Teaming Up with an AI: Exploring Human–AI Collaboration in a Writing Scenario with ChatGPT
Abstract
:1. Introduction
1.1. ChatGPT as a Tool for Writing
1.2. Perceptions of ChatGPT
1.3. Research Questions
- RQ1: What are the characteristics of user behavior regarding text- and voice-based systems and specifically ChatGPT?
- RQ2: How is the behavior during the co-writing process with ChatGPT characterized in terms of prompting and copy–pasting content from ChatGPT?
- RQ3: What texts result as products of the co-writing task in terms of length and quality characteristics?
- RQ4: What is the degree of user experience satisfaction, trust in ChatGPT’s responses, and attribution of human-like characteristics to ChatGPT after the co-writing task?
- RQ5: What are the relationships between general user characteristics, the behavior during the co-writing task, text characteristics, and perceptions of ChatGPT after the co-writing task?
2. Materials and Methods
2.1. Participants
2.2. Material and Procedure
2.3. Statistical Analyses
3. Results
3.1. User Characteristics
3.2. The Collaborative Writing Task
3.2.1. Prompting Behavior
3.2.2. Text Creation
3.2.3. Text Characteristics
3.3. Perception of ChatGPT during and after the Writing Task
3.4. Relations among User Characteristics and Characteristics of the Writing Process
3.5. Relations among Characteristics of the Writing Process
3.6. Relations between Writing and Text Characteristics
4. Discussion
4.1. Main Findings
4.1.1. Behavior Regarding Text- and Voice-Based Systems, and ChatGPT
4.1.2. Behavior during Co-Writing with ChatGPT
4.1.3. Texts as Products of Co-Writing with ChatGPT
4.1.4. Perception of ChatGPT after Co-Writing: Satisfaction, Trust, and Human-Likeness
4.1.5. Relationships between User Characteristics, Behavior during Co-Writing, Text Characteristics and Perceptions of ChatGPT
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, D.; Magerko, B. What is AI Literacy? Competencies and Design Considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–16. [Google Scholar]
- McKinsey Consultant. What Is Generative AI? 2023. Available online: https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-generative-ai (accessed on 13 June 2024).
- Altman, S. [@sama] ChatGPT Launched on Wednesday. Today It Crossed 1 Million Users! 2022. Available online: https://x.com/sama/status/1599668808285028353?lang=en (accessed on 13 June 2024).
- OpenAI. ChatGPT. 2023. Available online: https://openai.com/blog/chatgpt (accessed on 13 June 2024).
- Titus, L.M. Does ChatGPT have semantic understanding? A problem with the statistics-of-occurrence strategy. Cogn. Syst. Res. 2024, 83, 101174. [Google Scholar] [CrossRef]
- Tan, T.F.; Thirunavukarasu, A.J.; Campbell, J.P.; Keane, P.A.; Pasquale, L.R.; Abramoff, M.D.; Kalpathy-Cramer, J.; Lum, F.; Kim, J.E.; Baxter, S.L.; et al. Generative Artificial Intelligence through ChatGPT and Other Large Language Models in Ophthalmology: Clinical Applications and Challenges. Ophthalmol. Sci. 2023, 3, 100394. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; He, S.; Liu, J.; Sun, S.; Liu, K.; Han, Q.L.; Tang, Y. A Brief Overview of ChatGPT: The History, Status Quo and Potential Future Development. IEEE/CAA J. Autom. 2023, 10, 1122–1136. [Google Scholar] [CrossRef]
- Howard, A.; Hope, W.; Gerada, A. ChatGPT and antimicrobial advice: The end of the consulting infection doctor? Lancet Infect. Dis. 2023, 23, 405–406. [Google Scholar] [CrossRef] [PubMed]
- Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüllermeier, E.; et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023, 103, 102274. [Google Scholar] [CrossRef]
- Huang, J.; Tan, M. The role of ChatGPT in scientific communication: Writing better scientific review articles. Am. J. Cancer Res. 2023, 13, 1148–1154. [Google Scholar]
- Lucy, L.; Bamman, D. Gender and representation bias in GPT-3 generated stories. In Proceedings of the Third Workshop on Narrative Understanding, Virtual, 11 June 2021; Association for Computational Linguistics: Kerrville, TX, USA, 2021; pp. 48–55. [Google Scholar]
- Atlas, S. ChatGPT for Higher Education and Professional Development: A Guide to Conversational AI. Available online: https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1547&context=cba_facpubs (accessed on 20 January 2024).
