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Abstract: The motivation for using artificial neural networks in this study stems from their com-
putational efficiency and ability to model complex, high-level abstractions. Deep learning models
were utilized to predict the structural responses of reinforced concrete (RC) buildings subjected
to earthquakes. For this aim, the dataset for training and evaluation was derived from complex
computational dynamic analyses, which involved scaling real ground motion records at different in-
tensity levels (spectral acceleration Sa(T7) and the recently proposed Iy). The results, specifically the
maximum interstory drifts, were characterized for the output neurons in terms of their corresponding
statistical parameters: mean, median, and standard deviation; while two input variables (fundamen-
tal period and earthquake intensity) were used in the neural networks to represent buildings and
seismic risk. To validate deep learning as a robust tool for seismic predesign and rapid estimation, a
prediction model was developed to assess the seismic performance of a complex RC building with
buckling restrained braces (RC-BRBs). Additionally, other deep learning models were explored to
predict ductility and hysteretic energy in nonlinear single degree of freedom (SDOF) systems. The
findings demonstrated that increasing the number of hidden layers generally reduces prediction
error, although an excessive number can lead to overfitting.

Keywords: artificial neural networks; intensity measure; prediction model; maximum interstory drift;
ductility; hysteretic energy

1. Introduction

Earthquake ground motions are a natural phenomenon that releases enormous amounts
of energy; part of this energy is absorbed by bodies attached to the earth’s surface. For
this reason, earthquake ground motions put at risk the integrity and functionality of struc-
tures [1-4] as they have to dissipate an important part of the seismic energy. Due to the
inherent properties of the construction materials, reinforced concrete buildings dissipate
less energy than steel buildings [5-7]; thus, it is important to understand and predict the
structural response or seismic performance of RC or RC-BRB buildings. Currently, some
relevant studies have focused on presenting methods and mathematical expressions that
assist in seismic design tasks using a relationship between ductility, i, and period, T, to
estimate important parameters or structural performance indices such as strength reduction
factors and inelastic displacement ratios [8]; other studies have been dedicated to quantify
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the risk seismic based on the structural damage [9,10] by selecting appropriate intensity
measures [11-14].

1.1. Intensity Measures

The spectral acceleration at the first mode of vibration of the structure Sa(T;), where
T is the fundamental period, is considered the basic seismic intensity measure and, there-
fore, it is the most widely used parameter around the world [12]; however, new intensity
measures based on the spectral shape parameter named N;, have been demonstrated to be
useful in mathematical models for predicting important parameters of seismic performance,
such as interstory drift and ductility of structures [13,15,16], especially the well-known
Inp intensity measure. According to Bojorquez and lervolino [17], the Iy, intensity mea-
sure considers the nonlinear effects in the estimation of the structural response, and it
has allowed scientists to obtain better results in comparison with most of the intensity
measures presented in the literature [18]. The mathematical form of this parameter is
Inp = Sa(T1)Np, where the spectral shape parameter N, is obtained via Equation (1). In
this equation, Sagyg (T ... Ty) represents the geometric mean of spectral acceleration in a
range of periods.
N, — Sau0g<Tll ey TN)
. Sa(Ty) '

It is important to say that the information given by Equation (1) is that, if we have
one or n records with a mean N, value close to one, we can expect the average spectrum
to be about flat in the period range between T; and Ty. For a mean N;, lower than one,
an average spectrum with a negative slope is expected. Notice that the normalization
of Sa(Ty) lets N, be independent of the scaling level of the records based on Sa(T), but,
most importantly, it helps to improve the knowledge of the path of the spectrum from
period T; to Ty, which is related to the nonlinear structural response. On the other hand,
« is a value determined from regression analysis. Several analyses of buildings under
earthquakes developed by experts recommend a value for « of close to 0.4 [18] to predict
peak interstory drift demands. The interstory drift is a relative displacement calculated by
the difference between two consecutive floors, and it is the main parameter suggested by
the seismic codes around the world to guarantee good structural performance. Moreover,
the maximum interstory drift is a parameter of the structural response that allows for the
determination of the seismic performance of a building [19]. Therefore, some experts have
proposed methods to estimate this important indicator [13,20,21]; nevertheless, most of
them are aimed to compute and predict interstory drifts based on traditional methods, and,
currently, new techniques inspired by artificial intelligence approaches are in progress and
represent the future for several engineering applications [22-28]. These efforts are focused
on the prediction of the seismic performance of buildings by using novel ground motion
intensity measures. In the present work, the computational tool of deep learning neural
networks is used to predict the maximum interstory drift of reinforced concrete buildings
under earthquakes. Moreover, the seismic performance of a complex building and several
SDOF structures is tested via the neural network model and the advanced ground motion
intensity measure Iy.

