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Abstract: Traditional computer vision techniques aim to extract meaningful information from images
but often depend on manual feature engineering, making it difficult to handle complex real-world
scenarios. Fractional calculus (FC), which extends derivatives to non-integer orders, provides a
flexible way to model systems with memory effects and long-term dependencies, making it a powerful
tool for capturing fractional rates of variation. Recently, neural networks (NNs) have demonstrated
remarkable capabilities in learning complex patterns directly from raw data, automating computer
vision tasks and enhancing performance. Therefore, the use of fractional calculus in neural network-
based computer vision is a powerful method to address existing challenges by effectively capturing
complex spatial and temporal relationships in images and videos. This paper presents a survey of
fractional calculus neural network-based (FC NN-based) computer vision techniques for denoising,
enhancement, object detection, segmentation, restoration, and NN compression. This survey compiles
existing FFC NN-based approaches, elucidates underlying concepts, and identifies open questions
and research directions. By leveraging FC’s properties, FC NN-based approaches offer a novel way
to improve the robustness and efficiency of computer vision systems.

Keywords: computer vision; neural networks; fractional calculus; object detection; denoising;
segmentation; image generation

1. Introduction

Computer vision has become a transformative field with significant impact across
various industries. Using computers to interpret visual information has been crucial for
enhancing surveillance systems and aiding medical imaging for disease diagnosis.

Traditional computer vision involves many algorithms and methods that are used to
extract meaningful information from images. These techniques typically include steps like
image preprocessing, feature extraction, and classification or inference [1].

One of the fundamental tasks in computer vision is image segmentation, where traditional
techniques such as thresholding, edge detection, and region-based methods are commonly
employed to partition images into semantically meaningful regions or objects. Object detection,
another important task, was traditionally addressed using techniques such as Haar cascades,
Histogram of Oriented Gradients (HOG), and feature-based classifiers. These methods rely
on manually designed features and classifiers to detect objects within images, often requiring
the careful tuning of parameters and heuristics to achieve optimal performance. Similarly,
image denoising, restoration, and enhancement have been tackled using conventional filtering
techniques, such as median filtering, Gaussian blurring, and wavelet transforms, aimed at
removing noise, restoring lost details, and improving overall image quality [2,3].

Fractional calculus (FC) is a powerful mathematical framework that extends integer-order
derivatives and integrals to non-integer orders. This generalisation allows for more degrees
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of freedom and provides a more nuanced and flexible way to model systems with memory
effects, long-range dependencies, and anomalous behaviours, which are prevalent in real-
world phenomena [4]. In recent years, FC has gained attention across various fields, including
physics [5], engineering [6], biology [7], finance [8], and medicine [9], due to its ability to capture
complex dynamics that cannot be adequately described by classical integer-order derivatives.

Due to proven advantages, several FC-based approaches have been introduced in
the literature to improve performance in computer vision tasks [10–13]. Although the
traditional FC-based approaches have been instrumental in enabling various applications,
they often struggle with complex, real-world scenarios and lack the ability to generalise well
across different domains. These approaches rely heavily on manual feature engineering
and human knowledge or assumptions on the ground-truth image (prior). Furthermore,
FC-based approaches often face challenges in handling variability in lighting conditions,
viewpoint changes, and occlusions, which are prevalent in real-world images [2].

FC has also been attracting increasing attention from researchers in the field of deep
learning algorithms. The inherent ability to capture complex dynamics and temporal
relationships is closely aligned with the objectives of ML, particularly in tasks that involve
sequential data analysis, such as time-series forecasting, natural language processing,
and sequential decision making [14–16].

Recently, neural networks (NNs) have demonstrated remarkable capabilities in learn-
ing complex patterns and features directly from raw data. In the context of computer
vision, NNs have enabled breakthroughs in image denoising, enhancement, segmentation,
restoration, and object detection. Moreover, constant efforts by the research community
have also lead to reducing the computational cost of these tasks. By leveraging large
datasets and powerful computational resources, NNs have surpassed traditional computer
vision approaches, achieving state-of-the-art performances across a wide range of tasks.
Furthermore, the ability of NNs to automatically learn and extract features from data has
eliminated the need for manual feature engineering and enabled systems to adapt and
generalise to diverse and complex visual environments [2].

More recently, FC has emerged in NN-based computer vision, offering a compelling ap-
proach to enhance the performance of NN architectures. Through incorporating non-integer
orders derivatives, FC makes it possible to account for the intricate spatial and temporal
relationships, combining local and global features inherent in images and videos [17]. For
instance, NNs have been used to leverage the power of fractional-order differential mask
operators, enabling the discovery of optimal mask orders to improve their performance in
achieving specific image goals, such as denoising and enhancement [18]. Additionally, the in-
troduction of fractional-order convolutional kernels has facilitated the compression of NN
architectures, resulting in significant reductions in the number of trainable parameters [19].
These advancements underscore the versatility and efficacy of fractional derivatives in not
only enhancing the performance of computer vision systems but also streamlining computa-
tional processes, thereby propelling the field toward more efficient and scalable solutions.

Based on the above, this work aimed to conduct a survey of the FC NN-based com-
puter vision techniques presented in the literature, focusing on the tasks of denoising,
enhancement, object detection, segmentation, restoration, and NN compression. The aim
was to compile various approaches and provide a concise yet intuitive explanation of the
underlying concepts. Additionally, we aimed to identify open questions and research
directions that stem from each paper covered in this survey.

This paper is organised as follows. In Section 2, we provide a brief background to
understand the basics of FC. Section 3 starts with a concise overview of computer vision and
the various tasks it encompasses, namely denoising, enhancement, segmentation, object
detection, restoration, and the compression of NN architectures. Subsequently, for each task,
we present the methods in the literature that combine FC and NN-based computer vision,
concluding with a brief discussion of open questions and potential research directions
arising from each method. Finally, the paper ends in Section 4 with a summary of the
findings and conclusions drawn. Additionally, Appendix A provides a summary table of



AI 2024, 5 1393

all the methods discussed in this work, briefly detailing their advantages, experimental
setups, and results as reported in the original papers.

2. Fractional Calculus

Contrary to popular belief, fractional differential calculus is not a recent subject. For ex-
ample, the symbol dny/dxn was first proposed by Leibniz, and, in 1695, L’Hôpital asked
Leibniz about the meaning of d1/2y/dx1/2, effectively asking, “What if n is fractional?”.
Leibniz responded,

“Although infinite series and geometry are distant relations, infinite series admits
only the use of exponents that are positive and negative integers and does not,
as yet, know the use of fractional exponents”.

He continued, “This is an apparent paradox from which, one day, useful consequences
will be drawn”.

This correspondence can be seen as the beginning of fractional differential calculus.
The term “fractional” comes from L’Hôpital’s question about the fraction 1/2, although the
order of differentiation can be any real or complex number. From this letter, we learn that
classical and fractional differential calculus were conceived almost simultaneously [4,20–22].
In 1716, Leibniz died, but the interest in understanding derivatives of fractional (non-integer)
order increased. Several other authors devoted their time to this subject, and the well-
known Leonard Euler also contributed to the understanding and generalisation of fractional
differential calculus. He extended the notion of the factorial, n!, to non-integer values. This
extension was later named the Gamma function, Γ(.), by Adrien-Marie Legendre around 1811:

Γ(z) =
∫ ∞

0
tz−1e−t dt (1)

where ℜ(z) > 0. The Gamma function plays a crucial role in defining generalised deriva-
tives, as shown below.

The idea of generalising derivative and integral operators to an order n seems simple
because one only needs to obtain operators that can be defined for non-integer n values and
that match the classical operators when n is an integer. Consequently, several definitions
have been proposed in the literature by different authors. Since this work is not a survey
on fractional calculus, only three definitions of fractional derivatives will be considered
here: the Riemann–Liouville and Caputo definitions (often used in applications in physics
and engineering), and the Grünwald-Letnikov definition, which seems to be preferred in
NN-based computer vision.

The Riemann–Liouville and Caputo fractional derivatives will now be introduced.
However, before defining these derivatives, we will first provide the definition of a frac-
tional integral. For that, recall the Fundamental Theorem of Calculus.

Theorem 1. Fundamental Theorem of Calculus: Let f : [a, b] → R be a continuous function,
and let F : [a, b] → R be defined by

F(x) =
x∫

a

f (t)dt. (2)

Then, F is differentiable, and
F′ =

dF
dt

= f . (3)

In order to write in a more compact way some of the results to come, we now define
the following differential and integral operators.

Definition 1. Derivative and Integral Operators: We denote the differential operator that maps a
function f into its derivative D f (x) = f ′(x) by D and the integral operator that maps a function f (x)
into its primitive (whenever the integration can be performed on the compact interval [a, b]) by Ja:
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Ja f (x) =
x∫

a

f (t)dt, x ∈ [a, b] (4)

These operators can be generalised to perform n-fold iterates:

Dn f (x) =
d
dt

. . .
d
dt

d f
dt

= D1Dn−1 f (x), (5)

Jn
a f (x) =

x∫
a

. . .
x∫

a

x∫
a

f (t)dt = J1
a Jn−1

a f (x). (6)

The following Lemma introduces a way to write the n-fold integral using only one
integral symbol.

Lemma 1. n-fold Integration: Let f be Riemann integrable on [a, b]. Then, for a ≤ x ≤ b and
n ∈ N, we have

Jn
a f (x) =

1
(n − 1)!

x∫
a

(x − t)n−1 f (t)dt. (7)

To generalise the previous integral to non-integer orders, one simply needs to replace
(n − 1)! with the Gamma function defined earlier, Γ(n), taking into account that Γ(n) =
(n − 1)!, n ∈ N.

Definition 2. Riemann–Liouville Fractional Integral: Let n ∈ R+ and Jn
a be the operator

defined on L1[a, b] by

Jn
a f (x) =

1
Γ(n)

x∫
a

(x − t)n−1 f (t)dt, x ∈ [a, b]. (8)

Then, Jn
a is called the Riemann–Liouville fractional integral operator of order n.