- Fauzi, F.; Tuhuteru, L.; Sampe, F.; Ausat, A.M.A.; Hatta, H.R. Analysing the role of ChatGPT in improving student productivity in higher education. J. Educ. 2023, 5, 14886–14891. [Google Scholar] [CrossRef]
- Su, Y.; Lin, Y.; Lai, C. Collaborating with ChatGPT in argumentative writing classrooms. Assess. Writ. 2023, 57, 100752. [Google Scholar] [CrossRef]
- Lund, B.D.; Wang, T. Chatting about ChatGPT: How may AI and GPT impact academia and libraries? Libr. Hi Tech. News 2023, 40, 26–29. [Google Scholar] [CrossRef]
- Cotton, D.R.E.; Cotton, P.A.; Shipway, J.R. Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innov. Educ. Teach. Int. 2024, 61, 228–239. [Google Scholar] [CrossRef]
- Grassini, S. Shaping the Future of Education: Exploring the Potential and Consequences of AI and ChatGPT in Educational Settings. Educ. Sci. 2023, 13, 692. [Google Scholar] [CrossRef]
- Dowling, M.; Lucey, B. ChatGPT for (Finance) research: The Bananarama Conjecture. Financ. Res. Lett. 2023, 53, 103662. [Google Scholar] [CrossRef]
- Macdonald, C.; Adeloye, D.; Sheikh, A.; Rudan, I. Can ChatGPT draft a research article? An example of population-level vaccine effectiveness analysis. J. Glob. Health 2023, 13, 01003. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.U.; Dharmadasa, I.; Sworna, Z.T.; Rajapakse, R.N.; Ahmad, H. “ I think this is the most disruptive technology”: Exploring Sentiments of ChatGPT Early Adopters using Twitter Data. arXiv 2022, arXiv:2212.05856. [Google Scholar] [CrossRef]
- King, M.R.; ChatGPT. A conversation on artificial intelligence, chatbots, and plagiarism in higher education. Cell. Mol. Bioeng. 2023, 16, 1–2. [Google Scholar] [CrossRef] [PubMed]
- ChatGPT Generative Pre-trained Transformer; Zhavoronkov, A. Rapamycin in the context of Pascal’s Wager: Generative pre-trained transformer perspective. Oncoscience 2022, 9, 82–84. [Google Scholar] [CrossRef] [PubMed]
- Stokel-Walker, C. ChatGPT listed as author on research papers: Many scientists disapprove. Nature 2023, 613, 620–621. [Google Scholar] [CrossRef] [PubMed]
- Else, H. Abstracts written by ChatGPT fool scientists. Nature 2023, 613, 423. [Google Scholar] [CrossRef] [PubMed]
- Draxler, F.; Buschek, D.; Tavast, M.; Hämäläinen, P.; Schmidt, A.; Kulshrestha, J.; Welsch, R. Gender, age, and technology education influence the adoption and appropriation of LLMs. arXiv 2023, arXiv:2310.06556. [Google Scholar] [CrossRef]
- Aczel, B.; Wagenmakers, E.-J. Transparency guidance for ChatGPT usage in scientific writing. PsyArXiv 2023. [Google Scholar] [CrossRef]
- Tang, G. Letter to editor: Academic journals should clarify the proportion of NLP-generated content in papers. Account. Res. 2023, 1–2. [Google Scholar] [CrossRef]
- Thorp, H.H. ChatGPT is fun, but not an author. Science 2023, 379, 313. [Google Scholar] [CrossRef]
- Nature. Tools such as ChatGPT threaten transparent science; here are our ground rules for their use. Nature 2023, 613, 612. [Google Scholar] [CrossRef] [PubMed]
- Sage Publishing. ChatGPT and Generative AI. Available online: https://au.sagepub.com/en-gb/oce/chatgpt-and-generative-ai (accessed on 13 June 2024).