1)

1.2. Advances in Artificial Neural Networks

The computational advances at the end of the 20th century allowed for some math-
ematical models, proposed several years ago, to be a useful tool in resolving the basic
problems of optimization, classification and prediction of response parameters [29-31]. The
artificial neural networks are one of these models, which became known or classified as
computational models. Nevertheless, they were limited in their ability to process data with
a nature complex [32-34]. In the last decade, a type of neural network known as a deep
learning network has dramatically improved prediction and classification results without
human intervention to order and structure the data for the learning process [35-37].
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1.3. Neural Networks in Civil Engineering

In the civil engineering field, several studies have utilized artificial neural networks
to solve structural problems under dynamic loads of winds or earthquakes [38-42]; never-
theless, nowadays, there are not enough studies using deep learning networks to resolve
problems with a high level of abstraction, as is the case of structural behavior. The com-
putational models based on neural networks have greater potential for fitting data than
traditional methods based on mathematical expressions. This is because, to a certain num-
ber of terms, a regression equation is impractical, while an artificial neural network does
not become impractical as quickly due to an increased number of neurons or hidden layers.
In addition, thanks to the continuous advancement of computer technology, computational
models based on neural networks have shown that it is possible to obtain a high accuracy
rate with relatively few data. For this reason, the first aim of this paper is to generate a
computational model for the prediction of the seismic demand in terms of the maximum
interstory drift of mid-rise RC structures under earthquake ground motions using deep
learning networks and based on the two ground motion intensity measures Sa(T1) and Ip.
As a second objective, the neural network is tested by using a complex RC-BRB building.
The third objective of the present study is to calibrate deep learning neural network models
by means of several nonlinear SDOF systems with elastoplastic behavior subjected to the
ground motion records but incorporating the ductility and normalized hysteretic energy as
seismic performance parameters. Finally, Taylor diagrams are computed to illustrate the
effectiveness of the prediction models in terms of statistical parameters.

2. Theoretical Framework

An artificial neural network (ANN) consists of a set of basic processing units called
artificial neurons (Figure 1a) [43]. For an ANN, the connection of multiple neurons allows
it to solve complex problems, which can be defined as linearly non-separable or nonlinear
problems [44]. An arrangement of neurons in a reduced number of layers enables the
solution of many problems only if the input data are properly categorized (Figure 1b),
conversely, a drastic increase in the number of hidden layers helps to automatically resolve
the classification of the data (Figure 2) [45]. This last type of ANN has proven to model
high-level abstractions by applying multiple non-linear transformations.

The output of an artificial neuron is given by a function f known as the activation
function which depends on the sum of the inputs n;w; in the following way:

sum = lwg + nqwy + npwy + - - - + njw;, 2)

where #; is the output of another neuron and w; is a value known as synaptic weight
(Figure 1a). The value of the synaptic weight w; determines the influence of the information
that travels through the connection i. The sigmoid function allows to generate good ap-
proximations with normalized data between 0 to 1. The sigmoid function is mathematically

expressed as follows:
1

1 4 e—sum 4 (3)

where its derivate can be expressed by a simple form in terms of the same sigmoid function:

f(sum) =n =

f'(sum) =d =n(1—n). (4)

The training process, also known as the learning process, of an ANN consists of
defining, through iterations, the values of the synaptic weights, such as the prediction
error decreases. The evaluation of the error at each iteration allows for the application of
optimization techniques that update the values of the synaptic weights to obtain better
performance. The Mean Square Error (MSE) function is a mathematical tool to quantify
the error as follows:

z

_ _ Ay o2
E_MSE_Ni 1(t, i), ®)
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where N is the number of data points assigned to the training process, t; is the target
value for the prediction, and y; is the output value of the ANN corresponding to the input
i-th. The error can be described as a function that depends on the values assigned to
the synaptic weights. In this way, the derivative of the error with respect to the synaptic
weights describes the trend of the error in order to find a minimum. The quantification of
the error trend is known as the gradient G and its mathematical expression is the following:

_ 9E(w)
G= ow ©)

where w is a vector that contains the values of the synaptic weights. The descending
gradient method is an optimization approach that takes advantage of the information
provided by the derivative of the error to adjust and update the values of the weights. The
update of the weights to minimize the error would be given as follows:

w+ Aw =w — aG, (7)

where Aw represents the update vector and o is a parameter, typically between 0 and
1, known as the learning rate, which determines the contribution of each iteration and
controls how quickly the algorithm converges to a solution.

Basic Unit Neural Network

(Neuron) Input Hidden

Input synaptic Layer Layer Output

connections Output

synaptic
connection

ny

n;

Figure 1. Artificial neural network: (a) internal neural process; (b) typical neural network.

Deep Learning Neural Network

Input Multiple Hidden Layers
Layer 1 (automatic data classification) T Output

LKA K AN
) SV V.SV,

Figure 2. Deep neural network.

