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Abstract: Technological advances in information-processing capacity have enabled integrated analy-
ses (multi-omics) of different omics data types, improving target discovery and clinical diagnosis.
This study proposes novel artificial intelligence (AI) learning strategies for incomplete datasets,
common in omics research. The model comprises (1) a multi-omics generative model based on a
variational auto-encoder that learns tumor genetic patterns based on different omics data types and
(2) an expanded classification model that predicts cancer phenotypes. Padding was applied to replace
missing data with virtual data. The embedding data generated by the model accurately classified
cancer phenotypes, addressing the class imbalance issue (weighted F1 score: cancer type > 0.95,
primary site > 0.92, sample type > 0.97). The classification performance was maintained in the
absence of omics data, and the virtual data resembled actual omics data (cosine similarity mRNA
gene expression > 0.96, mRNA isoform expression > 0.95, DNA methylation > 0.96). Meanwhile, in
the presence of omics data, high-quality, non-existent omics data were generated (cosine similarity
mRNA gene expression: 0.9702, mRNA isoform expression: 0.9546, DNA methylation: 0.9687). This
model can effectively classify cancer phenotypes based on incomplete omics data with data sparsity
robustness, generating omics data through deep learning and enabling precision medicine.

Keywords: cancer; multi-omics; AI; deep learning; embedding; generative model; missing data;
incomplete data

1. Introduction

Omics is the study of comprehensive datasets from a wide spectrum of biological
materials, including genomes, transcriptomes, and proteomes. As such, omics is crucial in
clinical diagnosis, drug development, and precision medicine, as it deals with the discovery
of disease-specific genetic information and structural variation. With advances in high-
throughput technologies, such as the BeadChip array and next-generation sequencing
technologies, gene expression, isoform expression, and DNA methylation data have been
mass-produced [1,2]. Although these omics data contain various pieces of information,
certain sets exhibit association [3,4]. For instance, DNA methylation is associated with gene
expression, and gene expression is associated with protein levels [5].

While initial omics analyses utilized a single data type [6–10], the advancement of
computer technology and subsequent rapid progress in information-processing capacity
has enabled the integrated analysis of various omics data (multi-omics), from genomes
and transcriptomes to proteomes [11–13]. Indeed, multi-omics is an emerging strategy
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to develop various models for target discovery, clinical diagnosis, disease subtyping,
etc. [13–25].

Advanced technologies, such as machine learning (ML), have shown promise for
application in multi-omics research [26,27]. ML enables the consideration of interactions
across diverse datasets, allowing for the utilization of a broader range of information and
enabling higher levels of accuracy. In this context, applying ML to multi-omics research
offers opportunities to gain profound insights into diseases by analyzing interactions among
omics from various perspectives. Active research is focused on multi-omics analyses with
ML in brain disease, diabetes, cancer, and cardiovascular disease [28–31]. Nevertheless, the
numerous dimensions against the number of samples in multi-omics analyses negatively
impact ML [1]. Up to 20,000 protein-coding genes and 60,000 long non-coding RNAs
have been identified based on Gencode 7 [32]. In addition, 96% of 480 K CpG sites can be
analyzed based on the most widely used data platform for DNA methylation [33]. Using
such high-dimensional data in ML could lead to overfitting (i.e., the curse of dimensionality)
and reduce model performance [16].

To resolve this issue, dimensionality reduction based on domain knowledge, dimen-
sionality reduction algorithms, and deep learning generative models are typically used in
ML [34–37]. In particular, generative models learn how to approximate the distribution of
data. The variational auto-encoder (VAE) [38] is a generative model that extracts features
of input data, stores them in latent vectors, and generates new data similar to the input
data through latent vectors. Given that latent vectors can describe the input data well,
dimensionality reduction based on VAE has been applied to various omics analyses [37,39].

Despite showing promise, VAE-based models have limitations. First, in multi-omics
analyses, missing data from a given sample can prevent its use in learning, and a reduced
sample size can lead to poor performance of learning algorithms. However, obtaining
sufficient sample sizes is challenging in real-world scenarios due to difficulties in patient
enrollment. Second, when omics data collected from different institutions vary in type,
the performance of models is limited due to poor data integration, as all samples must
possess the required feature values demanded by the ML model. Consequently, related
studies have utilized large-scale open data, such as The Cancer Genome Atlas (TCGA)’s
Pan-Cancer Atlas (PanCan) [40]. However, when only a portion of omics data types are
available, such as in the prospectively collected data from the Korean Sarcoma Biobank
Innovation Consortium (SBIC), existing integrated analytical methods cannot be applied.
Therefore, a method for efficiently integrating various omics data sources while preserving
the independent features of each aspect is necessary [41].

Integrating incomplete and complete data for analysis can lead to increased availability
of samples and thus expectations of improved performance. Cao and Gao [42] proposed
GLUE (Graph-Linked Unified Embedding), a modular framework for integrating un-
paired single-cell multi-omics data and inferring regulatory interactions simultaneously. By
leveraging biological knowledge to explicitly model inter-layer regulatory interactions con-
necting hierarchical functional spaces with a knowledge-based graph (“guidance graph”),
this model integrates and analyzes omics data from various sources, effectively capturing
diverse cell states. Du et al. [43] used missing masks to learn conditional distributions of
unseen patterns and features. By explicitly learning the conditional distributions of specific
masked features (or forms) when unmasked features (or modalities) were provided, they
conducted an integrated analysis of omics data and achieved high accuracy in cross-domain
translation tasks.

