Data Augmentation

Data augmentation is an important technique in expanding small datasets. Machine
learning models require a large number of training samples to learn from, which are
challenging to obtain in real-world settings. Data augmentation works by generating new
data from the original data by introducing small variations, thereby artificially creating
a bigger dataset to enhance the model’s generalization and performance. To increase
the robustness of our models and prevent overfitting, we apply various transformations
including rotations, shifts, shear, zooms, and flips to augment the input images. We apply
rotation and flip transformations to both the original and segmented images, increasing
the total number of images in our dataset from 1200 to 4800. We use a random flip set
to horizontal and apply a random rotation range of 20%. During the training process,
we use the ImageDataGenerator class in TensorFlow to apply shift, shear, and zoom
transformations. Width and height shift values are set to 15% of the image width and
height, respectively. The shear angle is set to 15 degrees, and the zoom range is set to 15%.
In this way, we are able to generate a diverse set of examples for our deep learning models
to learn from. This is crucial to generate an extensive and varied dataset that could train
robust models for the precise classification of images based on nitrogen deficiency levels.

3.3. Classifier Selection

We use supervised machine learning to classify three levels of nitrogen fertilization (i.e.,
N0, N75, and NFull). Our study focuses on comparing the performance of ViTs and CNNs
in detecting nitrogen deficiency in maize images. ViT is a revolutionary deep learning
model introduced by Dosovitskiy et al. [21] that extends the transformer architecture from
natural language processing to image classification tasks. While traditional CNNs use a
hierarchical approach to process images, ViTs use a sequential approach, treating images
as a sequence of small tokens in a similar manner to words being processed in natural
language processing. This enables ViTs to capture long-range dependencies more effectively
in images, resulting in strong performance in image classification tasks. While CNNs have
long been the dominant architecture for computer vision, delivering high effectiveness
across various applications, ViTs have demonstrated remarkable performance in numerous
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image classification tasks, often matching or surpassing the accuracy of CNNs. Our research
aims to examine the performance of vision transformers, particularly in identifying nitrogen
stress in plants, by comparing their effectiveness against state-of-the-art neural networks.

4. Implementation

We use the Tensorflow library with Keras API to develop our framework. We compare
the performance of state-of-the-art ViTs with widely used CNNs. We conduct two sets of ex-
periments. In the first set, we implement a ViT model built from scratch and trained entirely
on our dataset. In the second set, we implement a transfer learning approach, where we
select various pre-trained deep learning architectures as the base models and fine-tune them
on our dataset. The base models include a pre-trained vision transformer model, as well as
four widely known CNN models: EfficientNetB0 [22], DenseNet121 [23], InceptionV3 [24],
and ResNet50 [25]. The details for both sets of experiments are presented below.

4.1. Vision Transformer Custom-Built Model

In the first set of our experiments, we develop a custom vision transformer model
tailored to our specific application. The vision transformer model is constructed in several
key steps. The first step is to augment the input images and divide into patches. For this
model, we perform experimentation using two image resolutions: image size of 100 × 100
with a patch size of 10 and image size of 224 × 224 with a patch size of 16. These patches
are then fed into a dense layer, which learns positional embeddings for each patch. This
step is crucial for the model to understand the spatial relationships between different parts
of the image. The output of the dense layer is then passed into the transformer network.
The transformer network consists of several blocks. The block diagram showing the
transformer structure is given in Figure 3. The transformer block contains a normalization
layer followed by a multihead attention layer. The output of this attention layer is added
to the original input and then fed into the next part of the block, which is composed of
another normalization layer followed by a multilayer perceptron (MLP) that processes the
intermediate features. The MLP in the transformer block comprises two hidden layers with
128 and 64 neurons, respectively. The output of this MLP is then passed to the MLP head in
the output block for further processing. In our model, the MLP head unit has two hidden
layers with 2048 and 1024 neurons, respectively. Finally, the output of the MLP head is
passed to a dense layer that computes the class probabilities, determining the predicted
class for each input image.

Figure 3. Architecture of our custom-built vision transformer model to classify three levels of nitrogen
fertilization (i.e., N0, N75, and NFull).

4.2. Transfer Learning and Fine-Tuned Models

In the second set of our experiments, we employ a transfer learning-based approach.
In this set of experiments, we further compare a pre-trained vision transformer model with
selected CNN models.
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4.2.1. Fine-Tuned Vision Transformer Model

We select ViT-B/16 as the base model for fine-tuning on our dataset, which comprises
12 layers and 12 head units. This model configuration is known for its ability to capture
intricate patterns in image data, making it a suitable choice for our classification task. Since
this ViT base model accepts an image resolution of 224 × 224, we use only this resolution
for training and testing in this part of the experiments. Following the base model, we
incorporate a batch normalization layer, succeeded by an intermediate dense layer with
64 units and L2 regularization. Finally, the output layer, consisting of three units with a
softmax activation function, completes the model. Figure 4 shows the detailed architecture
of the model.