3. Methodology

To generate an acceptable prediction model, it is necessary to have a considerable
amount of data that allows for an accurate description of the behavior of the variable
of interest. For this work, the data necessary to describe the behavior of the maximum
interstory drift of RC mid-rise frames under earthquake ground motions are shown in
Figures 3 and 4. These data were obtained by incremental dynamic analysis [46] using
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registered records of earthquake ground motions which are scaled at different spectral
acceleration Sa(T) and Iy, values. Notice that a total of 2400 nonlinear seismic analyses
of RC structures have been performed. The ground motion records correspond to seismic
events with magnitudes close to seven or higher, and an epicenter located at 300 km or
more from Mexico City. The most important structural damage by seismic events in Mexico
has occurred in the area selected for the extraction of records. This area is known as the
Lake Zone, which has been characterized by soil periods between 2 and 3 s; therefore, the
peak ground acceleration PGA and velocity PGV can produce high levels of shaking in
buildings. More information about the characteristics of the seismic records and of the
buildings is presented in Tables 1 and 2, respectively, while Figure 5 illustrates the structural
configuration of the RC frames. In addition, several details about the structural elements
(beams and columns) used in the study buildings are shown in Figure 6 and Table 3. In
Figure 6, the cross-section and the configuration of the reinforcing steel area are described.
It is important to say that all the structural buildings used for the present study have been
designed according to the Mexico City Building Code.
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Figure 3. Maximum interstory drift using spectral acceleration Sa(T7) for mid-rise buildings with
(a) 4 stories; (b) 6 stories; (c) 8 stories; (d) 10 stories.
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Figure 4. Maximum interstory drift using the spectral shape Iy, for mid-rise buildings with
(a) 4 stories; (b) 6 stories; (c) 8 stories; (d) 10 stories.
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Table 1. Earthquake ground motions.

Record Magnitude PGV [cm/s] PGA [cm/s?] Date Station
1 8.1 59.5 178.0 19 September 1985 SCT
2 7.6 14.6 48.7 21 September 1985 Tlahuac deportivo
3 6.9 15.6 45.0 25 April 1989 Alameda
4 6.9 21.5 68.0 25 April 1989 Garibaldi
5 6.9 12.8 449 25 April 1989 SCT
6 6.9 15.3 45.1 25 April 1989 Sector Popular
7 6.9 17.3 52.9 25 April 1989 Tlatelolco TLO8
8 6.9 17.3 49.5 25 April 1989 Tlatelolco TL55
9 7.3 12.2 39.3 14 April 1995 Alameda
10 7.3 10.6 39.1 14 September 1995 Garibaldi
11 7.3 9.62 30.1 14 September 1995 Liconsa
12 7.3 9.37 33.5 14 September 1995 Plutarco Elias Calles
13 7.3 12.5 34.3 14 September 1995 S. Popular
14 7.3 7.8 27.5 14 September 1995 Tlatelolco TLO8
15 7.3 74 27.2 14 September 1995 Tlatelolco TL55
16 7.5 4.6 14.4 9 October 1995 Cibeles
17 75 5.1 15.8 9 October 1995 CU Juarez
18 75 4.8 15.7 9 October 1995 C. urbano P Juarez
19 7.5 8.6 249 9 October 1995 Cérdoba
20 7.5 6.3 17.6 9 October 1995 Liverpool
21 7.5 79 19.2 9 October 1995 Plutarco Elias Calles
22 7.5 5.3 13.7 9 October 1995 S. Popular
23 7.5 7.18 17.9 9 October 1995 V. Gémez
24 6.9 5.9 16.2 11 January 1997 CU Juarez
25 6.9 5.5 16.3 11 January 1997 C. urbano P Judrez
26 6.9 6.9 18.7 11 January 1997 Garcia Campillo
27 6.9 8.6 222 11 January 1997 Plutarco Elias Calles
28 6.9 7.76 21.0 11 January 1997 10 Roma A
29 6.9 7.1 20.4 11 January 1997 11 Roma B
30 6.9 7.2 16.0 11 January 1997 Tlatelolco TLOS

Table 2. Characteristics of RC frame models.

Period of Vibration (s)

Frame ID Numb.e r of
Stories T; T,
F4 4 0.90 0.31
Fo6 6 1.20 0.39
F8 8 1.38 0.44
F10 10 1.53 0.48
Table 3. Characteristics of RC beams and columns in cm or cm?.