This study proposes a novel artificial intelligence (AI) model and learning strategies
that can effectively utilize incomplete data frequently found in omics datasets for pan-
cancer. In this paper, “complete data” refers to that in which all omics data to be utilized
exist. For example, when using mRNA gene expression, mRNA isoform expression, and
DNA methylation in multi-omics, the case where all three omics data types exist can be
called “complete data”. “Incomplete data” refers to data in which some of the omics data
to be utilized are missing. In the same multi-omics example as that used for “complete
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data”, a case in which DNA methylation data do not exist can be referred to as “incomplete
data” (Figure 1).
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Figure 1. Schematic comparing complete and incomplete data. Complete data are data in which all
omics data to be utilized exist, and incomplete data are data in which some of the omics data to be
utilized are missing.

Thus, within the current study, a single AI model capable of handling complete and
incomplete data was designed. To allow for the input of samples with missing omics data
in the AI model, we selected the padding strategy to replace missing omics data with 0
(Figure 2). For the omics data (mRNA gene expression, mRNA isoform expression, and
DNA methylation), samples with all column (gene symbol) values of 0 did not appear in
the actual data distribution (Figures S1–S3). It was thus hypothesized that the AI model
would recognize such values in the absence of actual data. Additionally, an AI model was
designed to infer missing omics data by learning from the partial input omics data. If the
omics data generated for the missing data are similar to the actual values, they can replace
single data points that do not exist in multi-omics. In addition, if the generated omics data
are used for embedding, the resulting distribution will resemble that of the embedding
based on actual data. Finally, the utility of the novel approach against previous methods
that disallow the use of incomplete data was validated. To this end, a phenotype prediction
function was added to the model, and its performance was evaluated.

The proposed model consists of two key components: a VAE-based multi-omics
generative model that can learn the genetic patterns of tumors based on different omics data
and an expanded classification model that can predict cancer phenotypes. Comprehensive
analyses validated the versatility of the model. In particular, data for a few samples or
omics data with missing parts, such as in the Korean SBIC data, can be applied for learning.
Furthermore, the newly developed method enables the generation of virtual genomic data
that resemble actual genomic data based on inferences of missing omics data.
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Figure 2. Structure of the proposed model. Each layer of the model is composed of linear neural
networks with the rectified linear unit activation function and layer normalization. In the absence
of specific omics data for a given sample, the input is 0. The output of the encoder for each omics
data type is concatenated as a single vector and transferred to the layer that generates the final
encoding vector. The output of the layer generating the final encoding vector is transferred to the
mean and standard deviation layer to realize the reparameterization of the VAE. A latent vector is
generated based on the output of the mean and standard deviation layer and serves as the input for
the expanded classification model that infers cancer phenotypes for each decoder.

2. Materials and Methods
2.1. Data Source
2.1.1. TCGA Pan-Cancer (PanCan)

The open TCGA PanCan database integrates mutation data for over 10,000 samples of
33 cancer types. The TCGA PanCan data are widely used in precision medicine research,
including in training AI models to discover cancer diagnostic markers.

This study used biospecimens and data from the SBIC for Biomedical and Healthcare
Research. All PanCan data were downloaded from the University of California Santa Cruz
(UCSC) Xena platform [44]. Data were integrated after each of the final data preprocessing
sets, and the max–min normalization was applied to obtain values between 0 and 1.

2.1.2. Korea Biobank Network-SBIC

The SBIC, as part of the Korea Biobank Project, aims to construct a national registry
to support research on rare cancers and promote translational research by integrating
and accumulating data for various human-related materials and subsequently generating
mutation data for sarcoma (SARC). The SBIC data were used in this study in collaboration
with the consortium project to construct the Korean Sarcoma Biobank.

For use as the input in the proposed model, the SBIC data, as with the PanCan
data, were integrated after each of the final data preprocessing steps and the max–min
normalization to obtain values between 0 and 1.
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2.2. Data Types
2.2.1. mRNA Gene Expression Data

Gene expression is the process by which information from a gene is used to synthesize
a functional gene product that produces end-products, namely protein or non-coding RNA,
ultimately affecting cell phenotype. Many studies employ gene expression data to assess
tumor states and for molecular profiling [37,45]. The PanCan mRNA gene expression data
contains 60,498 gene symbols related to 10,535 samples; the SBIC mRNA gene expression
data contains 25,268 gene symbols pertaining to 45 samples. In this study, we only included
10,496 samples with phenotype data in the case of PanCan, as the proposed model performs
a supervised learning task for the classification of cancer phenotypes. In addition, to
amalgamate the PanCan and SBIC data, new integrated data were generated utilizing
23,191 gene symbols shared between the two datasets. The fragments per kilobase of
transcript per million (FPKM) values for the respective data were log-transformed using
RNA-seq by expectation maximization (RSEM; log2(FPKM + 0.001)).

2.2.2. mRNA Isoform Expression Data

Gene isoforms are mRNAs produced from the same locus with distinct transcription
start sites, protein-coding DNA sequences, and/or untranslated regions that can alter gene
function [46]. Recent studies have shown that several gene isoforms directly function in
tumor transformation and growth [47]. The PanCan mRNA isoform expression data contain
197,045 gene symbols for 10,535 samples, and the SBIC mRNA isoform expression data
contain 25,268 gene symbols for 45 samples. From the PanCan data, only 10,495 samples
with phenotype data were included, and an additional 23,191 gene symbols shared with the
SBIC dataset were included. The FPKM values for the respective data were log-transformed
using RSEM (log2(FPKM + 0.001)).