Figure 4. Architecture of the fine-tuned vision transformer model to classify three levels of nitrogen
fertilization (i.e., N0, N75, and NFull).

4.2.2. Fine-Tuned Neural Network Models

The neural network architectures chosen as the base model for the second set of ex-
periments are EfficientNetB0, DenseNet121, InceptionV3, and ResNet50. Similar to the
custom-built ViT model, we perform experimentation using two image resolutions of
100 × 100 and 224 × 224. The base model’s output is fed into a global average pooling 2D
layer, followed by a dropout layer with a 50% dropout rate to prevent overfitting. Subse-
quently, an intermediate dense layer with 128 units, ReLU activation, and L2 regularization
is employed. Finally, the output layer consists of three units with a softmax activation
function. Figure 5 presents the details of this architecture.

Figure 5. Architecture of fine-tuned CNN-based model to classify three levels of nitrogen fertilization
(i.e., N0, N75, and NFull).

4.3. Training Hyperparameters

We incorporate the Adam optimizer in our models with an initial learning rate of
0.001 and sparse categorical cross-entropy as the loss function. We implement several
training callbacks to enhance model performance and prevent overfitting. Early stopping
is employed to halt training if there is no improvement in performance for 10 consecutive
epochs, thus promoting generalization. The Model Checkpoint callback saves the best-
performing model based on validation accuracy, ensuring that the model with the highest
predictive capability is retained. The ReduceLROnPlateau callback reduces the learning
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rate by a factor of 0.2 if the validation loss fails to improve for 5 epochs, with a lower bound
set at 0.00001, allowing for fine-tuning of the model training. Additionally, a Learning
Rate Scheduler adjusts the learning rate based on the epoch number to control the speed of
model convergence, with an exponential decay scheduler employed in this instance. Each
model has been trained for 50 epochs, and the results are detailed in the subsequent section.

5. Results and Discussion

For our experiments, we split the dataset into train and test sets, with 90% of the
data allocated to the train set and 10% to the test set. We conduct the experiments using
three-fold cross-validation for each classifier, with the validation ratio set to 20%. The
best model configuration is selected based on the cross-validation results and evaluated
on the test set. Accuracy, precision and recall are selected as the performance parameters.
Additionally, training and validation loss curves are utilized to assess the performance of
the classifiers.

Accuracy is defined as the ratio of correctly predicted instances to the total number
of instances evaluated. Precision is defined as the ratio of true positive predictions to the
total number of positive predictions made by the model. Recall is the ratio of true positive
predictions to the total number of actual positive samples in the class. The training loss
measures the error between the model’s predicted output and the actual target during
training. Training aims at minimizing training loss through optimization techniques such
as gradient descent. Decreasing training loss indicates improved fitting of the model to the
training data. Validation loss, on the other hand, measures the error on a separate validation
dataset that the model has not encountered during training, providing insight into its
performance on unseen data. Validation loss evaluates the model’s generalization capability,
with lower validation loss indicating effective generalization and higher validation loss
suggesting potential overfitting.

5.1. Custom ViT Results

Figure 6 shows the training and validation loss curves for the custom ViT model for
both image resolutions. For both cases, the training loss continues to decrease gradually,
reaching a steady value by the end of the training. This gradual decrease suggests that
the model continues to learn at a slower pace. The validation loss decreases at a relatively
faster pace until epoch 20, after which it decreases very slowly and smoothly until the last
epoch. This behavior indicates that while the model continues to improve its generalization,
the rate of improvement becomes minimal after epoch 20. Overall, the model reaches a
convergence point around epoch 30, where both training and validation losses stabilize,
indicating effective learning and parameter stabilization.

From Figure 6, it can be observed that even though the final training loss for the image
resolution 224 × 224 is much lower (0.3) compared to the image resolution 100 × 100 (0.6),
the validation loss is the same for both the cases (0.6). This indicates that the model with
a larger image size might be overfitting to the training data. However, the test accuracy
with the large-image resolution is higher (76%) as compared to the small-image resolution
(70%). The improved test accuracy with the larger image size suggests that the model
benefits from the additional information provided by larger images which contain more
detail and spatial information than smaller images, making them the preferred choice for
vision transformer classifier.
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Figure 6. Custom-built vision transformer model results for train and validation losses for two image
resolutions (100 × 100 and 224 × 224) for nitrogen fertilization-level prediction.