The fractional derivative is obtained by taking a derivative (of a certain integer order)
of the fractional integral just defined. This implies that fractional derivatives may depend
on integral operators.

Recall that in the classical case (integer orders), we have the following lemma.

Lemma 2. n-fold Integration: Let m, n ∈ N with m > n, and let f be a function with a
continuous nth derivative on the interval [a, b]. Then,

Dn f = Dm Jn−n
a f . (9)

Therefore, a generalisation of this lemma leads to the definition of a Riemann–Liouville
fractional derivative [21].

Definition 3. Riemann-Liouville Fractional Derivative: Let α ∈ R+ and m = ⌈α⌉. The Riemann–
Liouville fractional derivative of order α (R

a Dα
t f ) is given by

R
a Dα

x f (x) = Dm Jm−α
a f (x) =

Dm

Γ(m − α)

x∫
a

(x − t)m−α−1 f (t)dt. (10)

For n = 0, we have R
a D0

t := I.
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This definition of the fractional derivative generalises the classical case of integer-order
derivatives. However, it may lead to properties that could be seen as less appealing. For in-
stance, the Riemann–Liouville derivative of a constant is not zero. Although, if we exchange
the order of integration and differentiation, this less appealing characteristic can be easily su-
pressed, and we obtain a new definition of a fractional derivative, proposed by M. Caputo [23].

Definition 4. Caputo Fractional Derivative: Let α ∈ R+, m = ⌈α⌉ and Dm f (t) ∈ L1([a, b]).
The Caputo fractional derivative of order α (C

a Dα
t f ) is given by

C
a Dα

x f (x) = Jm−α
a Dm f (x) =

1
Γ(m − α)

x∫
a

(x − t)m−α−1Dm f (t)dt. (11)

Note the resemblance with the Riemann–Liouville fractional derivative.
These two definitions of fractional derivatives have expressions that depend on in-

tegrals. Therefore, besides the property of order generalisation, they are often used in
modelling physical problems where memory is an important factor. At each instant, the in-
tegral computes the past history. The range of applications for generalised derivatives is
immense. Consequently, many recent works have used these general operators.

There is another definition of a fractional derivative that has captured the attention of
many researchers. This definition is based on classical differentiation and seems to be more
intuitive. Grünwald (1867 [24]), Post (1930 [25]), and Letnikov (1872 [26]) presented the
idea of the fractional derivative as the limit of a sum.

Itde variáveis is well known that a classical derivative can be approximated as a limit
of difference quotients. For example,

f ′(x) = D1 f (x) = lim
h→0

f (x)− f (x − h)
h

(12)

We know that

∇1
h f (x) = f (x)− f (x − h)

∇2
h f (x) = ∇1

h f (x)−∇1
h f (x − h) = f (x)− 2 f (x − h) + f (x − 2h)

...
...

∇n
h f (t) = ∑n

k=0(−1)k
(

n
k

)
f (x − kh).

(13)

where
(

n
k

)
=

n(n − 1) · · · (n − k + 1)
k!

is the binomial coefficient. Therefore, we can

state the following.

Theorem 2. Let n ∈ N, f ∈ Cn([a, b]) and a < t ≤ b. Then,

Dn f (t) = lim
h→0

∇n
h f (t)
hn (14)

For example, a second-order derivative can be written as

D2 f (x) = lim
h→0

f (x)− 2 f (x − h) + f (x − 2h)
h2 . (15)

Grünwald and Letnikov performed a generalisation of this result to non-integer n
values, leading to the following definition of a fractional derivative.

Definition 5. Let α ∈ R+, f (t) ∈ C⌈α⌉([a, b]) and hN = (t − a)/N. The Grünwald–Letnikov
fractional derivative of order α (GL

a Dα
x f ) is given by
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GL
a Dα

x f (x) = lim
N→∞

∇α
hN

f (t)

hα
N

. (16)

with

∇α
h f (x) = ∑∞

k=0(−1)k
(

α
k

)
f (x − kh). (17)

Note that (
α
k

)
=

Γ(α + 1)
Γ(k + 1)Γ(α − k + 1)

(18)

is the fractional binomial coefficient, a generalisation of the classical binomial coefficient to non-
integer values [20].

To simplify the notation, we will drop the GL, and the Grünwald–Letnikov fractional
derivative will be simply represented by Dα f (x). It is also common to represent the
derivative by making hN → 0, that is,

Dα f (x) = lim
hN→0

1
hα

N

∞

∑
k=0

(−1)k Γ(α + 1) f (x − kh)
Γ(k + 1)Γ(α − k + 1)

. (19)

This definition allows for the discretisation of fractional derivatives, enabling their
computation using simple finite differences. Note that there are various definitions of
fractional derivatives, each with its own advantages and disadvantages (the interested
reader should consult [22]).

In computer vision, integer-order calculus plays a pivotal role. Techniques such
as gradient-based edge detection use derivatives to identify abrupt changes in intensity,
forming the foundation of edge detection algorithms. Furthermore, integral calculus finds
applications in image processing tasks such as convolution and filtering, where convolution
operations are analogous to computing the integral of a function over a given region. The
mathematical principles of differential and integral calculus also form the foundation for
numerous algorithms in feature extraction, object recognition, and image segmentation,
allowing computers to effectively interpret and analyse visual information [27]. Therefore,
in the following chapters, we present various works that use fractional calculus to enhance
neural network-based computer vision. By fractional calculus, we mean works involving
fractional derivatives or generalising integer-order operations (e.g., using the Gamma
function instead of the factorial, or employing non-polynomials or polynomials of non-
integer order instead of classical polynomials, etc). While some studies use fractional
optimisation algorithms to optimise neural network parameters for computer vision tasks,
this survey focuses exclusively on methods that leverage fractional calculus to modify or
contribute to the architecture, such as in feature extraction or image enhancement.

3. Computer Vision

Computer vision encompasses a diverse range of tasks, ranging from denoising and
enhancement to object detection, segmentation, and restoration [28], as shown in Figure 1.

Recent advancements in the literature have shown significant performance improve-
ments in computer vision, and therefore, in this section, we introduce and elaborate on
neural network architectures and techniques that use fractional calculus to enhance com-
puter vision tasks. These innovative approaches not only improve the tasks’ performance
but also contribute to reducing the computational cost associated with NN-based computer
vision systems, making them more practical and scalable for real-world applications.
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Figure 1. Example use cases of different tasks in computer vision: denoising for removing unwanted
noise, enhancement for ground-truth image’s quality improvement, object detection for identification
and labelling, segmentation for image partitioning for further analysis, and restoration for missing
parts inpainting (ground-truth image generated by DALL-E 3).

3.1. Denoising

Image denoising is the process of removing unwanted noise from digital images to
enhance their visual quality and improve the accuracy of subsequent analysis or process-
ing tasks. Noise in images can arise from various sources, including sensor limitations,
transmission errors, or environmental factors during image capture. The goal of denoising
algorithms is to distinguish between the true signal representing the underlying scene and the
undesirable noise components, and then attenuate or eliminate the noise while preserving
important image features. This typically involves applying filters or statistical techniques
tailored to suppress noise, thus resulting in cleaner and more visually appealing images [29].

Image denoising using FC has emerged as a promising approach to address the
challenges posed by noise in digital images, offering advantages over traditional methods.
By leveraging the memory effects and long-range interactions inherent in fractional calculus,
researchers have developed novel denoising algorithms capable of preserving image details
while effectively suppressing noise. Several works in the literature have explored this
approach, with more contributions continuously being made [30–36].

Due to their approximation capabilities, NNs have emerged as powerful tools in image
denoising by learning the underlying structure of clean images and effectively differentiating
between noise and true image features. These NNs are normally trained on pairs of noisy
and clean images, where they learn to map noisy inputs to their corresponding clean versions.
Convolutional neural networks (CNNs) are particularly well suited for image denoising
tasks due to their ability to automatically extract hierarchical features from images. Through
iterative training processes, NNs find the optimal parameters that minimise the difference
between the denoised output and the clean ground-truth image [37]. This approach has
shown remarkable success in various applications, such as medical imaging [38], surveillance
systems [39], ocean biodiversity monitorisation [40], and others.

In the literature, only two works proposing the combination of fractional calculus (FC)
and NN-based techniques for image denoising were found [41,42]. In [41], the authors pro-
pose formulating denoising as a variational problem, aiming to minimise a functional that
incorporates fidelity to the observed noisy image and smoothness of the denoised image,
by integrating non-integer order derivatives. These are integrated into the regularisation
term of the variational model, facilitating the preservation of edges and textures while
reducing noise, denoted as Fractional-order Total Variation. In [42], the authors use weights
given by FDEs to propagate the feature maps from one layer to the next, giving rise to the
Fractional Optimal Control Network.
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3.1.1. Fractional-Order Total Variation

Total Variation (TV) regularisation is a core technique for image denoising that pre-
serves important features such as edges and textures, with the ability to effectively reduce
noise while maintaining sharp transitions between regions of an image. Unlike simpler
techniques, such as linear smoothing or median filtering, which can blur edges and details,
TV regularisation exploits the inherent sparsity in the gradient of the image, penalising
rapid changes in pixel intensity.

TV regularisation can be formulated using the L2 norm as [41]

LTV =
I

∑
i=1

J

∑
j=1

√
(X′(i + 1, j)− X′(i, j))2 + (X′(i, j + 1)− X′(i, j))2 (20)

or using the L1 norm as

LTV =
I

∑
i=1

J

∑
j=1

|X′(i + 1, j)− X′(i, j)|+ |X′(i, j + 1)− X′(i, j)| (21)

where I and J are the width and length (number of pixels in the horizontal and vertical
directions) of the image, respectively, i and j are the coordinates of a pixel in the image,
and X′ is the denoised image [41]. The difference X′(i + 1, j) − X′(i, j) calculates the
finite horizontal gradient, corresponding to the change in pixel value along the horizontal
direction. Similarly, X′(i, j + 1)− X′(i, j) is the finite vertical gradient, representing the
difference between adjacent pixels along the vertical direction.