2.2.3. DNA Methylation Data

DNA methylation is an epigenetic mechanism in which a methyl group is transferred
to the C5 position of cytosine to form 5-methylcytosine. DNA methylation regulates gene
expression by recruiting proteins involved in gene inhibition or by inhibiting the binding
of transcription factors to DNA. Given that DNA methylation in a specific region can be
directly related to oncogene expression, it is currently widely studied as a major indicator
and target of cancer [48]. The PanCan DNA methylation data contain 396,065 methylation
IDs for 9639 samples; the SBIC data do not include DNA methylation data. From the
PanCan data, samples other than the 9602 with phenotype data were excluded. In addition,
the methylation IDs other than the 269,273 with a NaN value were excluded. The respective
data were downloaded from UCSC Xena. The DNA methylation data were reformatted
using the metadata from the previous methylation ID to a gene-symbol-based structure.
The beta value was the mean value across the methylation IDs of each gene symbol.

2.2.4. Phenotype Data

The phenotype data comprised the combination (11,369 cases) of the samples in the
PanCan and SBIC datasets, including various parameters from retrospective data, e.g., can-
cer type, sample type, primary site, tumor event, sex, race, and stage. The phenotypes used
in the model learning and result analysis were cancer type, primary site, and sample type.

The cancer types investigated were adrenocortical carcinoma, bladder urothelial carci-
noma, breast invasive carcinoma (BRCA), cervical squamous cell carcinoma, endocervical
adenocarcinoma, cholangiocarcinoma, colon adenocarcinoma, lymphoid neoplasm dif-
fuse large B-cell lymphoma, esophageal carcinoma, glioblastoma multiforme, head and
neck squamous cell carcinoma, kidney chromophobe, kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma, acute myeloid leukemia, brain lower grade
glioma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carci-
noma, mesothelioma, ovarian serous cystadenocarcinoma, pancreatic adenocarcinoma,
pheochromocytoma and paraganglioma, prostate adenocarcinoma, rectum adenocarci-
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noma, SARC, skin cutaneous melanoma, stomach adenocarcinoma (STAD), testicular germ
cell tumors, thyroid carcinoma, thymoma, uterine corpus endometrial carcinoma (UCEC),
uterine carcinosarcoma, and uveal melanoma.

The primary sites investigated were adrenal gland, bile duct and gallbladder, bladder,
bone marrow, brain, breast, cardia, cerebrum, cervix uteri, cortex of adrenal gland, esopha-
gus, eye, head and neck, intestine, kidney, liver, lung, lymph nodes, oral, ovary, pancreas,
peritoneum, pleura, prostate gland, skin, stomach, subcutaneous and soft tissues, testis,
thymus, thyroid gland, tongue, and uteri.

The sample types investigated were additional–new primary, metastatic, primary
blood-derived cancer–peripheral blood, primary tumor, recurrent tumor, and solid tissue
normal types.

2.3. Padding

Three types of omics data were applied: mRNA gene expression, mRNA isoform
expression, and DNA methylation data. Some samples exhibited only one or two types of
omics data (Table 1).

Table 1. Omics data type and quantity according to availability.

Data Type mRNA
Gene Expression

mRNA
Isoform Expression

DNA
Methylation

Data
Quantity

Type 1 (111) 1 1 1 8773
Type 2 (110) 1 1 0 1767
Type 3 (001) 0 0 1 828
Type 4 (101) 1 0 1 1

0: omics data do not exist, 1: omics data are present.

The padding strategy was applied for data processing and inferences on each sample.
For each omics data sample, the padding set was expressed as the difference between the
union of all omics data samples and the set of each omics data sample. The padding value
was unified as 0. The size of the sample union for all genomes was 11,369, and padding
data were generated for the expression of 1034 genes and 1035 isoforms and beta values for
1973 methylation sites.

2.4. Model Structure

The proposed model was structured based on semi-supervised learning with the
addition of a predictive model to the generative model. The multi-omics generative model
identifies tumor genetic patterns based on several omics data types for embedding in
a low-dimensional vector. The expanded classification model makes inferences on the
phenotype of the given cancer type. In addition, for samples with one or more missing
omics data types, padding is added for the flexible generation of embedding, even in the
absence of specific omics data in reference to others.

2.5. Implementation Details

The proposed model was designed using PyTorch Lightning (version 1.6.3) [49], which
provides an advanced interface for PyTorch (version 1.11.0) [50]. Overall, the model
comprises linear neural networks with the rectified linear unit activation function and layer
normalization. The hyperparameters were set to their optimal values within the search
range (Table 2).

The multi-omics generative model is structured based on a modified VAE with three
layers: the Expanded Encoder, the Concat Layer, and the Expanded Decoder. The Expanded
Encoder layer comprises M encoders. The size of the input data for each encoder is
equivalent to the number of each omics data point, while an encoder is composed of layers
that create vectors with sizes of 1000, 500, and 100. Here, M is the number of omics data
types used in learning. Two roles are assigned to the Concat Layer. First, it concatenates the
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vectors generated by the Expanded Encoder layer into a single vector with the output of the
final encoding vector. Second, it realizes the reparameterization of the VAE with the output
of the latent vector. The size of the latent vector, as the final output of the respective layer,
is 100. The Expanded Decoder layer comprises a layer that takes the latent vector input to
generate vectors with sizes of 500 or 1000 and a layer that generates vectors with sizes that
correspond to the features of each omics data type. The final output of each decoder layer
serves to reconstruct the original omics data.