D FraEr:\eeI?Setr(l)try Loc) Characteristic F4 F6 F8 F10
Beam 1 B 25 25 35 35
F4(1-2) H 55 60 80 90
F6(1-3) As_gup 12.7 19.1 47.7 56.2
F8(1-3) As_inf 7.6 13.2 38.9 47.9
F10(1-4) spacing_ext 15 15 15 10

spacing_cen 25 25 15 10
Beam 2 B 20 20 35 35
F4(34) H 50 55 70 75
F6(4-6) As_sup 9.5 13.8 39.5 47.3
F8(4-6) As_inf 44 7.8 27.2 37.6
F10(5-7) spacing_ext 15 15 15 10

spacing_cen 25 25 20 15
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Table 3. Cont.
Element .
ID_Frame(Story Loc) Characteristic F4 F6 F8 F10
B 30 35
H 55 65
Beam 3 As_sup 226 27.3
F8(7-8) .
F10(8-10) As_inf 10 15.2
spacing_ext 15 15
spacing_cen 25 25
Column 1 B 50 60 95 110
F4(1-2) H 50 60 95 110
F6(1-3) As 64.39 95.89 190.25 242.29
F8(1-3) Spacing 15 10 10 10
Column 2 B 40 50 85 100
F4(3-4) H 40 50 85 100
Fo6(4-6) As 45.19 49.12 72.25 100
F8(4-6) Spacing 10 15 15 15
B 75 90
Column 3 H 75 90
F8(7-8) As 56.25 81
spacing 15 15

Table 3 defines the most important characteristics, such as height (H), width (B),
superior steel area (As_sup), inferior steel area (As_inf), spacing of stirrups in the extremes
(spacing_ext), and spacing of stirrups in the center (spacing_cen). Notice that the units of
Table 3 are provided in centimeters (cm) or square centimeters (cm?).

For ANN-based computational models, it is considered good practice to normalize
the data using different scales and ranges. Although the model could converge without the
normalization of the characteristics, the resulting model will be dependent on the choice
of the units used in the input. To normalize the values in the range [0, 1], the following
mathematical expression was used:

= Xi — Xmin

i Ximax = Xmin’ ®)
where ¥; is the normalized value, x; is the value to normalize, x,,;,, is the minimum value,
and Xy is the maximum value. Following the guidelines of good practice for the gen-
eration of models based on neural networks, the next stage is to partition the data. The
separation of the data is carried out randomly under the following criteria: 70% for training
and 30% for validating. The validation data are used to improve the evaluation of the
model fit during the training process while the optimizer is running. The optimizer applied
was the ADAM algorithm with MSE of loss function and a learning rate of 0.001 [47]. A
small learning rate slows down the learning process but converges smoothly, while a large
learning rate speeds up the learning but may not converge. Generally, a small learning
rate is preferred. This optimizer method is based on the gradient descent approach, and,
according to Kingma and Ba, the method is computationally efficient and is well suited
for problems that are large in terms of data or parameters [47]. Furthermore, the MSE
function is one of the most frequent loss functions used due to its continuity characteristic,
which is very important when optimizers based on the descending gradient approach are
used. This practice allows us to analyze the performance of the ANN due to unknown data
which are not used for processing the network learning. In addition, the problem known
as over-fitting can be determined with the help of an error behavior study. This problem
appears when the neural network architecture is very complex for the purpose of simple
tasks or when the interactive process of learning is too long [48].
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Figure 5. RC frame configuration.
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Figure 6. RC beams and columns configuration.

4. Numerical Results

For the design of the architecture and the training process of the neural networks, the
fundamental period and the ground motion intensity measure are the input variables, while
the mean, median, and standard deviation of the maximum interstory drift are the output
variables. Figure 7 shows the generic neural network architecture with multi-hidden layers,
two neuron inputs, and tree neuron output. The input variables describe, in very general
terms, the characteristics of the problems, because the fundamental period is one of the
most important structural characteristics, and the seismic intensity measure describes the
earthquake hazard using a simple value. Other seismic and structural features could be
used as inputs to simplify the learning process; however, the deep neural network approach
suggests modeling complex data using few inputs from multiple hidden layers between
the input and output layers, hence the name “deep” networks. The output variables
correspond to statistical parameters, which characterize, in general terms, the behavior
of the maximum interstory response of RC mid-rise buildings under earthquake ground
motions (Figures 8 and 9). The mean and median are two statistical measures of central
tendency that can be used to identify potential skewness in the distribution of data; that is,
if the difference between the mean and median is high, it means that the data tend towards
higher or lower values. The dataset of Figure 9 is in Appendix A.
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Figure 7. General configuration of deep neural networks to estimate the mean, median, and standard

deviation.
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Figure 8. Mean, median, and standard deviation of the maximum interstory drift using spectral
acceleration Sa(T7) for mid-rise with (a) 4 stories; (b) 6 stories; (c) 8 stories; (d) 10 stories.
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Figure 9. Mean, median, and standard deviation of the maximum interstory drift using the spectral
shape Iy for mid-rise with: (a) 4 stories; (b) 6 stories; (c) 8 stories; (d) 10 stories.
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A correlation analysis between the input and output variables is presented in Figure 10.
The mean, median, and standard deviation (outputs) have a moderate to significant or
strong relationship with respect to the fundamental period and the intensity measure
(inputs). Notice that, in Figure 10, no relationship between the input variables is observed,
therefore, they were used as input neurons for the ANN model.