The idea is straightforward. In addition to the classical loss function, which measures
the difference between the ground truth and the result obtained from the neural network—
Lerror—a new loss function is introduced to aid in image denoising and artefact reduction.
This new loss function is defined as

Ltotal = Lerror + λLTV, (22)

where λ is the regularisation hyperparameter. This parameter balances the fit of the model
to the observed data (data fidelity term) with the smoothness or sparsity enforced by the
regularisation term. A small regularisation parameter might lead to overfitting, where
the model closely matches the training data but does not generalise well to new data.
Conversely, a large regularisation parameter could overly smooth or simplify the solution,
potentially causing the loss of important features or details. In essence, λ controls the
significance of the TV loss in the optimisation process. This exploits the inherent sparsity
in the gradient of the image, penalising rapid changes in pixel intensity [43].

TV fails to fully use the information from neighbouring pixels, which can lead to
artefacts in images. To address this limitation, fractional-order differences have been
proposed for processing this gradients. The fractional variations inherently incorporate
information from neighbouring pixels, allowing them to draw data not only from adjacent
pixels but also from more distant ones. Consequently, fractional-order differences can
theoretically capture richer pixel information and reduce artefacts.

Taking this into account, in [41], the authors proposed a new NN-based denoising
model that incorporates Fractional-order TV (FTV) regularisation into the loss function.
To the best of our knowledge, this was the first time FTV was used in conjunction with a
NN; however, multiple studies have compared NN-based methods to FTV filters [44–46].

FTV is therefore an extension of TV regularisation proposed in [47], by introducing a
fractional exponent α to the TV term.

In [41], the authors proposed a modified FTV regularisation that computes the frac-
tional gradient in eight directions around each pixel, namely x−, y−, x+, y+, Left-Down
Direction (LDD), Right-Up Direction (RUD), Left-Up Direction (LUD), and Right-Down
Direction (RDD):
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LFTV =
I

∑
i=1

J

∑
j=1

|Dα
x+X′|+ |Dα

y+X′|+ |Dα
x−X′|+ |Dα

y−X′|+ |Dα
LDDX′|+

|Dα
RUDX′|+ |Dα

LUDX′|+ |Dα
RDDX′|,

(23)

where each term Dα corresponds to applying a fractional differential mask (using an
approximation to the Grünwald–Letnikov derivative) in the corresponding direction,
x−, y−, x+, y+, LDD, RUD, LUD, or RDD. For example, in the horizontal direction x, we
have that

Dα
x+X′ =


. . . . . . . . . . . .
0 0 0

CS−1 CS0 . . . CSn

0 0 . . . 0
. . . . . . . . . . . .

,Dα
x−X′ =


. . . . . . . . . . . .
0 0 0

CSn CSn−1 . . . CS−1

0 0 . . . 0
. . . . . . . . . . . .

. (24)

Here, n is the last entry, with entries derived from the Grünwald–Letnikov derivative given by

CSk =
1

Γ(−α)

[
Γ(k − α + 1)
(k + 1)!

·
(

α

4
+

α2

8

)
+

Γ(k − α)

k!
·
(

1 − α2

4

)
+

Γ(k − α − 1)
(k − 1)!

·
(
−α

4
+

α2

8

)]
, (25)

with k as the entry of the fractional differential mask being computed [41].
FTV regularisation is then added to the loss function of deep learning methods with

the aim of preserving texture and enhancing details [41].

Ltotal = Lerror + λLFTV, (26)

The method of adding FTV to the loss function of NN-based models for image denois-
ing is still very new and there has not been much research in this area yet. One significant
study that used this method is found in [48], which focused on classifying environmental
sounds. This shows that the field has many unexplored areas, such as understanding how
the choice of the α value affects the results and whether it is possible to include more than
one FTV regularisation term with different α values in the loss function.

3.1.2. Fractional Optimal Control Network

The Fractional Optimal Control Network (FOCNet) is an NN architecture designed
for denoising tasks, leveraging the principles of Fractional Ordinary Differential Equations
(F-ODEs) to propagate features depth-wise within the network. This architecture exploits
the memory persistence inherent in F-ODEs, enabling enhanced denoising performance
compared to traditional NN approaches. The underlying methodology of FOCNet involves
solving a Fractional Optimal Control problem [42]:

min
θ(t)

1
2

∫
ω
(Φ(u(T, s))− x(s))2ds

s.t. Dα
t u(t, s) = f (u(t, s), θ(t)),

u(0, s) = Ψ(y(s)), t ∈ [0, T]

(27)

where y(s) represents the input image to be denoised, s is a pixel, x(s) denotes the cor-
responding ground-truth image, Φ(·) and Ψ(·) denote linear transformations (such as
convolutions) that are predefined, and u(t, s) represents the control input. The function
f (u(t, s), θ(t)) describes the dynamics of the system, parameterised by an NN [42].

FOCNet conceptualises the NN as an infinite-depth architecture, where to each layer’s
output, the previous layers’ outputs are added, multiplied by a weight wk given by dis-
cretising an F-ODE using Grünwald–Letnikov [42], as shown in Figure 2:
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ut+1 =
t

∑
k=0

wkuk + σ(θtut), with wk = (−1)t−k+2
(

α

t − k + 1

)
. (28)

where ut+1 is the output of layer t + 1, k denotes all previous layers, 0 < k < t, and σ is a
nonlinear operation given by convolution followed by batch normalisation and a Rectified
Linear Unit [42].

This approach enables the propagation of features from one layer to another through-
out the network, enabling effective feature extraction and denoising. Thus, the usage of
F-ODE allows us assign weights to each layers’ contribution to the end result [42].

The goal of FOCNet is to optimise the denoising process by minimising the difference
between the denoised image and the ground-truth image. This is achieved through the
iterative adjustment of the parameters θ(t) of the NN, guided by the solutions to the Fractional
Optimal Control problem, (27). To discretise the fractional-order dynamic system inherent in
FOCNet, the Grünwald–Letnikov fractional derivative definition is employed [42].

Figure 2. Architecture of FOCNet.

In comparison to traditional denoising NNs (not FC-based), the FDE enables the NN
to assign weights to each layer’s contribution to the end result. This is because F-ODEs
provide a mathematical framework for describing the dynamics of the system (denoising
process), including the propagation of features and the influence of different network layers
on the final output [42].

The literature has extensively demonstrated the benefits of using multiple scales of
the same image to extract diverse features, thus enhancing the NN’s capacity for feature
extraction. Building upon this, in [42], the authors extended FOCNet to incorporate multi-
scale representations, giving rise to a multi-level architecture.

The multi-scale FOCNet architecture comprises multiple hierarchical levels, with each
level representing a distinct scale and containing a dedicated FOCNet, (27). This modifica-
tion enables the network to capture and retain both previous features and features across
different scales, facilitating the long-term memory mechanisms inherent in FDEs. Unlike
the standard FOCNet (27), the denoising process in the multi-scale version incorporates
an additional step. This step involves the application of a function g(x) = wT(x), where
w ∈ 0, 1 and T(·) represents a pooling or unpooling operation, enabling the propagation of
contributions from lower-level layers to higher-level layers. The denoising process within
the multi-scale FOCNet can be formulated as [42]
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

Dα
t u(t, s, l1) = f (u(t, s, l1), g(u(t, s, l1+1), θ1(t)))

Dα
t u(t, s, l2) = f (u(t, s, l2), g(u(t, s, l2±1), θ2(t)))

. . .
Dα

t u(t, s, li) = f (u(t, s, li), g(u(t, s, li+1), θi(t)))
u(0, s, l1) = Ψy(s)
u(0, s, li) = T↓u(1, s, li−1)

1 ≤ li ≤ k
0 ≤ t ≤ T,

(29)

where li represents the FOCNet level i (with l1 denoting the original level), θi denotes the
parameters of the corresponding level, uli±1

t denotes either the upper-level feature uli+1
t or

the lower-level features uli−1
t , and T ↓ is a pooling operation [42].

The computation to obtain the result of each layer is now more complex:

uli
t+1 =

t

∑
k=0

wkuli
k + σ(θi(u

li
t + g(uli±1

t ))), (30)

aiming to strengthen the NN by promoting cross-level feature interactions [42], as shown
in Figure 3.

Figure 3. Schematic representation of a multi-scale FOCNet with two levels.

The work presented in [42] prompts several research questions and potential directions
for further investigation. Firstly, the choice of fractional derivative definition remains largely
unexplored and warrants discussion or justification to provide insight into why a particular
definition was selected over others. Moreover, considering that FOCNet extracts scaling
features at various levels and combines them, there is potential for enhancing its performance
by employing different strategies for combining these features. Currently, in FOCNet, each
level’s features contribute equally, but introducing weighting factors could be an intriguing
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avenue to explore. Adjusting the contribution of features at different levels could potentially
improve the network’s ability to capture and leverage hierarchical information effectively.

3.2. Enhancement

Image enhancement is the process of improving the visual quality or perception of
digital images by manipulating their attributes such as brightness, contrast, sharpness,
and colour balance. Unlike denoising, which specifically targets noise reduction, image
enhancement aims to enhance the overall appearance of images to make them more visually
appealing or suitable for specific applications. Enhancement techniques can range from
simple adjustments like histogram equalisation or contrast stretching to more advanced
algorithms such as image fusion or super-resolution. These techniques can be used to
highlight important features, improve visibility in low-light conditions, or adapt images
for specific display or analysis requirements [49].

Image enhancement using FC is a well-explored field with several works showing
the advantages over traditional methods that rely on integer calculus. The construction of
masks and filters with fractional orders has opened the possibility of attaining in-between
behaviours of traditional masks, offering enhanced flexibility and performance in image
enhancement tasks [10,50–56].

In image enhancement, NNs learn from image datasets to understand what constitutes
an enhanced or improved version of an image. CNNs are a very popular architecture that, by
analysing these image pairs, learns to identify patterns and relationships between low-quality
features and their desired improvements. During image enhancement, the CNN takes a low-
quality image as input and processes it through its layers, making adjustments to brightness,
contrast, noise levels, and other visual aspects. Furthermore, NNs have also shown high efficacy
in learning masks and filters to perform tasks such as edge enhancement, texture synthesis,
and artefact removal [49]. The use of NNs for image enhancement has emerged as a powerful
tool in several applications, such as the detection of diseases in plants [57], downsampling of
temperature climatic maps [58], and enhancement of medical imaging [59].