- Shamoo, A.E.; Resnik, D.B. Responsible Conduct of Research; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Polonsky, M.J.; Rotman, J.D. Should Artificial Intelligent Agents be Your Co-author? Arguments in Favour, Informed by ChatGPT. Australas. Mark. J. 2023, 31, 91–96. [Google Scholar] [CrossRef]
- Hosseini, M.; Resnik, D.B.; Holmes, K. The ethics of disclosing the use of artificial intelligence tools in writing scholarly manuscripts. Res. Ethics 2023, 19, 449–465. [Google Scholar] [CrossRef]
- Korkmaz, A.; Aktürk, C.; Talan, T. Analyzing the user’s sentiments of ChatGPT using twitter data. Iraqi J. Comput. Sci. Math. 2023, 4, 202–214. [Google Scholar] [CrossRef]
- Limna, P.; Kraiwanit, T.; Jangjarat, K.; Klayklung, P.; Chocksathaporn, P. The use of ChatGPT in the digital era: Perspectives on chatbot implementation. J. Appl. Learn. Teach. 2023, 6, 64–74. [Google Scholar]
- Skjuve, M.; Følstad, A.; Brandtzaeg, P.B. The User Experience of ChatGPT: Findings from a Questionnaire Study of Early Users. In Proceedings of the 5th International Conference on Conversational User Interfaces, Eindhoven, The Netherlands, 19–21 July 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1–10. [Google Scholar]
- Choudhury, A.; Shamszare, H. Investigating the Impact of User Trust on the Adoption and Use of ChatGPT: Survey Analysis. J. Med. Internet Res. 2023, 25, e47184. [Google Scholar] [CrossRef]
- Dixit, A.; Jain, R. Chat of the Town: Gathering User Perception about ChatGPT. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4502004 (accessed on 13 June 2024).
- Davis, F.D. Technology acceptance model: TAM. Al-Suqri MN Al-Aufi AS Inf. Seek. Behav. Technol. Adopt. 1989, 205, 219. [Google Scholar]
- Niu, B.; Mvondo, G.F.N. I Am ChatGPT, the ultimate AI Chatbot! Investigating the determinants of users’ loyalty and ethical usage concerns of ChatGPT. J. Retail. Consum. Serv. 2024, 76, 103562. [Google Scholar] [CrossRef]
- Cress, U.; Kimmerle, J. Co-constructing knowledge with generative AI tools: Reflections from a CSCL perspective. Int. J. Comput.-Support. Collab. Learn. 2023, 18, 607–614. [Google Scholar] [CrossRef]
- Ghajargar, M.; Bardzell, J.; Lagerkvist, L. A Redhead Walks into a Bar: Experiences of Writing Fiction with Artificial Intelligence. In Proceedings of the 25th International Academic Mindtrek Conference, Tampere, Finland, 16–18 November 2022; pp. 230–241. [Google Scholar]
- Franke, T.; Attig, C.; Wessel, D. A Personal Resource for Technology Interaction: Development and Validation of the Affinity for Technology Interaction (ATI) Scale. Int. J. Hum.–Comput. Interact. 2019, 35, 456–467. [Google Scholar] [CrossRef]
- Borsci, S.; Schmettow, M.; Malizia, A.; Chamberlain, A.; van der Velde, F. A confirmatory factorial analysis of the Chatbot Usability Scale: A multilanguage validation. Pers. Ubiquitous Comput. 2023, 27, 317–330. [Google Scholar] [CrossRef]
- Madsen, M.; Gregor, S. Measuring human-computer trust. In Proceedings of the 11th Australasian Conference on Information Systems, Brisbane, Australia, 6–8 December 2000; pp. 6–8. [Google Scholar]
- Carpinella, C.M.; Wyman, A.B.; Perez, M.A.; Stroessner, S.J. The Robotic Social Attributes Scale (RoSAS): Development and Validation. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, Vienna, Austria, 6–9 March 2017; pp. 254–262. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- VERBI Software. MAXQDA 2022 Berlin, Germany: VERBI Software. Available online: https://www.maxqda.com/ (accessed on 30 January 2024).