1.00
Fund. 1.9%x10-17 | —0.47
Period 0.75
Intensity T
Measure = 1-9%10
-0.25
Mean = —0.47 - 0.00
- -0.25
Median - -0.44
- -=0.50

-0.75

Standard Dev. 0.3

l i i - -1.00
Fund. Intensity Mean Median Stand. Dev.
Period  Measure

Figure 10. Correlation matrix between input and output variables.

The number of neurons in the input layer and the output layer are directly defined
by the problem to solve, while the selection of the optimal number of hidden layers and
their neurons is not directly determined. For this reason, it is necessary to study different
configurations of hidden layers. Thanks to the multiple hidden layers, a deep neural
network can solve complex regression or non-linear classification problems, however, with
many hidden neurons it is possible to reach overlearning more quickly [49]. Therefore,
a pyramid-shaped architecture is adopted to mitigate this common problem pertinent to
deep network models. Table 4 summarizes the neural network configurations and their
performance in the task of prediction. The configuration [2, 3, 3] indicates an array with
2 input neurons, 3 neurons in a hidden layer, and 3 output neurons, while the configuration
[2, 10, 7, 3] represents a neural architecture with 2 input neurons, 10 neurons in the first
hidden layer, 7 neurons in the second hidden layer, and 3 output neurons. Numerically,
Table 4 shows the decrease in the error when the number of hidden layers increases.

Table 4. Results of the training process to predict statistics of the interstory drift.

2 2
Neurons Hidden Training Evaluation Training MSE R . MSE. R .
Configuration Layers Data Data Iterations Training Training Evaluation  Evaluation
Data Data Data Data
[2,3,3] 1 70% 30% 5000 0.00538 0.75 0.00832 0.65
[2,6,3] 1 70% 30% 5000 0.00284 0.77 0.00350 0.76
[2,12,3] 1 70% 30% 5000 0.00262 0.78 0.00304 0.76
[2,10,7,3] 2 70% 30% 5000 0.00093 0.81 0.00120 0.80
[2,15,9,5,3] 3 70% 30% 5000 0.00062 0.93 0.00084 0.85
[2,15,10,7,5,3] 4 70% 30% 5000 0.00036 0.95 0.00053 0.94
[2,15,11,9,7,5, 3] 5 70% 30% 5000 0.00016 0.98 0.00145 0.79
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MSE

MSE

0.02

0.01

0.02

The training error and evaluation error of neural networks with 1, 2, 3, 4, and 5 hidden
layers are shown in Figure 11. Graphically, it is possible to observe the behavior of the
errors and detect possible problems of over-fitting. The training error is drastically reduced
by increasing a hidden second layer. However, from five hidden layers, the over-fitting
problem starts to appear significantly. The neural network with four hidden layers of neural
configuration [2, 15, 10, 7, 5, 3] offers a good prediction with training data or evaluation data.
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Figure 11. Error behavior due to a neural configuration: (a) [2, 3, 3]; (b) [2, 10, 7, 3]; (¢) [2, 15,9, 5, 3];
(d) [2,15,10,7,5,3]; (e) [2,15,11,9, 7,5, 3].

A correlation graph between the target value and the response of the neural network
allows us to visualize the degree of dispersion. Several correlation graphs are introduced in
Figure 12 to show the degree of approximation offered by some of the neural configurations.
The neural network with one hidden layer presents great drawbacks in describing each
one of the outputs. With two hidden layers, the problem of describing some of the three
output variables is solved; however, the standard deviation is not well correlated. From
four hidden layers, all output variables are adjusted to acceptable correlation values. While
more layers can help to improve this fit and decrease dispersion, the problem of overfitting
would become significant.

To validate the results of the neural configuration [2, 15, 10, 7, 5, 3], Table 5 shows the
results of the application of the technique known as cross-validation. This technique allows
us to observe the independent degree of the error with respect to the data selected for the
training process [50]. A minimum variation of the error of each training process indicates
that the magnitude of this error is independent of the randomly selected data, while a
significant variation indicates that the random selection of data for the training process
influences the degree of prediction of the neural network. The error variation for neural
configuration with four hidden layers is minimal; therefore, the amount of data generated
to describe the behavior of the output variables is adequate. In this way, the random
selection of the data corresponding to the partition of the training process is independent
of the efficiency achieved by the neural networks.
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Figure 12. Relations between target values and output values due to a neural configuration: (a) [2, 3, 3];

(b) [2,10,7,3]; (0) [2,15,10,7, 5, 3].

Table 5. Cross-validation for [2, 15, 10, 7, 5, 3].