The authors could only find two works leveraging NNs for improving image enhance-
ment in the literature, which will be herein discussed [18,60].

In [18], the authors propose using NNs to learn the best fractional order for the masks,
demonstrating promising results in image enhancement tasks.

In [60], the authors propose using fractional Rényi entropy to enhance images before
feeding them into an NN for image segmentation purposes. The results show that a higher
performance in segmentation is achieved when compared with other methods.

3.2.1. Neural Fractional-Order Adaptive Masks

Masks (or kernels) and filters are mathematical operators applied to images that
enhance the quality of images, easing the extraction of relevant features such as patterns
and structures. Masks are matrices that are applied to the pixels in an image to perform a
specific operation, such as edge detection and convolution; two very popular masks are
Sobel and Lapalace [27].

The Sobel mask consists of two 3 × 3 convolution masks, one to detect horizontal
changes and the other to detect vertical changes in intensity within an image [27]:

Sx =

+1 0 −1
+2 0 −2
+1 0 −1

 ∗ y(s) (31)

Sy =

+1 +2 −1
0 0 0
+1 −2 −1

 ∗ y(s) (32)

where y is the input image, Sx and Sy are the image with the horizontal and vertical
gradients, respectively, and ∗ is a convolution operation. The resulting gradient magnitude
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image is obtained by combining the horizontal and vertical gradient images using the
Euclidean norm [27]:

S =
√

S2
x + S2

y (33)

This operation highlights regions of significant intensity variation, effectively detecting
edges in the image. The Sobel mask is commonly used in edge detection and various other
image processing tasks due to its simplicity and effectiveness. Sobel masks belong to
the category of first-order masks since they compute the first-order derivative of image
intensity with respect to spatial coordinates [27].

In contrast, the Laplace mask computes the second-order spacial derivative of image
intensity, having the same mask for vertical and horizontal convolution [27]:

Lx =

 0 +1 0
+1 −4 +1
0 1 0

 ∗ y(s) (34)

The Sobel and Laplace masks are both widely used for edge detection; however, their
approach and characteristics differ, each offering unique advantages and disadvantages.
The Sobel mask, which consists of a separate masks for horizontal Sx and vertical gradients
Sy, excels at detecting edges with a clear orientation, providing detailed information about
the direction of intensity changes within an image. Its structured design makes it robust
to noise and suitable for detecting edges in noisy environments. However, the Sobel
mask struggles to detect edges at corners or junctions accurately, as it only emphasises
the dominant direction of change at each pixel. In contrast, the Laplace mask detects
edges regardless of their orientation and is sensitive to abrupt intensity changes, making it
effective in this case. Yet, it is more sensitive to noise compared to the Sobel mask, leading
to potential false edges detections in noisy images [10,27].

Due to the advantages and disadvantages inherent in the first- and second-order
masks, coupled with the established theoretical foundations of fractional calculus, the ex-
ploration and refinement of fractional-order masks has been an active and growing field
of research [10,61]. These masks offer a balance, leveraging the precision of higher-order
derivatives while retaining the adaptability and noise resilience typically associated with
lower-order operators.

A problem that persists in fractional-order masks lies in their uniform treatment of the entire
image with the same fractional order. This approach can lead to the excessive enhancement of
low-spatial frequency content, potentially overshadowing the subtler details within the image,
while simultaneously failing to adequately boost high-frequency components [18].

Keeping this in mind, in [18], the authors propose the Adaptive Fractional-order
Differential (AFD) mask. This approach uses an NN to dynamically determine the optimal
order of differentiation α. The goal is to train an NN to optimise the orders of the mask for
any given image.

The AFD mask comprises two 3× 3 convolutional matrices, horizontal Ax and vertical
Ay, derived from the Grünwald–Letnikov derivative definition (see [18] for details on the
derivation process):

Ax(s) =

0
α2

s − αs

2
0

0 −αs 0
0 0 0

 ∗ y(s) (35)

Ay(s) =


0 0 0

α2
s − αs

2
−αs 1

0 0 0

 ∗ y(s). (36)

The αs values for each pixel of the image are determined by an NN with learnable
parameters θ. These values are computed from the average gradient of the pixel in eight
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directions M(i, j). To train the NN, the authors propose using a training dataset generated
by employing a piece-wise function that dictates the αs order of each pixel. This function is
specified by the AFD Algorithm (AFDA) [18]:

αs =



M(i, j)− tg

M(i, j)
if M(i, j) ≥ tg and

M(i, j)− tg

M(i, j)
≥ AGed − Q

AGed
AGed − Q

AGed
if M(i, j) ≥ tg and

M(i, j)− tg

M(i, j)
<

AGed − Q
AGed

Q − AGtex

Q
if 2 < M(i, j) < tg and

M(i, j)
tg

≥ Q − Mtex

Q
M(i, j)

tg
if 2 < M(i, j) < tg and

M(i, j)
tg

<
Q − AGtex

Q
0 if 0 ≤ M(i, j) ≤ 2

(37)

where tg is a hyperparameter for the gradient threshold for edges, Q is the mean gradient of
image y, and AGed and AGtex are the average gradients of edges and textures, respectively.
The computation of M(i, j) is as follows [18]:

M(i, j) =

|8y(i, j)− y(i − 1, j − 1)− y(i − 1, j)− y(i − 1, j + 1)−
y(i, j − 1)− y(i, j + 1)− y(i + 1, j − 1)− y(i + 1, j)− y(i + 1, j + 1)|

8
. (38)

So, to generate the NN training dataset, the AFDA is used to compute the NN’s input
values, M(i, j), and their corresponding αs orders, which serve as the ground-truth output.
Subsequently, the NN is trained to minimise the error between these ground-truth αs values and
the predicted α̂s values, for example using the Mean Squared Error [18], as shown in Figure 4.

Figure 4. Training process of Neural Fractional-Order Adaptive Masks

Upon the completion of training, the NN is capable of outputting the αs orders of the
masks to treat each corresponding pixel in the target image, providing the average gradient
of the pixel as input [18].

The experimental results presented in [18] demonstrate that the proposed masks
yield higher contrast, clearer edges, and enhance smooth areas and texture within the
images. Additionally, it is observed that after training the NN to compute the mask orders,
the computational requirements for determining these orders are reduced, leading to
improved performance compared to using the AFDA by itself.

Although the approach presented in [18] demonstrates improvements over the manual
computation of derivative orders, there remains considerable scope for enhancement and
exploration. Firstly, the authors employ a relatively simple NN architecture, leaving
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room for experimentation with more complex architectures that could potentially yield
better results. Additionally, the rationale behind the choice of the Grünwald–Letnikov
definition is not explicitly addressed by the authors, which poses an open question for
further investigation. Furthermore, the learned derivative orders may be constrained due
to the training dataset being generated by the AFDA, which could limit the NN’s ability
to learn optimal orders without extensive prior knowledge input. This suggests a need
to explore alternative approaches to dataset generation and NN training to broaden the
capabilities and flexibility of the model.

3.2.2. Fractional Rényi Entropy

Rényi entropy Rα(y) [62] is a measure of uncertainty or randomness within a prob-
ability distribution, commonly employed in information theory and computer vision to
quantify diversity and uncertainty in pixel intensities or image features. For a greyscale
image y, the Rényi entropy is defined as [63]

Rα(y) =
1

1 − α
log

(
255

∑
s=0

pα
s

)
, α ∈ [0, ∞] (39)

where ps is a normalised histogram of pixel intensities, and α ∈ N is a parameter governing the
focus on different parts of the probability distribution. When α → 1, Rényi entropy reduces to
Shannon entropy [64], indicating overall uncertainty in the image. For α ̸= 1, Rényi entropy
highlights various aspects of the distribution’s structure. As α → 0, it emphasises the most
frequent pixel intensities akin to min-entropy [65], suitable for capturing dominant image
features. Conversely, as α → ∞, it emphasises rare pixel intensities akin to max-entropy [65],
which is valuable for detecting subtle textures or anomalies in the image [63].

Fractional Rényi entropy extends the concept of Rényi entropy by extending α to
non-integer values, allowing for a more refined characterisation of the uncertainty and
complexity within a probability distribution. This generalisation enables a spectrum of
entropy measures between the limit cases of α = 1 and α = 0 [60].

In [60], the authors point out that image contrast and quality are major factors in
the quality of image segmentation techniques. To address this, the authors propose using
fractional Rényi entropy for image enhancement before employing a CNN for segmentation,
as shown in Figure 5.

Figure 5. Image enhancement with fractional Rényi entropy before using a CNN for image segmentation.

The enhanced image ỹ is obtained from the input image y through pixel-wise multi-
plication formulated as follows (for details, see [60]):

ỹ = y ∗ Rα(p)
α

(
m

∑
i=1

pα
i

)
. (40)
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The fractional-order α is determined experimentally on the training dataset [60].
The findings in [60] suggest that employing fractional Rényi entropy enhances the

robustness of the model against inhomogeneous intensity values and preserves spatial
relationships between image pixels. Although promising, several questions remain unan-
swered, such as whether there are less time-consuming strategies for selecting the α value
and whether the α value could be adaptively chosen for each image region. Furthermore,
fractional Rényi entropy can provide advantages to other well-established networks, such
as Transformers. Addressing these questions could further improve the effectiveness and
efficiency of the proposed approach.

3.3. Object Detection

Object detection is the process of locating and classifying objects within digital images
or video frames. The primary objective of object detection is to accurately identify and
locate instances of predefined object classes within the image, using bounding boxes or
outlines delineating their positions [28]. Then, a label or category is assigned to each
detected object [66].

FC for object detection remains a relatively unexplored frontier, with limited research
available in this area. Existing work focuses on exploiting fractional-order moments for
feature extraction [67] and employing fractional-order populational and evolutionary
optimisation strategies to refine the localisation of objects within images [68].