- Flesch, R. How to Write Plain English: Let’s Start with the Formula; University of Canterbury: Christchurch, New Zealand, 1979. [Google Scholar]
- Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2002; pp. 311–318. [Google Scholar]
- Lin, C.Y. Rouge: A package for automatic evaluation of summaries. In Text Summarization Branches Out; Association for Computational Linguistics: Kerrville, TX, USA, 2004; pp. 74–81. [Google Scholar]
- Banerjee, S.; Lavie, A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, Ann Arbor, MI, USA, 29 June 2005; pp. 65–72. [Google Scholar]
- Zhang, T.; Kishore, V.; Wu, F.; Weinberger, K.Q.; Artzi, Y. Bertscore: Evaluating text generation with bert. arXiv 2019, arXiv:1904.09675 2019. [Google Scholar]
- Rädiker, S.; Kuckartz, U. Intercoder-Übereinstimmung analysieren. In Analyse qualitativer Daten mit MAXQDA: Text, Audio und Video; Springer: Wiesbaden, Germany, 2019; pp. 287–303. [Google Scholar]
- Brandt, M. ChatGPT gefällt den Nutzer:innen. Available online: https://de.statista.com/infografik/29840/umfrage-zur-nutzung-von-ki-anwendungen-in-deutschland/ (accessed on 13 June 2024).
- Lermann Henestrosa, A.; Kimmerle, J. Understanding and Perception of Automated Text Generation among the Public: Two Surveys with Representative Samples in Germany. Behav. Sci. 2024, 14, 353. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ke, P.; Qiu, X.; Huang, M.; Zhang, J. ChatGPT: Potential, prospects, and limitations. Front. Inf. Technol. Electron. Eng. 2023, 1–6. [Google Scholar] [CrossRef]
- Ayoub, N.F.; Lee, Y.-J.; Grimm, D.; Divi, V. Head-to-Head Comparison of ChatGPT Versus Google Search for Medical Knowledge Acquisition. Otolaryngol.–Head Neck Surg. 2024, 170, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Mogavi, R.H.; Deng, C.; Kim, J.J.; Zhou, P.; Kwon, Y.D.; Metwally, A.H.S.; Tlili, A.; Bassanelli, S.; Bucchiarone, A.; Gujar, S.; et al. ChatGPT in education: A blessing or a curse? A qualitative study exploring early adopters’ utilization and perceptions. Comput. Hum. Behav. Artif. Hum. 2024, 2, 100027. [Google Scholar] [CrossRef]
- Wagner, M.W.; Ertl-Wagner, B.B. Accuracy of information and references using ChatGPT-3 for retrieval of clinical radiological information. Can. Assoc. Radiol. J. 2023, 75, 08465371231171125. [Google Scholar] [CrossRef]
- Xu, R.; Feng, Y.; Chen, H. Chatgpt vs. google: A comparative study of search performance and user experience. arXiv 2023, arXiv:2307.01135. [Google Scholar] [CrossRef]
- Latané, B.; Williams, K.; Harkins, S. Many hands make light the work: The causes and consequences of social loafing. J. Pers. Soc. Psychol. 1979, 37, 822–832. [Google Scholar] [CrossRef]
- Alawida, M.; Mejri, S.; Mehmood, A.; Chikhaoui, B.; Isaac Abiodun, O. A Comprehensive Study of ChatGPT: Advancements, Limitations, and Ethical Considerations in Natural Language Processing and Cybersecurity. Information 2023, 14, 462. [Google Scholar] [CrossRef]
- Krupp, L.; Steinert, S.; Kiefer-Emmanouilidis, M.; Avila, K.E.; Lukowicz, P.; Kuhn, J.; Küchemann, S.; Karolus, J. Unreflected acceptance–investigating the negative consequences of chatgpt-assisted problem solving in physics education. In HHAI 2024: Hybrid Human AI Systems for the Social Good; IOS Press: Amsterdam, The Netherlands, 2024; pp. 199–212. [Google Scholar]
- Anderl, C.; Klein, S.H.; Sarigül, B.; Schneider, F.M.; Han, J.; Fiedler, P.L.; Utz, S. Conversational presentation mode increases credibility judgements during information search with ChatGPT. Sci. Rep. 2024, 14, 17127. [Google Scholar] [CrossRef] [PubMed]
- McKee, K.R.; Bai, X.; Fiske, S.T. Humans perceive warmth and competence in artificial intelligence. iScience 2023, 26, 107256. [Google Scholar] [CrossRef] [PubMed]