Training ID MSE Training Data MSE Evaluation Data
1 0.0002450 0.0002520
2 0.0002145 0.0002235
3 0.0002320 0.0002420
4 0.0002214 0.0002315
5 0.0002351 0.0002452
6 0.0002170 0.0002260
7 0.0002443 0.0002533
8 0.0002246 0.0002335
9 0.0002330 0.0002410
10 0.0002302 0.0002413

A graphic representation of the prediction performance of different models can be
given from the well-known Taylor diagram, which is a visual aid to analyze and compare
models from its three statistics attained: correlation coefficient, the root-mean-square error
(RMSE), and the standard deviation [51]. Figure 13 shows a Taylor diagram with the
prediction models of one, two, and four hidden layers. The brown circular dashed lines
around the blue star (ideal prediction model) represent the error. The model with four
hidden layers is the closest to the blue star; therefore, this model could be announced as
the most accurate model because it has less error, higher correlation, and similar deviation.
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Figure 13. Taylor diagram of models to predict statistics of the interstory drift.

5. Deep Learning Model Tested to Assess the Seismic Performance of a Complex
RC-BRB Building

This chapter focuses on assessing the performance of deep learning neural networks
in predicting the maximum interstory drift of an RC-BRB. In order to test the deep learning
model presented in Chapter 4, a nine-story RC-BRB building is evaluated. The main
characteristics of the structural model are shown in Table 6, and Figure 14 illustrates a 3D
view of the braced building with 9 stories. Notice that all the buildings were designed
under seismic loads corresponding to the Mexico City Building code. It was proposed
to use a different section of beam and column for each 3 floors, and one BRB section for
the framed building. Table 7 shows the sections and the main properties of the structural
model obtained.

Table 6. Main geometric characteristics from designed model.

Model Number of Bays Dir. X  Bays Dir. Y Interstory Height Bays Length
Floors (m) (m)
RC9-BRB 9 3 3 3.5 7

Table 7. Main properties of the nine RC-BRB building model (dimensions in cms).

Model Property RC9-BRB
Columnl 60x60
Column2 45x45
Column3 35x35

Beaml 30x55
Beam?2 30x60
Beam3 25x50
BRB 36
Cy 0.45
Period (s) 0.87

The RC-BRB building with nine stories was subjected to the ground motion earth-
quakes of Table 1 in order to compute incremental dynamic analysis at different intensity
levels in terms of I, and maximum interstory drift. Figure 15a illustrates the results of the
incremental dynamic analysis and the corresponding values of the maximum interstory
drift, while Figure 15b shows the performance of the trained neural network. It is observed
that the network allows close values to be obtained for the complex incremental dynamic
analysis results. It is important to say that a coefficient of determination (R?) of 95% was
obtained in such a way that the deep neural network could be a good tool for seismic pre-
design tasks and the fast estimation of the structural response or performance of buildings
under earthquakes.
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Figure 14. 3D view of the nine-story reinforced concrete building with BRBs.
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Figure 15. Seismic performance of the nine-story reinforced concrete building with BRBs: (a) Max.
interstory drift and mean values via incremental dynamic analysis; (b) neural network predictions vs.
mean values of the incremental dynamic analysis.
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6. Seismic Performance Prediction of Nonlinear SDOF Structures via Iy, and
Deep Learning

It is well known that the seismic performance of buildings is affected by many pa-
rameters like construction material, resisting system, etc. In the case of RC, BRBs frames,
or most of the structural systems, the response prediction is very complicated, and the
results can vary significantly. For this reason, all the seismic design codes around the world
present earthquake-resistant methodologies, earthquake design spectra, record selection
strategies for nonlinear dynamic analysis, ductility reduction factors, hazard analysis, and
so on, based mainly on simplified models of the common, well-known single degree of
freedom systems as the core of earthquake engineering. Motivated by this issue, thousands
of nonlinear seismic analyses of various elastoplastic SDOF systems with different struc-
tural and in general dynamic characteristics (structural periods T, and seismic coefficients
Cy), as those indicated in Figure 16, are obtained by using incremental dynamic analyses
in terms of the novel and efficient intensity measure INp. Notice that, in this case, the
new structural response parameters, ductility, and normalized hysteretic energy (the ratio
of the hysteretic energy divided by the force and displacement at yielding), have been
incorporated and calibrated via deep learning. These parameters have been selected since
the ductility parameter is crucial in the international building codes; in fact, the ductility
reduction factors usually selected to take into account the nonlinear behavior are based
on the ductility [52-54]. The third parameter selected for this study was hysteretic energy,
which is currently the most important parameter to account for cumulative demands on
the structural design of buildings under earthquakes [55-57]. It is important to say that
most of the new energy-based procedures and damage indices are based on hysteretic en-
ergy [58-63]. As an example, and for the sake of brevity, only the results of the incremental
dynamic analyses of nonlinear systems with a period equal to one are presented for seismic
coefficients of 0.2 and 0.3 in terms of ductility and in terms of normalized hysteretic energy
demands, and for a period equal to two and for seismic coefficients of 0.2 and 0.3 (see
Figures 17 and 18).