The field of object detection has undergone a revolutionary transformation with the
widespread adoption of NNs, enabling the autonomous identification and location of
objects. Numerous research efforts have propelled the development of several NN ar-
chitectures with enhanced accuracy, faster inference speeds, or reduced computational
costs. Among the most widely used architectures is the region-based convolutional neural
network (RCNN) family [69], which includes variants such as Fast RCNN [70] and Faster
RCNN [71]. These leverage a blend of convolutional layers for feature extraction and
region proposal algorithms to pinpoint potential object locations. By scrutinising these
regions individually, they are able to classify objects and predict bounding boxes. Moreover,
the emergence of one-stage detectors, such as YOLO (You Only Look Once) [72] and SSD
(Single-Shot Detector) [73] has enabled real-time object detection by directly predicting
object classes and bounding boxes in a single pass. Through the usage of extensive datasets
annotated with object labels, NNs acquire the ability to generalise across diverse object
categories and accommodate variations in scale, orientation, and occlusion, thereby solid-
ifying their indispensable role across applications spanning satellite surveillance [74,75],
public parking management [76], robotics [77], and pest management [78].

The application of FC in NN-based techniques for object detection is still relatively
new but shows promising results [67,79–81].

In [79], inspired by previous work [67], the authors propose leveraging fractional-order
Legendre moments for feature extraction. These features are then used by an NN for object
detection based on the extracted feature maps.

Additionally, in [80,81], the authors propose fractional-order population-based and
evolution-based optimisation algorithms to improve the optimisation process of NN pa-
rameters. However, since this survey paper only focuses on methodologies that directly
modify the NN architecture or preprocess input images before feeding them into the NNs,
these works are not be covered.

Fractional-Order Legendre Moment Invariants

Image moments are mathematical descriptors that are used to characterise the spatial
distribution and properties of intensity values within an image. They are computed by
integrating the intensities of the pixels in an image y(i, j), where i and j are the spatial
coordinates. The image moment Mp,q is defined as [82]
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Mp,q =
I

∑
i=1

J

∑
j=1

ip jqy(i, j), (41)

where p and q are non-negative integers representing the order of the moment. These
moments provide insights into various image attributes, such as the centroid, area, orienta-
tion, and higher-order shape characteristics. Since these are translation dependent, central
moments µp,q are often preferred, as they are invariant to translation [82]:

µp,q =
I

∑
i=1

J

∑
j=1

(i − i)p(j − j)qy(i, j), (42)

where i and j are the centroid of an image computed as i =
M10

M00
and j =

M01

M00
. Image

moments are widely used for shape analysis and object recognition, as they provide
valuable information about the location, size, and centres of objects within an image.

There are several moments commonly used in image analysis, each with unique prop-
erties and applications. Integer-order moments, such as Zernike, Legendre, and Chebyshev
moments, are among the most widely employed due to their effectiveness in capturing
different aspects of image content [82].

Legendre moments are a class of orthogonal moments used in image analysis to capture
shape information and structural features within an image. These moments are derived from
Legendre polynomials and are computed by integrating the pixel intensities of the image
weighted by Legendre polynomials of integer degree, mathematically formulated as [82]

Lpq =
I

∑
i=1

J

∑
j=1

Pp(i)Pq(j)y(i, j), (43)

where Pp(i) and Pq(j) are Legendre polynomials of degree p and q, respectively. Legendre
moments offer advantages such as orthogonality, compactness, and rotational invariance,
making them well suited for tasks such as pattern recognition, shape analysis, and image
retrieval. Additionally, their robustness to noise and illumination variations enhances their
utility in real-world applications. Legendre moments also provide a concise representation
of image content while preserving important geometric and structural information, con-
tributing to the development of efficient and effective image-processing techniques [83].
The Legendre polynomials Pp(i) can be computed using a recurrence formula given by

Pp+1(i) =
(2p + 1)(2i − 1)

p + 1
Lp(i)−

p
p + 1

Lp−1(i), p ≥ 1, (44)

with P0(i) = 1 and P1(i) = 2i − 1. Pq(j) can be computed reciprocally.
Although integer-order moments offer valuable insights into the overall shape and

spatial distribution, they may lack the sensitivity required to accurately represent intricate
features [67,83].

Fractional-order moments extend the concept of integer-order moments to non-integer
values of α and β, offering a more refined characterisation of image properties. These
moments Mα,β are formulated as

Mα,β =
I

∑
i=1

J

∑
j=1

iα jβy(i, j), (45)

where α and β are non-integer values. Fractional-order moments offer enhanced sensitivity
to subtle variations in image structure and texture, enabling more precise analysis and
interpretation. This heightened sensitivity allows for improved accuracy in locating Regions
of Interest within the image [67].
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Fractional-order Legendre moments are an extension of integer-order Legendre mo-
ments (43). Through allowing non-integer values for the degree of Legendre polynomi-
als, these moments provide a more flexible and adaptive framework for image analysis.
The fractional Legendre moment Lα,β is formulated as [67]

Lα,β =
I

∑
i=1

J

∑
j=1

Pα(i)Pβ(j)y(i, j), (46)

where the Legendre polynomials Pα(i) can be computed using a generalisation of recurrence
Formula (47) and introducing the change in variable i = 2ta − 1 (for details, see [79]):

Pa
α+1(t) =

(2α + 1)(2ta − 1)
α + 1

La
α(t)−

α

α + 1
Pa

α−1(t), α ≥ 1, (47)

with Pα
0 (t) = 1 and Pα

1 (t) = 2tα − 1. Pβ
q+1(t) can be computed reciprocally.

The fractional-order Legendre moments can be extended to be used in three dimen-
sions, enabling the representation of the features of three-dimensional (3D) images much
used in medical imaging. Thus, the 3D fractional Legendre moment Lα,β,γ can be formu-
lated as

Lα,β,γ =
I

∑
i=1

J

∑
j=1

K

∑
k=1

Pα(i)Pβ(j)Pγ(k)y(i, j, k), (48)

where Pα(i), Pβ(j), and Pγ(k) are the fractional-order Legendre polynomials of degrees α, β,
and γ along the i, j, and k axes, respectively, and y(i, j, k) is a 3D image.

Motivated by the application of fractional-order moments for the classification of 2D
objects, in [79] the authors propose using 3D fractional-order moments (for formulation
details, see [79]) as an input descriptor of an NN, thus giving rise to a new NN architecture,
the Fractional-Order Lagrange Moments Deep NN (FrOLM-DNN).

The 3D fractional-order Legendre moments serve as an input descriptor for an NN.
For each image, the moments are computed, forming a descriptor vector containing moments
up to order r, where r is a user-selected hyperparameter. Subsequently, this descriptor vector
is fed into the input layer of an NN, enabling the network to learn and classify the object
within the image accurately. In this way, the 3D fractional-order Legendre moments function
as feature extractors, facilitating effective object classification [79], as shown in Figure 6.

Figure 6. Architecture of FrOLM-DNN for object detection and classification of 3D image (input
image generated by DALL-E 3).

The main motivation for employing fractional-order moments lies in their additional
parameters, which offer the potential for improved results tailored to specific use cases.
The experimental results described in [79] demonstrate that the integration of 3D fractional-
order moments with an NN leads to improved classification accuracy compared to using
them in isolation.
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However, an open question raised in [79] is the impact of selecting the moments
order r on the results and how to effectively determine the value of this hyperparameter.
One potential avenue for future research involves devising a strategy to automate and
optimise the selection of this parameter. By developing such a strategy, researchers can
streamline the process of hyperparameter tuning and potentially improve the overall
performance of the classification system.

3.4. Segmentation

Image segmentation is the process of partitioning a digital image into multiple seg-
ments or regions based on certain criteria such as colour, intensity, texture, or spatial
proximity. The goal is to break an image into smaller parts; these segments often corre-
spond to objects or regions of interest within the image, allowing for further analysis or
manipulation at a more granular level [28].

The development of FC methods for image segmentation is a well-explored and rising
field, with various approaches explored in the recent literature. Some methods employ
fractional-order optimisation algorithms to refine segmentation accuracy, while others
introduce novel loss functions incorporating fractional orders. Additionally, established
segmentation algorithms have been extended to accommodate fractional-order operations,
enhancing performance on images with intricate textures [12,84–88].

CNNs are particularly well suited for segmentation tasks due to their ability to effec-
tively capture spatial dependencies and hierarchies of features within images. One of the
most well-known architectures is U-Net, which employs an encoder–decoder structure
with skip connections to preserve spatial information and enhance segmentation accu-
racy [89]. Through training on annotated datasets, NNs learn to delineate boundaries
and assign pixel-level labels to different regions within an image, effectively segmenting
objects from the background or distinguishing between different object classes. Several
successful applications can be found in the literature, including the medical analysis of
chest scans [90], fingerprint security devices [91], and the detection of road cracks [92].

While some research endeavours have incorporated FC into NN-based methods for im-
age segmentation, the majority have primarily relied on fractional-order population-based
optimisation algorithms to enhance the optimisation process of NN parameters [93,94].
However, this survey paper focuses on methodologies that directly modify the NN archi-
tecture or preprocess input images before feeding them into the NNs. In light of this, we
highlight two notable works [17,95].

In [17], the authors use FOCNet [42] for image segmentation. In contrast, [95] pro-
poses the use of fractional-order differentiation active contour models for segmentation,
employing an NN to solve fractional-order PDEs and thereby reduce the computational
complexity associated with fractional-order active contour models.

3.4.1. Active Contour Detection with Fractional-Order Regularisation Term

Active contour models are tools particularly useful for segmenting objects with complex
or ambiguous boundaries. These models are represented as a parametric curve or contour that
evolves over time to minimise an energy functional. The contour is attracted to features of
interest in the image while being constrained by factors such as smoothness and shape.

Level-set functions (LSF) are improved active contours that implicitly represent the
contour as the zero level set of a higher-dimensional function defined over a larger domain
that includes the entire image. The evolution of the contour is described by the evolution of
the level-set function, governed by a fractional-order partial differential equation (FPDE).
The level-set methods evolve smoothly over the entire domain, and the contour is extracted
as the zero level set at each time step. Level-set methods offer advantages in handling
topological changes and complex contour deformations, making them suitable for tasks
where the object boundaries are ill defined or undergo significant changes over time [95].