The expanded classification model comprises several models, each with a single-layer
structure. The embedding data are used to predict the phenotype data, and the learning
outcome is transferred to the generative model.

Table 2. The search range and optimized values of hyperparameters.

Hyperparameters Search Range Optimized Value

Epochs [30–500] 500
Batch size [8–512] 32

Latent dimension [100–500] 100
Learning rate [0.0001–0.001] 0.0005
KL coefficient [0.0001–0.0005] 0.00025

Clip norm [10.0–100.0] 50.0
Optimizer [Adam, AdamW, Adabelief] Adabelief

Seed - 42

2.6. Learning Strategies

Three criteria should be met for the proposed model to attempt learning. First, the
model should perform even in the absence of certain omics data in the learning sample. Sec-
ond, the model should be able to make inferences even in cases of missing omics data. Third,
the concurrent use of incomplete data should contribute to enhanced performance. For
this, the parameter optimization steps in the multi-omics generative model and expanded
classification model were defined in the learning strategies.

2.6.1. Multi-Omics Generative Model

The multi-omics generative model has a VAE-based design. The VAE is a deep neural
network that can detect manifolds in high-dimension raw data to generate useful features
for other operations, such as classification and regression. In the VAE structure, the input
data x pass through the encoder to produce the latent vector z with the feature data, and
the vector z passes through the decoder, generating similar output data to the input data x.
Loss in the multi-omics generative model, as with general loss in VAE structures, is based
on the union of the reconstruction loss indicating the difference in the input data x from
the data g restructured by the decoder and the regularization loss that controls the latent
vector z after sampling by reparameterization to follow the normal distribution.

The learning strategies vary between the multi-omics generative model and general
VAEs. The former applies the padding technique to utilize as much information as possible,
even in the absence of certain omics data. With padding, missing data are assigned values
of 0, and the respective reconstruction may limit model learning. Hence, loss attributed
to padding was excluded in the calculation of the reconstruction loss by using a filter that
differentiated between actual data and padding data. In addition, the final loss from the
expanded classification model with the inferences on cancer phenotypes was considered
so that the reconstruction of the original data could incorporate the learning outcome for
phenotype data.

2.6.2. Expansion of the Classification Model

The expanded classification model comprises three models that predict three parame-
ters (cancer type, primary site, and sample type) with a linear single-layer structure in each
model. Each classification model receives the latent vector from the multi-omics generative
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model as the input to predict the phenotype. Instead of the categorical cross-entropy loss
commonly used for general classification models, we calculated the focal loss [51], which
can improve the class imbalance issue. The final loss of the expanded classification model
was calculated as the sum of the losses of each classification model.

2.7. Performance Evaluation

The classification label used in the proposed model was “phenotypes with a class
imbalance problem”, i.e., substantial differences in the amount of data among classes.
Hence, the F1 score for each class was calculated, and the weighted mean was obtained
according to the data percentage per class to estimate the total F1 score (weighted F1
score) to ensure the accurate evaluation of model performance. The weighted F1 score was
calculated using Scikit-learn [52]. In addition, to verify that the proposed model could
be used to make inferences in cases of missing omics data, the mean absolute error was
used, and certain omics data were replaced with padding data and compared with the
restructured data for samples with complete omics data. We used the Scikit-learn library
for t-SNE calculations and the Bokeh [53] library for visualization.

3. Results
3.1. Phenotype Classification Task

The performance of the proposed model in classifying cancer phenotype data was
evaluated through three approaches. First, the classification performance for cancer pheno-
type was evaluated by comparing (1) a model trained with complete and incomplete data
(“OUR”), (2) a model trained with only complete data (“111”), (3) a model that learned only
mRNA gene expression and mRNA isoform expression data (“110”), and (4) a model that
learned only DNA methylation data (“001”) (Figure 3). Second, we trained the “OUR+”
model by adding a new omics type (miRNA expression) and evaluated its performance
compared to the original “OUR” model. Third, the cancer phenotype classification per-
formance according to the ratio of incomplete data in the learning data was compared
between the “OUR” model and the “111” model (Figure 4).
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Figure 3. Comparison of phenotype classification performance (weighted F1 score). Cross-validated
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data. The classification of phenotypes was performed via in-model classifiers.

The train–test data split for the K-fold cross-validation of the classification performance
for cancer phenotypes was identical to the train–test data split for model learning. We
established folds based on stratified sampling. Stratified sampling involves dividing
the population into classes and randomly selecting n samples from each class. Purely
random sampling methods can lead to biases, particularly when the data size is insufficient.
Therefore, we divided the entire dataset into class-based groups and set the folds to be
sampled in proportion to the counts of each class within the entire dataset. This ensured
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that even when the data were partitioned, the same distribution as the entire dataset
was maintained, aiming to preserve the generalization of model learning. Among the
8773 samples with complete omics data, 20% of the samples (n = 1754) were used as the
test dataset, and the remaining were used as the training dataset. Through this process, we
generated five train–test datasets for K-fold cross-validation (K = 5) without overlapping
data. For the phenotype data, “cancer type” included 33 classes, “primary site” included
32 classes, and “sample type” included 6 classes.

AI 2024, 5, FOR PEER REVIEW 9 
 

 

Figure 3. Comparison of phenotype classification performance (weighted F1 score). Cross-validated 

average performance of the classification model for cancer phenotype based on omics and embed-

ding data. The classification of phenotypes was performed via in-model classifiers. 