- Abele, A.E.; Ellemers, N.; Fiske, S.T.; Koch, A.; Yzerbyt, V. Navigating the social world: Toward an integrated framework for evaluating self, individuals, and groups. Psychol. Rev. 2021, 128, 290–314. [Google Scholar] [CrossRef]
- Theophilou, E.; Koyutürk, C.; Yavari, M.; Bursic, S.; Donabauer, G.; Telari, A.; Testa, A.; Boiano, R.; Hernandez-Leo, D.; Ruskov, M.; et al. Learning to Prompt in the Classroom to Understand AI Limits: A Pilot Study. In Proceedings of the AIxIA 2023—Advances in Artificial Intelligence, Rome, Italy, 6–9 November 2023; Springer: Cham, Switzerland, 2023; pp. 481–496. [Google Scholar]
- Backhaus, J.; Huth, K.; Entwistle, A.; Homayounfar, K.; Koenig, S. Digital Affinity in Medical Students Influences Learning Outcome: A Cluster Analytical Design Comparing Vodcast with Traditional Lecture. J. Surg. Educ. 2019, 76, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Urchs, S.; Thurner, V.; Aßenmacher, M.; Heumann, C.; Thiemichen, S. How Prevalent is Gender Bias in ChatGPT?-Exploring German and English ChatGPT Responses. arXiv 2023, arXiv:2310.03031. [Google Scholar]
- Proksch, S.; Schühle, J.; Streeb, E.; Weymann, F.; Luther, T.; Kimmerle, J. The impact of text topic and assumed human vs. AI authorship on competence and quality assessment. Front. Artif. Intell. 2024, 7, 1412710. [Google Scholar] [CrossRef]
- Lermann Henestrosa, A.; Greving, H.; Kimmerle, J. Automated journalism: The effects of AI authorship and evaluative information on the perception of a science journalism article. Comput. Hum. Behav. 2023, 138, 107445. [Google Scholar] [CrossRef]
- Lermann Henestrosa, A.; Kimmerle, J. The Effects of Assumed AI vs. Human Authorship on the Perception of a GPT-Generated Text. 2024. Available online: https://osf.io/preprints/psyarxiv/wrusc (accessed on 13 June 2024).
Gender | Age | Education | |||||
---|---|---|---|---|---|---|---|
Female | Male | Non-binary | M (SD) | Range | Elementary school, secondary school, or equivalent certificate | Subject-related entrance qualification, general qualification for university entrance | Completed (college or university of applied sciences) studies |
85 | 48 | 2 | 26.86 (9.06) | 18–71 | 1 | 68 | 66 |
Questionnaire | M (SD) | Range |
---|---|---|
BUS-11 | ||
Perceived accessibility to chatbot functions | 4.57 (0.75) | 1.00–5.00 |
Perceived quality of chatbot functions | 4.30 (0.74) | 1.00–5.00 |
Perceived quality of conversation and information provided | 3.59 (0.74) | 1.00–5.00 |
Perceived privacy and security | 1.87 (1.02) | 1.00–5.00 |
Time response | 3.30 (1.10) | 1.00–5.00 |
Human–Computer Trust Questionnaire | 3.85 (0.96) | 1.35–6.19 |
Perceived reliability | 4.24 (1.19) | 1.00–6.40 |
Perceived technical competence | 4.37 (1.07) | 1.00–6.60 |
Perceived understandability | 4.70 (1.26) | 1.00–7.00 |
Faith | 2.83 (1.42) | 1.00–6.40 |
Personal attachment | 2.47 (1.45) | 1.00–6.40 |
RoSAS | ||
Warmth | 2.46 (1.74) | 1.00–7.67 |
Competence | 6.16 (1.72) | 1.33–9.00 |
Discomfort | 2.69 (1.42) | 1.00–7.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luther, T.; Kimmerle, J.; Cress, U. Teaming Up with an AI: Exploring Human–AI Collaboration in a Writing Scenario with ChatGPT. AI 2024, 5, 1357-1376. https://doi.org/10.3390/ai5030065
Luther T, Kimmerle J, Cress U. Teaming Up with an AI: Exploring Human–AI Collaboration in a Writing Scenario with ChatGPT. AI. 2024; 5(3):1357-1376. https://doi.org/10.3390/ai5030065
Chicago/Turabian StyleLuther, Teresa, Joachim Kimmerle, and Ulrike Cress. 2024. "Teaming Up with an AI: Exploring Human–AI Collaboration in a Writing Scenario with ChatGPT" AI 5, no. 3: 1357-1376. https://doi.org/10.3390/ai5030065
APA StyleLuther, T., Kimmerle, J., & Cress, U. (2024). Teaming Up with an AI: Exploring Human–AI Collaboration in a Writing Scenario with ChatGPT. AI, 5(3), 1357-1376. https://doi.org/10.3390/ai5030065