Despite their differences, level-set methods and active contour models share the
goal of accurately segmenting images by evolving contours to capture object boundaries.



AI 2024, 5 1410

Level-set methods can be seen as a generalisation of active contour models, where the
contour evolution is described implicitly through the evolution of a level-set function.
This connection allows for the incorporation of active contour energy terms into level-set
formulations, enhancing their versatility, robustness, and adaptability [95].

Variational level-set methods extend basic level-set techniques by incorporating vari-
ational principles into the formulation, enabling the optimisation of a variational energy
functional to evolve contours over time. Through formulating the segmentation problem
as an optimisation task, variational level-set methods provide a systematic framework for
integrating various constraints, prior knowledge, and image features into the segmentation
process. This approach offers improved convergence, stability, and flexibility, and has
been successfully applied to challenging segmentation problems involving complex object
shapes, noisy images, and topological changes [96].

The first instance of combining FDEs with active contour methods was introduced
in [97]. In this work, a fractional-order differentiation active contour model was proposed,
employing variational level-set methods. The energy function proposed in this model
comprises three terms: a fractional-order fitting term, a regularisation term, and a penalty
term. The fractional-order term enables a more precise representation of the image and
improves the robustness to noise, while the penalty term ensures stable evolution [95,97].

Despite these advantages, this method incurs a significant computational burden [95].
To address computational cost, [95] proposes using cellular neural networks (CeNNs) [98]
to solve FPDEs instead of finite difference numerical schemes (see [95] for the mathematical
formulation). CeNNs, which are composed of locally connected neurons arranged in a grid-
like structure, offer stability, noise robustness, and time efficiency in computing solutions
to FPDEs for active contour methods [95].

Due to the usage of FPDEs, which describe the temporal evolution of a system, an open
area of research is the application of this approach for object tracking in temporal image se-
quences. Additionally, considering the popularity of physics-informed neural networks [99],
it would be interesting to explore replacing CeNNs with this architecture in future studies.

3.4.2. FOCNet for Segmentation

In [17], the authors recognise the potential of FOCNet beyond denoising tasks. They
propose to use the weighted skip connections of FOCNet to improve the image segmenta-
tion performance, as shown in Figure 2. To facilitate segmentation using FOCNet, the au-
thors suggest employing the Dice Coefficient as the loss function, which quantifies the
similarity between the ground truth and predicted segmentation masks. Hence, the dis-
tinction between FOCNet as proposed in [42] and in [17] lies in the choice of loss function
and the nature of the training data. For denoising tasks, the input comprises a noisy image,
with the corresponding ground truth being the denoised version of the image [42]. Con-
versely, in segmentation tasks, the input consists of the original image, while the ground
truth represents the segmented image [17].

The usage of FOCNet for segmentation has demonstrated computational efficiency
and outperformed other segmentation methods. The presence of fractional derivatives
that determine the weights of the connections enables the propagation of information from
shallower layers [17].

3.5. Restoration

Image restoration is the process of recovering an undistorted version of a digital image
from a damaged or corrupted input. Degradation in images can occur due to various
factors such as sensor limitations, time degradation, or environmental factors. The goal
is to complete the degraded images, making them suitable for analysis, interpretation,
or presentation purposes. Restoration/inpainting techniques aim to reverse or mitigate
the effects of degradation by applying mathematical models, filters, or learning-based
algorithms to estimate and recover the original image underlying.
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The usage of FC for enhancing image restoration and inpainting has received con-
siderable attention in the literature, with numerous studies showcasing its performance
advantages. These works demonstrate the efficacy of FC in modelling the intricate spatial
and temporal variations present in image structures, leveraging information from sur-
rounding areas to achieve more accurate restoration and inpainting results. By seamlessly
integrating fractional-order techniques, these approaches effectively capture the nuanced
in-between behaviours often overlooked by traditional integer-order methods [100–104].

The field of restoration has risen in popularity mostly due to architectures based on
Variational Autoencoders (VAEs) [105] and Generative Adversarial Networks (GANs) [106]
that offer novel approaches to image reconstruction. VAEs are renowned for their ability
to learn rich probabilistic models of data, enabling them to effectively capture complex
distributions in image space. By encoding input images into a latent space and then
decoding them back to their original form, VAEs can learn to inpaint images while also
providing uncertainty estimates [107]. On the other hand, GANs introduce a competitive
training scheme between a generator network and a discriminator network, resulting in the
generation of highly realistic images. In the context of restoration, GANs excel in producing
visually convincing results by learning intricate details and textures from training data [108].
The success of NN architectures in image restoration has sparked various applications,
including restoring damaged historical texts [109], removing unwanted objects [110], and
the completion of medical scans [111].

The combination of FC and NN-based methods for image restoration/inpainting
is almost unexplored, with only one work available [112]. Given the potential already
demonstrated in the literature with the several works that are not using NNs, it comes
easily that this is a promising field.

In their work [112], the authors introduce an innovative approach that leverages
fractional-order wavelet transforms to enhance feature extraction within an NN encoder.
Their methodology extends beyond traditional techniques by integrating fractional-order
operations into the encoding process, enabling more nuanced and comprehensive feature
representation. Moreover, the authors propose a novel strategy for image generation, where
multiple fractional-order encoders are employed to produce different representations of the
same image. These representations are subsequently merged to create a single composite
image, with enhanced detail and richness.

Fractional Wavelet Scattering Networks

GANs [106] and VAEs [105] represent two influential paradigms in the realm of genera-
tive modelling, a field aiming to understand and replicate the underlying structure of data.
GANs operate on a game-theoretic framework where a generator network competes against a
discriminator network, iteratively improving the generation of data until it becomes indistin-
guishable from real data. On the other hand, VAEs adopt a probabilistic approach, aiming to
encode and decode data by modelling the underlying probability distribution. While GANs
excel in generating high-quality, realistic samples, VAEs offer a principled way to learn latent
representations of data and perform tasks such as data compression and synthesis. Both
methods have witnessed tremendous advancements and applications across various domains,
revolutionising tasks like image generation, data augmentation, and anomaly detection.

GANs and VAEs are notorious for their challenging training dynamics, including
unstable training and issues like blurred images or model collapse. To address these
challenges, Generative Scattering Networks (GSNs) were introduced, leveraging wavelet
scattering networks (ScatNets) as encoders and CNNs as decoders [113].

ScatNets are mathematical models designed to extract meaningful features from
signals, particularly in the domain of generative modelling. They operate by perform-
ing a cascade of operations on the input signal y(t) in each layer of the ScatNet Sn:
wavelet transform, in which y(t) is convolved with wavelet function ψλ(t) at differ-
ent scales λ, S1y(t) = |y(t)ψλ(t)|; modulus nonlinearity, in which after each wavelet
transform, the modulus operation is applied element-wise Sny(t) = |Sn−1y(t)|; and pool-
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ing, in which pooling operations are performed to aggregate information across scales
Spooly(t) = T↑|Sny(t)|. Through this hierarchical process, ScatNets create a series of in-
creasingly invariant and abstract representations of the input signal, capturing both local
and global structures.

After extracting the features with a ScatNet, Principal Component Analysis (PCA) is
applied to reduce the dimensional resulting in the latent space vector z. Then, the decoder
uses a CNN for deconvolution and to output the predicted image ỹ, as shown in Figure 7.

Figure 7. Architecture of a GSN with a ScatNet and PCA encoder, and a CNN decoder.

GSNs simplify training by avoiding the need to learn ScatNet parameters, yet they
may suffer from reduced image quality due to limitations in ScatNets’ expressiveness and
overfitting induced by PCA in dimensionality reduction [112].

In response to these limitations, Generative Fractional Scattering Networks (GFRSNs) were
proposed as an extension of GSNs in [112]. GFRSNs aim to address the overfitting issue by
introducing a more suitable dimensional reduction method, thus enhancing GSN performance.

GFRSN includes an encoder composed of novel components, a Fractional Wavelet
Scattering Network (FrScatNet) and a Feature Map Fusion (FMF) dimensional reduction
method [112].

FrScatNet extends the concepts of ScatNets to non-integer order wavelet transforms
by introducing a fractional convolution operator Θα to the wavelet transform operation
formulated as [112]

S1y(t) = |x(t)Θαψλ| = e
−

j
2

t2 cot (θ)[y(t)e

j
2

t2 cot (θ)
ψλ(t)]

, (49)

where α is the fractional order, and θ =
απ

2
is the rotation angle. Note that FrScatNet can

be reduced to a ScatNet when α = 1.
In [112], after employing FrScatNet for feature extraction, the authors propose using

an FMF method instead of PCA, as used in ScatNets. The rationale behind this choice is
that PCA fails to consider the semantic differences present in the features extracted by
FrScatNets across different layers, thus overlooking the hierarchical information contained
within the features. The reduced dimensional feature map after applying FMF to the
features extracted by FrScatNet is the latent space z (for more details on FMF, see [112]).

FrScatNets are equipped with a hyperparameter α that determines the fractional order
of the convolution. Since α can be chosen arbitrarily, different α values lead to the extraction
of distinct features. Consequently, using FrScatNets with varying α values results in the
generation of multiple feature vectors. To fully exploit this diversity in feature extraction,
the authors propose merging the image predictions obtained from different α values using
an image fusion technique. This approach allows for embedding the input in different
fractional-order domains to enhance the quality of the generated images. The image fusion
method proposed can be formulated as [112]

ỹα1,α2
= ωỹα1

+ (1 − ω)ỹα2
, (50)

where ỹα1 and ỹα2 are image predictions generated by feature extraction using an FrScatNet
with fractional-orders α1 and α2, respectively. The hyperparameter ω acts as a weighting
factor that determines the contribution of each predicted image [112], Figure 8.
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Figure 8. Architecture of a GFRSN with an FrScatNet and FM encoder, and a CNN decoder. Using
two GFRSNs with different fractional-orders, one can enhance the predicted image ỹ by merging the
outputs from both orders, ỹα1

and ỹα2
.