 

Figure 4. Comparison of phenotype classification performance according to the data sparsity ratio 

(weighted F1 score) (i.e., sparsity of complete data). Classification of phenotypes was performed via 

in-model classifiers. (a) Data sparsity experiment result for the “OUR” model, which can train com-

plete and incomplete data; (b) data sparsity experiment result for the “111” model, which can only 

learn complete data. The values 25, 50, 75, and 99.9 are the percentages of complete data converted 

to incomplete data in the training dataset. Conversion is achieved by randomly removing some of 

the omics data. Higher numbers increase the sparsity of complete data in the training dataset, and 

the amount of training data can vary depending on the model’s structure. For example, “25%” of (a) 

is the training result of the “OUR” model trained on data, with 25% of the complete data in the 

training dataset transformed into incomplete data. Since the “OUR” model can be trained on both 

complete and incomplete data, even if complete data are converted to incomplete data, the amount 

of training data does not decrease. In contrast, the “111” model can only learn complete data. 

Figure 4. Comparison of phenotype classification performance according to the data sparsity ratio
(weighted F1 score) (i.e., sparsity of complete data). Classification of phenotypes was performed
via in-model classifiers. (a) Data sparsity experiment result for the “OUR” model, which can train
complete and incomplete data; (b) data sparsity experiment result for the “111” model, which can
only learn complete data. The values 25, 50, 75, and 99.9 are the percentages of complete data
converted to incomplete data in the training dataset. Conversion is achieved by randomly removing
some of the omics data. Higher numbers increase the sparsity of complete data in the training dataset,
and the amount of training data can vary depending on the model’s structure. For example, “25%” of
(a) is the training result of the “OUR” model trained on data, with 25% of the complete data in the
training dataset transformed into incomplete data. Since the “OUR” model can be trained on both
complete and incomplete data, even if complete data are converted to incomplete data, the amount of
training data does not decrease. In contrast, the “111” model can only learn complete data. Therefore,
“25%” in (b) shows the result of learning the reduced training data, with 25% of the complete data
converted to incomplete data.

The baseline performance was that of the model expressed as “111”, which only
learned complete data with all omics data. In comparison, the “OUR” model was a model
that had additionally learned incomplete data and was trained on mRNA gene expression,
mRNA isoform expression, and DNA methylation data. The “110” model refers to a model
that learned from mRNA gene expression and mRNA isoform expression data, while “001”
refers to a model that learned from DNA methylation data. These data groupings represent
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the types of omics groups in TCGA and SBIC. “OUR+” refers to a model that additionally
learned miRNA mature strand expression data with the other three types of omics data.

3.2. Virtual Omics Generation Task

Three analyses were conducted to evaluate the quality of the virtual omics data
generated by the proposed model. First, two experiments were conducted to validate
the similarity between real and virtual omics data. One compared the data generation
performance of the model using only complete data with the model using incomplete data
using the “111” model and the “OUR” model (Figure 5). The other experiment focused on
whether high-quality virtual omics data could be generated for non-existent omics data
(Figure 6). Both experiments were conducted on five folds (1754 samples) divided using
the stratified sampling technique. Virtual omics data were generated for all omics types for
each sample and used to compute cosine similarity with the actual data. The average cosine
similarity between the 1754 generated samples and the actual samples was calculated for
each fold, and the values shown in the figures represent the mean and standard deviation
of the cosine similarity averages for each fold.
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Figure 5. Comparison of the calculated cosine similarity between the virtual data and original data.
The dataset used for testing comprised complete data only. The closer the cosine similarity is to 1, the
more similar the virtual omics data were to the original.
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Figure 6. Comparison of the calculated cosine similarity between the virtual data and original data.
The dataset used for testing was divided into three parts, comprising data (“011”, “101”, and “110”)
with all specific omics data omitted from the complete data (“111”). The same “OUR” model was
used for the three datasets. Performance was measured by generating virtual omics data for omitted
data in each dataset and then measuring cosine similarity with real omics data. For example, “011”,
which is data that deliberately exclude mRNA gene expression from the complete data, is used to
measure performance on mRNA gene expression; “011” creates a latent vector from those data and
uses them as inputs to a decoder that reconstructs the mRNA gene expression data. Through this
process, mRNA gene expression data that do not exist in the input data can be virtually generated.
The closer the cosine similarity is to 1, the more similar the virtual omics data were to the original.
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Second, through t-SNE visualization, clustering per class was calculated for in-
dividual phenotypes, and the effect of padding on cluster formation was determined
(Figures 7 and S4–S17). Third, for data replaced with padding data in the model learning
(n = 1034 for mRNA gene expression, n = 1035 for mRNA isoform expression, and n = 1973
for DNA methylation), the virtual omics data were applied as substitutes. The proposed
model, after learning, was used in the embedding of samples containing the virtual omics
data and visualized via t-SNE to the clustering per class on individual phenotype data
and the effect of reconstruction data on cluster formation (Figures 8, S18 and S19). Finally,
the actual omics data and virtual omics data were visualized via t-SNE to compare the
distribution within the latent space (Figures 9 and S20–S29).