5.2. Transfer Learning and Fine-Tuned Models Results
5.2.1. Fine-Tuned ViT Results

Figure 7 shows the graphs of training and validation losses over 50 epochs for our
fine-tuned model with the pre-trained ViT base. The graph demonstrates that the training
loss gradually decreases, indicating that the model is effectively learning from the data.
Initially, there are fluctuations in the validation loss, suggesting that the model is adjusting
to the data and fine-tuning its parameters to find an optimal configuration. After epoch 25,
the loss curve smooths out and remains relatively constant. This stability and similarity
between the training and validation losses suggest good generalization. The curves indicate
that by 50 epochs, the model has likely reached convergence, with its weights stabilized,
and further training does not result in significant changes to the loss values. The pre-trained
ViT model attains the highest training accuracy of 70% for the best configuration, and the
best test accuracy of 64%.

Figure 7. Fine-tuned vision transformer model results for train and validation losses for image
resolution 224 × 224 for nitrogen fertilization-level prediction.
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Both ViT-based models exhibit similar performance, with the custom-built model
showing better performance. Both models achieve their best loss values within 30 epochs,
although the pre-trained model displays more fluctuations at the beginning of training. The
stability of the loss curves and the consistent values of both training and validation losses
after 30 epochs suggest that the models have likely reached a point of convergence. Further
training is unlikely to lead to significant improvements, as it can be inferred from the
training curve that the models have already learned fully from the data given the current
architecture and hyperparameters.

5.2.2. Fine-Tuned CNN Models Results

Table 1 gives a comparison of train and test accuracies for all CNN-based models
for both image resolutions (100 × 100 and 224 × 224). It has been observed that all base
models perform better with a higher image resolution of 224 × 224 as compared to a lower
resolution of 100 × 100. Among all the models, the largest difference in test accuracy is
observed with InceptionV3, which achieves a test accuracy of 74% for smaller images and
91% for larger images. ResNet50 shows slightly better performance, with 78% test accuracy
for smaller images and 84.5% for larger images. The DenseNet121-based model performs
reasonably well, with 90% and 93% test accuracy for small and large images, respectively.
The best performance is obtained with the EfficientNetB0 base model, achieving a test
accuracy of 92% for smaller images (100 × 100), and 97% for larger images (224 × 224),
making it the most suitable model for our application.

Table 1. Comparison of test accuracies of fine-tuned CNN classifier models for two image resolutions
(100 × 100 and 224 × 224) for nitrogen fertilization-level prediction.

CNN-Based Model Train Accuracy (%) Test Accuracy (%)
100 × 100 224 × 224 100 × 100 224 × 224

EfficientNetB0 99 99.7 92 97
DenseNet121 98 98 90 93
InceptionV3 76 99 74 91

ResNet50 84 90 78 84.5

Figure 8 gives the training and validation loss curves for the fine-tuned EfficientNetB0
model for both image resolutions. A gradually decreasing and smooth training curve in
both cases indicates that the model’s optimization process is stable and effective. The
fluctuations in the validation loss early in the training are due to the model making
adjustments to the weights and learning the data. Steady values of training and validation
losses indicate that the model has converged. Training loss values are similar for both
resolutions and become steady after 30 epochs. However, the validation loss for the
small-image resolution is higher (0.23) compared to the large-image resolution (0.08). The
significant difference in validation loss suggests that higher resolution images provide
more detailed information, enabling the model to make more accurate predictions. The
test accuracy values are 92% for small images and 97% for large images, indicating better
performance with higher image resolution.

The training curves of both ViT and CNN models indicate that CNN-based fine-tuned
models outperform ViT models for detecting nitrogen stress in maize crop images. While
ViT models demonstrate good generalization, they tend to converge prematurely, ceasing
to learn once a stable loss curve is achieved. Despite their generalization ability, ViT models
exhibit higher loss values, indicating potential for improvement. Table 2 gives a comparison
of train and test accuracies for the best CNN and vision transformer models for the image
size 224 × 224. It can be seen that the fine-tuned CNN with EfficientNetB0 as the base
model achieves higher accuracy as compared to ViT models.
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Figure 8. Fine-tuned CNN best model results for train and validation losses for two image resolutions
for nitrogen fertilization-level prediction.

Table 2. Comparison of train and test accuracies of vision transformer models and CNN best model
for image resolution 224×224 for nitrogen fertilization-level prediction.