The introduction of GFRSN in [112] opens up several research gaps that warrant
further investigation. First, there is a need to explore the methodologies to select the
appropriate α value for FrScatNets. Identifying which α values yield the most distinct
features would be beneficial, as combining such features could potentially enhance the
completion of the predicted output. Furthermore, while the proposed FMF method takes
the average of the third-layer’s feature maps, there is room for exploring more sophisticated
weighting strategies. Using alternative weight strategies could potentially improve the
efficacy of the dimensionality reduction technique used in GFRSNs.

3.6. Compression

Contemporary advancements in deep learning have propelled the field to achieve
remarkable performances across a spectrum of tasks, encompassing image classification,
semantic segmentation, object detection, pose detection, and beyond. This progress is
underpinned by the evolution of increasingly complex architectures, housing millions,
and even billions of trainable parameters, thereby augmenting model efficacy. However,
the proliferation of such massive architectures poses challenges concerning memory and
computational resources, hindering seamless deployment in edge computing devices and
other resource-constrained environments.

Reducing the computational cost of NN architectures for denoising, image restoration,
segmentation, object detection, and enhancement is a critical endeavour in computer vision
research. Given the increasing demand for real-time and resource-efficient solutions, opti-
mising these architectures for computational efficiency is essential for practical deployment
in various applications. Techniques for reducing computational cost typically focus on
minimising the number of operations, parameters, or memory footprint required by the
models while maintaining satisfactory performance.

In our survey of the literature, we uncovered two works that harness FC to alleviate
the computational burden associated with NN-based computer vision tasks [19,114].

In [114], the authors introduce fractional max-pooling (FMP), a novel technique de-
signed to address the limitations of traditional max-pooling methods. Through incorporat-
ing fractional-order principles, fractional max-pooling allows for overlapping windows
and mitigates information loss during the pooling process, thereby enhancing feature
preservation while reducing the reduction size. Conversely, in [19], the authors present a
groundbreaking approach by deriving fractional convolutional filters tailored for popular
integer-order filters such as Gaussian, Sobel, and Laplacian. This innovative formulation
not only improves filter performance but also offers a compelling advantage: a reduction
in the number of parameters is required, which remains constant regardless of filter size.
Moreover, these fractional filters exhibit intermediate behaviours, providing a versatile tool
for capturing nuanced features within the image data.
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3.6.1. Fractional Max-Pooling

Max-pooling is a fundamental operation in CNNs used for downsampling feature maps,
reducing computational complexity, and extracting dominant features. Given an input feature
map with dimensions Iin × Jin × Din, where Iin, Jin, and Din are the width, height, and number
of channels, respectively, max-pooling partitions the input into non-overlapping regions and
computes the maximum value within each region to produce the output [114].

Let l × l denote the size of the pooling window, where l is typically a small integer;
usually, l = 2 is used as default. The output dimensions of the feature map after max-

pooling are given by Iout =

⌊
Iin
l

⌋
and Jout =

⌊
Jin
l

⌋
. The pooling regions Pi,j are computed

by dividing the input feature map Iin × Iin by the size of the output feature map Iout × Iout
(considering Jin = Iin and Jout = Iout) [114]:

Pi,j ⊂ 1, 2, . . . , Iin
2 with (i, j) ∈ 1, . . . , Iout

2, (51)

where the size of the pooling windows can be computed as

Pi,j = [2i − 1, 2i]× [2j − 1, 2j]. (52)

Then, for each pooling region, the maximum pixel value of the input feature map InPi,j
will be kept and used to compose the output feature map Outi,j:

Outi,j = max(InPi,j). (53)

Max-pooling introduces translation invariance and reduces the spatial dimensions
of the feature maps, which helps in controlling overfitting and improving computational
efficiency. Through retaining only the maximum activations within each pooling region,
max-pooling focuses on preserving the most salient features while discarding less relevant
information, facilitating hierarchical feature learning in CNNs [114].

The limitations of max-pooling in CNNs are indeed well recognised in the
literature [115–117]. One major drawback is its fixed pooling window size, which may not
adequately capture diverse spatial patterns within feature maps, especially in scenarios
where objects vary significantly in scale or orientation. Additionally, the non-overlapping
nature of max-pooling leads to a loss of spatial information between adjacent pooling regions,
potentially discarding valuable details crucial for tasks like object localisation. Moreover, default

max-pooling results in a rapid reduction in the size of hidden layers
Iin
Iout

≈ 2, necessitating the

use of multiple stacked convolutional layers to achieve significant depth. While some methods
have been proposed to address this issue [115,116], they still result in a halving of the size of
hidden layers, highlighting the need for a gentler approach to spatial pooling [114].

A potential solution lies in adopting a more flexible approach to pooling that reduces
the size of hidden layers by a smaller factor. By incorporating additional layers of pooling,
each with a smaller reduction factor, we can observe the input image at different scales,
potentially leading to an easier recognition of distinctive features indicative of specific
object classes. This approach could lead to more effective feature extraction and improve
the performances of CNNs in various computer vision tasks [114].

In [114], the authors introduce FMP to address the issue of controlling the reduction in
the spatial size of images by a fractional-order 1 < α < 2. Additionally, FMP introduces
flexibility by allowing overlapping pooling regions, thus preserving spatial information
more effectively. The pooling regions Pi,j in FMP can either be overlapping squares or
disjoint collections of rectangles. To generate Pi,j, two hyperparameters are needed: ai and
bj, with i, j ∈ 0, . . . , Iout. In considering ai and bj as two increasing sequences with a step of
1 ending at Iin, then the overlapping pooling regions can be computed as [114]

Pi,j = [ai−1, ai − 1]× [bj−1, bj − 1], (54)
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and the disjoint pooling regions as

Pi,j = [ai−1, ai]× [bj−1, bj]. (55)

The output dimensions of the feature map after FMF are given by Iout =

⌊
Iin
α

⌋
and

Jout =

⌊
Jin
α

⌋
, where α is the fractional-order of reduction

Iin
Iout

∈ (1, 2) [114].

FMP holds promise in enhancing the performance of CNNs as well as in reducing
their computational cost without losing information. Several research directions stemming
from this work [114] could be pursued. For instance, investigating optimal combinations of
reduction ratios and overlap factors in FMF could lead to improved feature representation
while minimising information loss. Additionally, exploring the integration of FMF with
other techniques, such as attention mechanisms or adaptive pooling strategies, may result
in synergistic improvements in both model performance and efficiency.

3.6.2. Fractional Convolutional Filters

In [19], authors propose learning reduced representations of convolutional filters
through combining fractional calculus and NNs, originating fractional convolutional filters.

As seen previously, convolutional filters are used in NNs to extract features from
images, with the most popular filters being Gaussian, Sobel and Laplacian. These are
intimately connected through the derivatives of a Gaussian filter. The first derivative
of the Gaussian corresponds to the Sobel operator, emphasising edges in a particular
direction, while the second derivative of the Gaussian, known as the Laplacian of the
Gaussian, enhances areas of rapid intensity change regardless of direction. Mathematically,
the relationship can be expressed as follows [19]:

G(i, j) =
1

2πstd2 e
−

i2 + j2

2std2 ,
∂G(i, j)

∂i
∝ je

−
i2 + j2

2std2 ,
∂2G(i)

∂i2
= 4i2e−i2 − 2e−i2 , (56)

where std is the standard deviation.
Mathematically, using the Grünwald–Letnikov definition and considering the first 15

terms of the Taylor series, the authors extend this to the fractional-order derivative of order
α of the Gaussian DαG(i, j) [19]:

DαG(i) =
A
hα

15

∑
m=0

Γ(α + 1)G(i)
(−1)mΓ(m + 1)Γ(1 − m + α)

, (57)

where Γ is the Gamma function.
The fractional derivative of a Gaussian provides a versatile framework for deriving

a range of filters, including Gaussian, Sobel, Laplacian, and more. By selecting specific
values for the fractional order α, we can directly obtain the corresponding traditional filters:
α = 0 yields the Gaussian filter; α = 1, the Sobel filter; and α = 2, the Laplacian filter.
Remarkably, by varying α, we can interpolate between these filters, creating a continuum
of filter behaviours that smoothly transition between them. This flexibility enables the
creation of general customised filters whose behaviour ranges between the previously
referred filters [19]. A 2D fractional convolutional filter is thus defined as

F(i, j) = ADαDβe
−
(i − io)2 + (j − jo)2

std2 , (58)

where DαDβG(i, j) = DαG(i)×DβG(j). The 3D fractional convolutional filter is given by

F(i, j, k) = ADαDβDγe
−
(i − io)2 + (j − jo)2 + (k − ko)2

std2 , (59)
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where α, β, and γ are the orders of the fractional derivatives, and std, A, io, jo, and ko are the
parameters that define the filter.

One significant computational benefit of fractional convolutional filters is that the
number of parameters required to describe them remains constant, regardless of the filter
size, offering a substantial reduction in the number of parameters compared to integer-
order filters. For instance, instead of needing l × l parameters for an l × l pixel-wise
dimension filter, fractional convolutional filters require only a maximum of 6 (2d) or
9 (3d) parameters. This reduction in parameter count simplifies the model and enhances
computational efficiency, making fractional convolutional filters an attractive option for
various applications in image processing and computer vision [19].

An important result from [19] is that the introduction of fractional convolutional
filters in CNNs allowed us to achieve a record for the smallest model that could achieve
an accuracy greater than 99% on the MNIST dataset [19]. In building upon this mile-
stone, several promising research directions emerge. Firstly, exploring the applicability
of fractional convolutional filters across diverse datasets and domains can unveil their
generalisability and robustness. Furthermore, delving into the theoretical foundations and
mathematical properties of fractional convolutional filters may lead to deeper insights into
their underlying mechanisms and ease the development of more sophisticated variants.