The data used for the two experiments were identical to the K-fold cross-validation
data for the phenotype classification task. Virtual omics data were generated through
the model learned for each fold, and cosine similarity was calculated by comparing it
with real omics data. The bar graphs in Figures 5 and 6 present the average of five cosine
similarity calculations.
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Figure 7. t-SNE visualization of the embedding data for the proposed model after dimensionality
reduction. The colors and abbreviations indicate cancer types (a) and the type of omics data (b). ACC:
adrenocortical carcinoma; BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma;
CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL: cholangiocar-
cinoma; COAD: colon adenocarcinoma; DLBC: diffuse large B-cell lymphoma; ESCA: esophageal
carcinoma; GBM: glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KICH:
kidney chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell
carcinoma; LAML: acute myeloid leukemia; LGG: brain lower grade glioma; LIHC: liver hepato-
cellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; MESO:
mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic adenocarcinoma; PCPG:
pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma; READ: rectum adenocar-
cinoma; SARC: sarcoma; SKCM: skin cutaneous melanoma; STAD: stomach adenocarcinoma; TGCT:
testicular germ cell tumors; THCA: thyroid carcinoma; THYM: thymoma; UCEC: uterine corpus
endometrial carcinoma; UCS: uterine carcinosarcoma; UVM: uveal melanoma. 001: DNA methylation
data exist, but mRNA gene expression and mRNA isoform expression data do not exist; 101: mRNA
gene expression and DNA methylation data exist, but mRNA isoform expression data do not exist;
110: mRNA gene expression and mRNA isoform expression data exist, but DNA methylation data do
not exist; 111: mRNA gene expression, mRNA isoform expression and DNA methylation data exist.
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Figure 8. t-SNE visualization of the embedding data for the proposed model with learning from
virtual omics data as an alternative to padding. The colors and abbreviations indicate cancer types
(a) and the type of omics data (b). ACC: adrenocortical carcinoma; BLCA: bladder urothelial carci-
noma; BRCA: breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical
adenocarcinoma; CHOL: cholangiocarcinoma; COAD: colon adenocarcinoma; DLBC: diffuse large
B-cell lymphoma; ESCA: esophageal carcinoma; GBM: glioblastoma multiforme; HNSC: head and
neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma;
KIRP: kidney renal papillary cell carcinoma; LAML: acute myeloid leukemia; LGG: brain lower grade
glioma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous
cell carcinoma; MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic
adenocarcinoma; PCPG: pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma;
READ: rectum adenocarcinoma; SARC: sarcoma; SKCM: skin cutaneous melanoma; STAD: stomach
adenocarcinoma; TGCT: testicular germ cell tumors; THCA: thyroid carcinoma; THYM: thymoma;
UCEC: uterine corpus endometrial carcinoma; UCS: uterine carcinosarcoma; UVM: uveal melanoma.
001: DNA methylation data exist, but mRNA gene expression and mRNA isoform expression data
do not exist; 101: mRNA gene expression and DNA methylation data exist, but mRNA isoform
expression data do not exist; 110: mRNA gene expression and mRNA isoform expression data exist,
but DNA methylation data do not exist; 111: mRNA gene expression, mRNA isoform expression and
DNA methylation data exist.
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Figure 9. t-SNE visualization of the DNA methylation data after dimensionality reduction for the
actual and virtual data. The colors and abbreviations indicate cancer types (a) and the type of
omics data (b). ACC: adrenocortical carcinoma; BLCA: bladder urothelial carcinoma; BRCA: breast
invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma;
CHOL: cholangiocarcinoma; COAD: colon adenocarcinoma; DLBC: diffuse large B-cell lymphoma;
ESCA: esophageal carcinoma; GBM: glioblastoma multiforme; HNSC: head and neck squamous cell
carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal
papillary cell carcinoma; LAML: acute myeloid leukemia; LGG: brain lower grade glioma; LIHC:
liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma;
MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic adenocarcinoma;
PCPG: pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma; READ: rectum
adenocarcinoma; SARC: sarcoma; SKCM: skin cutaneous melanoma; STAD: stomach adenocarcinoma;
TGCT: testicular germ cell tumors; THCA: thyroid carcinoma; THYM: thymoma; UCEC: uterine
corpus endometrial carcinoma; UCS: uterine carcinosarcoma; UVM: uveal melanoma. 001: DNA
methylation data exist, but mRNA gene expression and mRNA isoform expression data do not
exist; 101: mRNA gene expression and DNA methylation data exist, but mRNA isoform expression
data do not exist; 110: mRNA gene expression and mRNA isoform expression data exist, but DNA
methylation data do not exist; 111: mRNA gene expression, mRNA isoform expression and DNA
methylation data exist.

4. Discussion

Embedding techniques typically extract task-dependent significant relationships in
high-dimensional feature spaces and use them in downstream analysis. Many previous
studies have relied on independent embedding techniques [34–37]; however, they included
fewer samples for biomedical classification and prediction tasks. To address these issues,
we investigated the rationale of embedding by adding virtual omics data, which resemble
actual omics data.

In this study, the utility of the newly developed method over conventional methods
that disallow the use of incomplete data was validated. Furthermore, virtual omics data
that resemble actual omics data based on inferences on missing omics data were generated
by two tasks: phenotype classification and virtual omics generation, using embedding
data. In the phenotype classification task, a performance comparison experiment was
conducted between the existing multi-omics model, which can learn only complete data,
and the proposed model, which can also learn incomplete data. The average performance
of the model was measured via K-fold cross-validation (K = 5). Performance comparison
was performed on the “111” model trained on complete data only, the “OUR” model
trained on incomplete data as well, and the “110” and “001” models trained on partial
omics data only. As a result, the “OUR” model, trained with incomplete data, had the
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highest average performance in each phenotype (“OUR” cancer type: 0.9549, primary
site: 0.9212, sample type: 0.9712) (Figure 3). Additionally, we compared the performance
after training the proposed model using additional omics data. The proposed model
was trained on three omics datasets (mRNA gene expression, mRNA isoform expression,
and DNA methylation), while the additional training model was trained on four omics
datasets (mRNA gene expression, mRNA isoform expression, DNA methylation, and
miRNA mature strand expression). The average performance of the models was measured
through K-fold cross-validation (K = 5). There was no significant performance difference
between the two models (“OUR” cancer type: 0.9549, primary site: 0.9212, sample type:
0.9712; “OUR+” cancer type: 0.9586, primary site: 0.9175, sample type: 0.9717).