Seismic coefﬁcients
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Figure 16. Characteristics of the SDOF structural models.
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Figure 17. Ductility demands obtained via incremental dynamic analysis.
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To analyze the performance of the approach presented via deep learning to predict the
new parameters, the results obtained for ductility and normalized hysteretic energy are
presented below. Figure 19 shows the configuration adopted in terms of input and output
layers. Due to the large increase in outputs, it has been considered to add an important
input (seismic coefficient Cy, one of the key parameters for earthquake-resistant design of
buildings) to properly relate the problem with the new output parameters.

Input Layer
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Figure 19. Deep neural networks to estimate the mean, median, and standard deviation of ductility
and normalized hysteric energy.

Table 8 presents the results of the training process to predict statistics of ductility and
normalized hysteretic energy. It can be observed that the error decreases as the depth of the
neuronal network increases; nevertheless, from five hidden layers, the overfitting problem
is noticeable because the difference between the training error and evaluation error begins
to grow. In addition, the Taylor diagram shown in Figure 20 helps to visualize the behavior
of the model prediction performance. In this case, a better correlation and accuracy is
observed when using more hidden layers.

Ideal prediction model (reference)

Neurons Configuration: [3, 10, 6]

Neurons Configuration: [3, 15, 10, 6]

Neurons Configuration: 3, 20, 15, 10, 7, 5, 3]
Neurons Configuration: [3, 25, 20, 15, 10, 7, 5, 3]
Neurons Configuration: 3, 30, 25, 20, 15, 10, 7, 5, 3]

Normalized standard deviation

1
0 Ro.2 0.4 0.6 0.8 1
Normalized standard deviation

Figure 20. Taylor diagram of models to predict statistics of ductility and hysteretic energy.
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Table 8. Results of training process to predict statistics of ductility and hysteretic energy.

2 2

. . Hidden  Evaluation Training MSE R . MSE. R .

Neurons Configuration Lavers Data Tterations Training Training Evaluation Evaluation

Y Data Data Data Data

[3, 6] 0 30% 5000 0.126 0.82 0.134 0.80

[3,10, 6] 1 30% 5000 0.090 0.85 0.115 0.82

[3, 15,10, 3] 2 30% 5000 0.085 0.87 0.097 0.83
[3,20,15,10,7,5,3] 3 30% 5000 0.068 0.89 0.090 0.85
[3,25,20,15,10,7,5, 3] 4 30% 5000 0.058 0.91 0.060 0.91
[3, 30, 25, 20, 15,10, 7, 5, 3] 5 30% 5000 0.049 0.92 0.069 0.89

7. Conclusions

In this study, several RC structural frames were dynamically analyzed using ground
motion records scaled at different values of the spectral acceleration Sa(T7) and the ground
motion intensity measure Iy, to compute the maximum interstory drift. The maximum
interstory drift obtained was summarized using the statistical parameters known as mean,
median, and standard deviation. Computational models based on artificial neural networks
with multi-hidden layers were designed to evaluate the degree of prediction of the seismic
response. The fundamental period and the seismic intensity measurement were proposed as
the only input neurons to predict the statistical parameters of the maximum interstory drift.

The analysis of the results obtained from the training process demonstrated that, by
increasing the number of hidden layers, it is possible to solve the determination problem
due to the multiple non-linear transformations required. With a configuration of two hidden
layers, an acceptable degree of prediction was obtained for only one of the three output
variables. The approach towards a deep network configuration improved the prediction
of all three variables; however, from five hidden layers, the problem of overfitting was
evidenced significantly.

A cross-validation analysis was developed to evaluate the independence of the mag-
nitude of the prediction error in relation to the randomly selected data set in the neural
network training and testing process. Furthermore, the performance of the predictive
learning models was visually evaluated using a Taylor diagram. In conclusion, the com-
putational model based on deep learning can predict the structural behavior of buildings
under earthquake ground motions in terms of the maximum interstory drift demand with
good accuracy, acceptable cross-validation, and very close to ideal performance. The results
also show that neural networks are a very flexible tool because it is possible to increase
the number of input variables for the consideration of other structural forms; nevertheless,
given the results of the different training tests, a major increase in computational demand
is anticipated, which could be the scope of another study.

With the RC structures analyzed, an RC-BRB framed building with nine stories is tested
to validate the model presented. The results indicate that a coefficient of determination (R?)
of 95% was obtained in such a way that the deep neural network could be a good tool for
seismic predesign tasks and the fast estimation of the structural response or performance
of buildings under earthquakes.