4. Conclusions

In this survey paper, we conducted an extensive exploration of the integration of frac-
tional calculus with neural network-based computer vision methodologies, focusing on
denoising, enhancement, object detection, segmentation, restoration, and neural network com-
pression tasks; see a summary in Appendix A Table A1. While fractional calculus’s application
in computer vision is well established, its incorporation into neural network-based approaches
is still in its early stages, with limited works in the literature. Nonetheless, the results from
existing studies demonstrate notable performance improvements, indicating the potential for
further advancements in this area. Through our investigation, we identified several research
gaps and outlined potential directions for future exploration in each of the studied works.

In real-world conditions, image capture often occurs under less-than-ideal circum-
stances, resulting in complex artefacts and challenges such as corruption and varying
light conditions. Addressing these challenges has spurred the development of numer-
ous methods aimed at enhancing neural network performances in computer vision tasks.
The versatility of fractional calculus methods, with their increased degrees of freedom
capable of modelling nuanced behaviours, holds promise in overcoming the hardships
encountered in computer vision tasks.

The goal of this survey is to provide an overview of the current research and to offer
intuitive explanations of the proposed methods. We aim to demystify fractional calculus
and motivate its usage over integer-order methods by providing accessible explanations.
We understand that fractional calculus can appear daunting, but we hope that this survey
serves to dispel misconceptions and inspire researchers to contribute to the incorporation
of fractional calculus into neural network-based computer vision.

In addition to the identified research gaps, we suggest investigating the influence
of non-integer order derivatives on additional aspects of convolutional neural networks
architectures, such as regularisation techniques, attention mechanisms, and transfer learn-
ing. Exploring these avenues could yield novel strategies for model optimisation and
performance enhancement. Additionally, given the time dependence inherent in fractional
calculus, we envisage that leveraging the memory capabilities could advance video object
detection and generation tasks.

Furthermore, it is imperative to explore the interpretability and explainability of
fractional calculus in neural network-based computer vision models. Understanding how
fractional-order operations affect feature representations and decision-making processes
within the network can provide valuable insights into model behaviour and foster trust
among researchers and field experts. Furthermore, investigating the generalisability and
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robustness of fractional calculus-enhanced neural networks across diverse datasets and real-
world scenarios is crucial to ensure their practical applicability. Finally, the scalability and
computational efficiency of fractional calculus-based methods merit further investigation,
particularly in resource-constrained environments and large-scale applications.
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Abbreviations
The following abbreviations are used in this manuscript:

List of symbols.
Symbol Meaning
α, β, γ Fractional-orders of the the derivatives
Dα f (x) Fractional derivative of order α of function f (x)
D2 f (x) Second-order derivative of function f (x)
h Step size
t0 Arbitrary initial time
t f Arbitrary final time
y(s) Input image
s Pixel
Φ(·), Ψ(·) Linear transformations
u(t, s) Control input
θ NN learnable parameters
wk Weight of layer k
T↑, T↓ Pooling and unpooling operations
σ Nonlinear operation
li FOCNet of level i
θi Learnable parameters of level i
uli±1

t Upper-level and lower-level features
I, J, K Pixel-wise width, length, and depth of an image
i, j, k Coordinates of a pixel
X′ Denoised image
L(θ) Loss function
λ Hyperparameter
S Sobel filter
L Laplace filter
A AFD mask
M(i, j) Average gradient of a pixel
tg Gradient threshold
Q Mean gradient of an image
AGed, AGtex Average gradients of edges and textures
Rα Rényi entropy
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ps Normalised histogram of pixel intensities
M Image moment
µ Central moment
x, y Image centroid
P Legendre polynomial
L Legendre moment
Ỹ Generated image
Sn ScatNet layer
Spool ScatNet pooling
Θα Fractional convolution operator
ψλ(t) Wavelet function at scale λ

ω Weighting hyperparameter
G(i, j) Gaussian operator
std Standard deviation
F(i, j) Fractional convolutional filter
io, jo, ko Parameters of a filter
l Pixel-wise dimension of a filter
Iin, Jin, Din Width, height, and channels of the input feature map
Iout, Jout, Dout Width, height, and channels of the output feature map
Pi,j Pooling region
In Input feature map
Out Output feature map
ai, bj Hyperparameters for computing pooling windows
List of abbreviations.
Abbreviation Meaning
HOG Histogram of Oriented Gradients
FC Fractional Calculus
NN Neural Network
ML Machine Learning
CNN Convolutional Neural Network
FDE Fractional Differential Equation
FPDE Fractional Partial Differential Equation
FOCNet Fractional Optimal Control Network
F-ODE Fractional Ordinary Differential Equations
TV Total Variation
FTV Fractional-order Total Variation
LDD Left-Down Direction
RUD Right-Up Direction
LUD Left-Up Direction
RDD Right-Down Direction
AFD Adaptive Fractional-order Differential
AFDA Adaptive Fractional-order Differential Algorithm
RCNN Region-based Convolutional Neural Network
YOLO You Only Look Once
SSD Single-Shot Detector
FrOLM-DNN Fractional-Order Lagrange Moments Deep Neural Network
LSF Level-Set Function
PDE Partial Differential Equation
CeNN Cellular Neural Network
VAE Variational Autoencoder
GAN Generative Adversarial Network
GSN Generative Scattering Network
ScatNet Wavelet Scattering Network
PCA Principal Component Analysis
GFRSN Generative Fractional Scattering Networks
FrScatNet Fractional Wavelet Scattering Network
FMF Feature Map Fusion
FMP Fractional Max-Pooling
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Appendix A. Summary Table

Table A1. Summary table of the methods discussed in this survey.

Task Proposal Advantages Experimental Setup Results

Denoising

Fractional-Order Total
Variation [41]

Incorporates information from
neighbouring pixels
Reduces artefacts

Dataset: Google Maps images
Comparison: same network with total and fractional-order total variation
loss
Metrics: peak signal noise ration, structural similarity index, and
universal quality

Best performance metric
Better performance in
preserving texture details

Fractional Optimal
Control Network [42]

Propagates features depth-wise
within an NN

Dataset: Set12 [118], BSD68 [119], and Urban100 [120], with three
induced noise levels
Comparison: BM3D [121], WNNM [122], TNRD [123], DnCNN [118],
FFDNet [124], RED [125], MemNet [126], and N3Net [127]
Metric: average peak signal-to-noise ratio

Leading performance metric
results
Similar computational cost

Enhancement

Neural Fractional-order
Adaptive Masks [18]

Captures the advantages and reduce
the disadvantages of first- and
second-order masks

Dataset: chest X-ray images, ultrasonic images, and pelvis radiography
images,
Comparison: same network with and without neural fractional-order
adaptive masks
Metrics: information entropy, mean absolute difference coefficient, and
absolute mean brightness error

Better performance metrics
Offers higher contrast and
clearer edges
Enhances smooth areas and
texture

Fractional Rényi
Entropy [60]

Refined characterisation of the
uncertainty and complexity within a
probability distribution
Enhances robustness and preserves
spatial relationships between image
pixels

Dataset: kidney magnetic resonance imaging scans
Comparison: Hasan et al. [128], Li et al. [129], Ibrahim et al. [130],
Alaa et al. [131], and DLSS [132]
Metric: accuracy

Achieves best performance
metrics
Improves fine details with low
contrast

Object
Detection

Fractional-Order
Legendre Moment
Invariants [67]

Fractional-order moments have
additional parameters, offering
improved results

Dataset: AR database of faces
Comparison: LMs [133], DTMs [134], DKMs [135], ZMs [133],
OFMs [136], and BMs [137]
Metrics: statistical normalisation image reconstruction error and correct
classification percentages

Better performance metrics
Higher noise robustness
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Table A1. Cont.

Task Proposal Advantages Experimental Setup Results

Segmentation

Active Contour
Detection With
Fractional-Order
Regularisation Term [95]

More precise representation of the
image
Improves the robustness to noise

Dataset: synthetic and medical images
Comparison: GAC [138], Chan-Vese [139], Chunming Li [140],
Lankton [141], Shi [142], RSFLG [143], and LPF [144]
Metrics: Dice Similarity Coefficient, peak signal-to-noise ratio, Hausdorff
distance, structural similarity index measure, and mean sum of squares
distance

Higher robustness and
effectiveness
Time-efficient
Easy implementation

FOCNet For
Segmentation [17]

Propagation of information from
shallower layers

Dataset: Massachusetts Road Dataset [145] and Ottawa Road
Dataset [146]
Comparison: U-Net [89], Dlinknet [147], HsgNet [148], Dense-UNet [149],
SUNet [149], and SDUNet [149]
Metrics: recall, precision, Dice Coefficient, accuracy, and mean
intersection over union

Better performance metrics
Lesser loss of information and
computationally efficient

Restoration
Fractional Wavelet
Scattering
Networks [112]

More suitable dimensional
reduction method that considers
features extracted across different
layers
Improves reduced image quality
and overfitting

Dataset: CIFAR-10 [150] and CelebA [151]
Comparison: Principal Component Analysis [152]
Metrics: peak signal-to-noise ratio and structural similarity

Better performance metrics
Generates better images

Compression

Fractional
Max-Pooling [114]

Preserves spatial information
More effective feature extraction

Dataset: MNIST [153], CIFAR-100 [150], The Online Handwritten
Assamese Characters Dataset [154], CASIA-OLHWDB1.1 [155], and
CIFAR-10 [150]
Comparison: max-pooling
Metric: accuracy

Better performance metrics
Better way of encoding
information

Fractional Convolutional
Filters [19]

Reduced number of parameters to
describe filters

Dataset: MNIST [153], CIFAR-10 [150], ImageNet [156], and UCF101 [157]
Comparison: LeNet [153], LeNet5 [153], 50-50-200-10NN [158], Best
Practices [159], CNN for MNIST and
All-CNN [160], MobileNetV1 [161], MobileNetV2 [162], ShuffleNet
8G [163], ShuffleNet 1G [163], HENet [164], ResNet18 [165] for CIFAR-10,
and ResNet18 [165] for UCF101
Metric: accuracy

Achieved new record for the
smallest model with >99%
accuracy on MNIST
Effective for filter compression
Reduces computational cost
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