In terms of performance improvement, the proposed model did not show any signifi-
cant improvement compared to the baseline model (a model that only trains on complete
data). However, notably, our proposed model could learn robustly even in the absence of
complete data. To demonstrate this, we conducted performance comparison experiments
for extreme conditions for which complete data are rarely available. Figure 4 shows that
the proposed model could maintain classification performance, whereas the conventional
model that can learn only complete data exhibited a sharp performance drop in the relative
absence of complete data in the training data (99.90%). Herein, “99.90%” is the dataset in
which 99.9% of the complete data in the training data were replaced with incomplete data.
Therefore, the number of complete data in the training data was low (only 3), preventing
the existing model from properly training. Conversely, by introducing a padding strategy,
the proposed model could proceed with learning that could produce meaningful results
even in extreme situations lacking complete data.

Figure 5 shows the results of the measurement of the average similarity between
the virtual omics data and the actual omics data generated through the baseline model
(“111”), which learned on only complete data, and the proposed model (“OUR”), which
also learned on incomplete data. For the three actual omics data types, the proposed model
generated virtual omics data with a higher similarity than the data for the baseline model
(baseline model—mRNA gene expression: 0.9436, mRNA isoform expression: 0.9387, DNA
methylation: 0.9653; proposed model—mRNA gene expression: 0.9699, mRNA isoform
expression: 0.9533, DNA methylation: 0.9656).

The proposed model is characterized by its ability to generate high-quality virtual
omics data for missing omics data. This function cannot be performed in the basic model
structure. Figure 6 depicts these characteristics. Incomplete data (“011”, “101”, and “110”)
generated by removing specific omics data from complete data (“111”) were set as the input
data of the model. Measuring the similarity between the actual omics data and virtual
omics data generated from incomplete data revealed a high average cosine similarity of
the three omics data types of 0.9646 (mRNA gene expression: 0.9704, mRNA isoform
expression: 0.9555, DNA methylation: 0.9677).

Next, we performed visualizations to understand whether the proposed model can
efficiently integrate different omics data sources by maintaining complementarity across
omics data types and reducing the noise of partially independent features. Through t-SNE,
we visualized the formation of clusters for three phenotypes (cancer type, primary site, and
sample type) (Figures 7, S4 and S5). Here, we captured the formation of multiple clusters
of specific cancer types, such as BRCA, UCEC, KIRC, and STAD (Figure 7). This can be
explained as distortion due to the formation of separate clusters depending on the presence
or absence of padding data. To solve this distortion, we validated the effectiveness of virtual
omics data in the virtual omics creation task. To this end, we replaced the padding with
virtual omics data generated by model training and retrained the model. The embeddings
generated from the retrained model were dimensionally reduced with t-SNE, and the
formation of clusters for three phenotypes (cancer type, primary site, and sample type) was
visualized. Similar to the previous case, the embedding data confirmed cluster formation
for the three phenotypes (Figures 8, S18 and S19). Additionally, compared to the previous
visualization (Figure 7), certain data (e.g., BRCA, UCEC, KIRC, and STAD) that formed
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multiple clusters for the same carcinoma converged, indicating that the cluster distortion
had been resolved (Figure 8).

Finally, we determined whether the virtual omics data generated by the proposed
model differed from the actual omics data in the distribution within the latent space. To this
end, the integration of actual and virtual data for a single-omics data type was visualized
via t-SNE, and the difference in the distribution within the latent space was compared.
Based on the cancer type, the virtual omics data formed similar clusters to those for the
actual omics data in the latent space (Figure 9).

In summary, the novel approach developed in this study maximizes the use of multi-
omics. For samples with incomplete omics data, learning outcomes from certain omics data
were integrated with the learning data from samples with complete information, and the
consequent embedding exhibited high quality and flexibility. Furthermore, the embedding
led to the generation of virtual omics data that resembled actual omics data.

This study has certain limitations. First, our strategies were only developed and
validated for a limited number of tasks, including cancer phenotype prediction, primary
site prediction, and sample type prediction. However, with additional development, the
strategy can be easily improved to include other classification and prediction tasks, such as
target identification, identification of tissue origin and specific gene expression signatures,
and multimodal predictions. In addition, other experimental data types, such as single-
cell RNA-seq and competing endogenous RNA regulation, can eventually be included.
However, as evident from the comparison experiment of training with additional omics
data, simply adding data is insufficient to precisely analyze the relationships between
omics data types and to enhance the performance. Second, the choice of primary site
labeling (32 classes over 100 labels) should be investigated since it could be challenging in
a single sample for a primary site. However, this was not the focus of this study. In future
studies, advanced techniques such as attention mechanisms and graph neural networks
can be utilized to comprehensively analyze the relationships between patients or omics,
thus allowing weighted contributions from each data type to be reflected by global virtual
omics data.