Finally, because all the seismic design codes around the world are used to present
earthquake-resistant approaches, design spectra, record selection strategies for seismic
analysis, and so on, based mainly on simplified models as the commonly well-known
single degree of freedom systems as the core of the earthquake engineering, thousands of
seismic response analyses of several nonlinear elastoplastic SDOF systems were computed.
These new numerical results provide the effectiveness of deep learning neural network
models for structural prediction in terms of ductility and hysteretic energy demands of
seismic performance. Therefore, this study is oriented toward the earthquake-resistant
predesign and the fast estimation of the structural response of buildings under earthquakes
using artificial intelligence advances in terms of the most important design parameters and
by means of advanced and efficient intensity measures such as the novel Iy,.
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For future research, analyzing the dataset using basic neural network architectures,
including Feed Forward (FF), Radial Basis Function (RBF), and Multi-Layer Perceptron
(MLP) models is planned, as well as comparing their performance against the deep learning
and fast predesign techniques presented by other researchers.
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Appendix A

Dataset of statistical parameters about maximum interstory drift.

Period of Vibration Ing Mean Std. Desv. Median
0.9 0.1 0.00198557 0.00018930 0.00195350
0.9 0.2 0.00397103 0.00037838 0.00390650
0.9 0.3 0.00593630 0.00054159 0.00585900
0.9 04 0.00803373 0.00075550 0.00800800
0.9 0.5 0.01178300 0.00246631 0.01066000
0.9 0.6 0.02134267 0.01051187 0.01768500
0.9 0.7 0.03442300 0.01713227 0.03376500
0.9 0.8 0.04790433 0.02367704 0.04695000
0.9 0.9 0.06115533 0.02682896 0.05965500
0.9 1 0.07689667 0.03224495 0.07299000
0.9 1.1 0.09194733 0.03621639 0.09150000
0.9 12 0.10524233 0.03840779 0.10685000
0.9 1.3 0.12248200 0.04450585 0.11635000
0.9 14 0.13362267 0.04366843 0.13725000
0.9 1.5 0.15169600 0.04790769 0.15115000
1.2 0.1 0.00175870 0.00025072 0.00167250
1.2 0.2 0.00351747 0.00050132 0.00334550
1.2 0.3 0.00527587 0.00076145 0.00501850
1.2 04 0.00737523 0.00106450 0.00700900
1.2 0.5 0.01190380 0.00170633 0.01175000
1.2 0.6 0.02021367 0.00589694 0.01848500
1.2 0.7 0.02831367 0.00846909 0.02597000
1.2 0.8 0.03556167 0.00910376 0.03676500
1.2 0.9 0.04234233 0.00959351 0.04308000
1.2 1 0.04814133 0.01066981 0.04855000

1.2 1.1 0.05345333 0.01169260 0.05307000
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Period of Vibration Ing Mean Std. Desv. Median
1.2 1.2 0.05871833 0.01224732 0.05751000
1.2 1.3 0.06413967 0.01309662 0.06248500
1.2 14 0.07016600 0.01495424 0.06851000
1.2 1.5 0.07593100 0.01659735 0.07410000
1.38 0.1 0.00177580 0.00028973 0.00166350
1.38 0.2 0.00355183 0.00057954 0.00332750
1.38 0.3 0.00537903 0.00096485 0.00499100
1.38 04 0.00740917 0.00139175 0.00692350
1.38 0.5 0.01008277 0.00137013 0.00980850
1.38 0.6 0.01500067 0.00226893 0.01464000
1.38 0.7 0.02134900 0.00494191 0.02101000
1.38 0.8 0.02709833 0.00535109 0.02647500
1.38 0.9 0.03223300 0.00570592 0.03082000
1.38 1 0.03703900 0.00629038 0.03550000
1.38 1.1 0.04143833 0.00675983 0.03908000
1.38 1.2 0.04565000 0.00724887 0.04377500
1.38 1.3 0.04942667 0.00768099 0.04884500
1.38 14 0.05354900 0.00840227 0.05392500
1.38 1.5 0.05770500 0.00943261 0.05799000
1.53 0.1 0.00189230 0.00029065 0.00188800
1.53 0.2 0.00378440 0.00058139 0.00377600
1.53 0.3 0.00570843 0.00091909 0.00566400
1.53 04 0.00778640 0.00112739 0.00792050
1.53 0.5 0.01170440 0.00180979 0.01182500
1.53 0.6 0.01797733 0.00312006 0.01780000
1.53 0.7 0.02267433 0.00316726 0.02170000
1.53 0.8 0.02671800 0.00375887 0.02544500
1.53 0.9 0.03016967 0.00454644 0.02883500
1.53 1 0.03376000 0.00493950 0.03244500
1.53 1.1 0.03707567 0.00538001 0.03624500
1.53 1.2 0.04022967 0.00582309 0.03930000
1.53 1.3 0.04323533 0.00629872 0.04211000
1.53 14 0.04640567 0.00690343 0.04497500
1.53 1.5 0.04966700 0.00761394 0.04785500
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