Architecture Train Accuracy (%) Test Accuracy (%)

ViT (Custom) 87 76
Fine-tuned ViT (VIT-b/16) 71 69

CNN (EfficientNetB0) 99.7 97

The individual class results (i.e., fertilization-levels N0, N75, and NFull) are presented
in Figure 9. Figure 9 only presents the results for the CNN model with EfficientNetB0 as
the base model, as it outperforms other CNN models (as depicted in Table 1). For class
N0, although the recall value for the CNN model (EfficientNetB0) is higher compared to
the ViT models, it remains the lowest when compared to the other two classes, which
have recall values of 0.99 and 1. This indicates that the CNN fine-tuned model performs
better for N75 and NFull than for N0. However, the recall value for class N0 for the
CNN model is still the best performing among the three classifiers for the N0 class. The
fine-tuned ViT model shows both precision and recall values of less than 50% for the N0
class, indicating poor performance in identifying N0 samples. However, the fine-tuned ViT
model demonstrates better recall for the N75 class as compared to the other classes, with
the highest value of 0.81. The custom ViT model has moderate recall and precision values
for the N0 class, suggesting there is room for improvement as compared to the other classes,
where it performs relatively better. For N75, the custom ViT shows the best performance
with a recall of 0.9 and precision of 0.82, both of which are higher than the values for
the other two classes (N0 and NFull). This indicates that the custom ViT is particularly
effective at classifying the N75 class compared to the other classes. Overall, the custom
ViT outperforms the fine-tuned ViT for all the three classes; however, the fine-tuned CNN
model with EfficientNetB0 as the base outperforms both ViTs for all the classes.
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(a) Precision

(b) Recall

Figure 9. Classification results for individual fertilization-level classes for image resolution 224 × 224.

6. Conclusions

The current research uses computer vision-based analysis techniques and deep learn-
ing models to assess the nitrogen status of maize crops. In this study, we have employed
two distinct approaches to develop models for nitrogen fertilization-level classification
task. The first approach involves constructing a vision transformer (ViT) model from
scratch. This custom-built model has been designed and trained entirely on our dataset,
allowing us to tailor the architecture and training process specifically to our needs. The
second approach utilizes transfer learning, leveraging a pre-trained ViT model and four
widely implemented CNN models. These pre-trained models have been fine-tuned on
our dataset, allowing us to benefit from the rich feature representations learned from
large-scale datasets like ImageNet. By adding custom layers on top of the pre-trained base
and fine-tuning the models, we have enhanced the models’ effectiveness by combining
the generalization capabilities of the pre-trained models with the specific characteristics of
our dataset. Additionally, we have tested two image resolutions, 100 × 100 and 224 × 224,
to observe the relationship between image resolution and model performance. Our find-
ings indicate that the performance of all the models is significantly affected by image
size, with larger images (224 × 224) yielding better results as compared to smaller images
(100 × 100). Furthermore, through a comparative analysis of fine-tuned and custom-built
ViT models against fine-tuned convolutional neural networks (CNNs), we observe that
CNN models outperform ViT models at both image resolutions. Specifically, the CNN
model with EfficientNetB0 as the base successfully classifies the crops into stressed, non-
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stressed, and semi-stressed classes, achieving a best test accuracy of 97%. Even though
the final training and validation losses for vision transformer models are consistent, the
overall loss values are large. These results indicate that while vision transformers slowly
learn and generalize well to the data, to reduce loss values and increase accuracy, further
optimization is needed, which might be achieved with a larger number of data samples.

The current research on nitrogen deficiency detection using RGB images is a critical
step towards the long-term goal of developing a real-time precision agriculture system for
targeted nitrogen fertilizer application. Our research focuses on using only RGB images
as compared to hyperspectral imagery, which is costly and less suitable for real-time
implementation. The superior performance of EfficientNetB0 suggests its potential for real-
time decision-making in precision agriculture applications. Vision transformers require
a large number of data samples and significantly more training time and parameters,
suggesting their somewhat lower suitability for typical agricultural datasets (particularly for
nitrogen stress identification), which are usually smaller. After a detailed comparison and
analysis, it is concluded that CNNs are more practical for real-time agricultural applications,
and the vision transformers need further refinement for agricultural datasets.
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Abbreviations

RGB Red, green, blue
NUE Nitrogen use efficiency
CIgreen Chlorophyll index green
GNDVI Green normalized difference vegetation index
RENDVI Red edge normalized difference vegetation index
RDVI Renormalized difference vegetation index
R2 Coefficient of determination
RMSE Root mean squared error
ReLU Rectified linear unit
CNN Convolutional neural network
SVM Support vector machine
RCNN Region-based convolutional neural networks
DSLR Digital single-lens reflex
ViT Vision transformer
MLP Multilayer perceptron
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