5. Conclusions

A model was developed with the embedding of SARC data for the Korean population
from the SBIC (toward the construction of a national registry for rare cancers). However,
owing to the inadequate number of samples in the Korean SBIC for learning by an AI
model, publicly available cancer-related data in TCGA, including various genomic data
types (from transcriptomes to epigenomes), were used. The SBIC data of the KBN (Korea
Biobank Network) contain more limited data types, such as mRNA gene expression data
and mRNA isoform expression data.

For an AI model, previous research has established that multi-omics data, compared to
single-omics data, can more accurately capture the genetic features of cancer. Nevertheless,
multi-omics data are often incomplete, limiting AI model application. For instance, the
Korean SBIC data are incomplete; therefore, only partial omics data from TCGA could
be used. Considering the vast array of genetic data related to cancer, using only parts of
large-scale open databases in cases of incomplete data is a major limitation.

The newly proposed approach maximizes the utility of incomplete data. After integrat-
ing PanCan and SBIC data, values for mRNA gene expression, mRNA isoform expression,
and DNA methylation were used as the input data. Samples that were missing omics
data were treated by padding. While it sets the data specification for the learning by AI
models, the padding strategy does not affect the learning process. For instance, when
a given sample lacks DNA methylation data, the padding is not included in calculating
the reconstruction loss for DNA methylation. In a series of steps, a model for embedding
with high expandability to allow the maximized use of omics data was designed, and the
generated embedding exhibited high quality and flexibility.
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We validated that our proposed learning strategy maintains high classification per-
formance and responds robustly to data sparsity to address the issues associated with
incomplete omics data. The results of this study are expected to prove valuable for
broad omics research. The novel methodology is also expected to be applicable across all
AI-based domains.

However, the VAE architecture used in our study may struggle to capture key features
within complex or high-dimensional distributions, such as omics data. This difficulty
arises because assuming a simple distribution, such as a Gaussian distribution in the latent
space, may not adequately reflect the complexity of the data distribution. Additionally, the
latent space learned through the VAE may be intricately entangled, which can complicate
interpreting the model’s data generation and prediction processes.

To address these issues, we plan to design a model that can better capture the complex-
ity of data distributions by utilizing a transformer-based VAE architecture. Furthermore,
we intend to incorporate a process that allows researchers to understand and interpret
the model’s outputs by visualizing the data generation and cancer phenotype prediction
processes through attention visualization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ai5030078/s1, Figure S1: Histogram visualization and statistics
of the total mRNA gene expression; Figure S2: Histogram visualization and statistics of the total
mRNA isoform expression; Figure S3: Histogram visualization and statistics of the total DNA
methylation; Figure S4: t-SNE visualization of the embedded data for the proposed model after
dimensionality reduction; Figure S5: t-SNE visualization of the embedded data for the proposed
model after dimensionality reduction; Figure S6: t-SNE visualization of the mRNA gene expression
data for the proposed model after dimensionality reduction; Figure S7: t-SNE visualization of the
mRNA gene expression data for the proposed model after dimensionality reduction; Figure S8:
t-SNE visualization of the mRNA gene expression data for the proposed model after dimensionality
reduction; Figure S9: t-SNE visualization of the mRNA gene expression data for the proposed model
after dimensionality reduction; Figure S10: t-SNE visualization of the mRNA isoform expression data
for the proposed model after dimensionality reduction; Figure S11: t-SNE visualization of the mRNA
isoform expression data for the proposed model after dimensionality reduction; Figure S12: t-SNE
visualization of the mRNA isoform expression data for the proposed model after dimensionality
reduction; Figure S13: t-SNE visualization of the mRNA isoform expression data for the proposed
model after dimensionality reduction; Figure S14: t-SNE visualization of the DNA methylation
data for the proposed model after dimensionality reduction; Figure S15: t-SNE visualization of
the DNA methylation data for the proposed model after dimensionality reduction; Figure S16:
t-SNE visualization of the DNA methylation data for the proposed model after dimensionality
reduction; Figure S17: t-SNE visualization of the DNA methylation data for the proposed model
after dimensionality reduction; Figure S18: t-SNE visualization of the embedding data for the
proposed model with learning from virtual omics data as an alternative to padding; Figure S19: t-SNE
visualization of the embedding data for the proposed model with learning from virtual omics data as
an alternative to padding; Figure S20: t-SNE visualization of the mRNA gene expression data for
the proposed model with learning from virtual omics data as an alternative to padding; Figure S21:
t-SNE visualization of the mRNA gene expression data for the proposed model with learning from
virtual omics data as an alternative to padding; Figure S22: t-SNE visualization of the mRNA gene
expression data for the proposed model with learning from virtual omics data as an alternative to
padding; Figure S23: t-SNE visualization of the mRNA gene expression data for the proposed model
with learning from virtual omics data as an alternative to padding; Figure S24: t-SNE visualization of
the mRNA isoform expression data for the proposed model with learning from virtual omics data as
an alternative to padding; Figure S25: t-SNE visualization of the mRNA isoform expression data for
the proposed model with learning from virtual omics data as an alternative to padding; Figure S26:
t-SNE visualization of the mRNA isoform expression data for the proposed model with learning from
virtual omics data as an alternative to padding; Figure S27: t-SNE visualization of the mRNA isoform
expression data for the proposed model with learning from virtual omics data as an alternative to
padding; Figure S28: t-SNE visualization of the DNA methylation data for the proposed model
with learning from virtual omics data as an alternative to padding; Figure S29: t-SNE visualization
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of the DNA methylation data for the proposed model with learning from virtual omics data as an
alternative to padding.
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