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Abstract: Over the past decade, focused ultrasound (FUS) has emerged as a promising therapeutic
modality for various medical conditions. However, the exponential growth in the published literature
on FUS therapies has made the literature review process increasingly time-consuming, inefficient,
and error-prone. Machine learning approaches offer a promising solution to address these challenges.
Therefore, the purpose of our study is to (1) explore and compare machine learning techniques for
the text classification of scientific abstracts, and (2) integrate these machine learning techniques into
the conventional literature review process. A classified dataset of 3588 scientific abstracts related and
unrelated to FUS therapies sourced from the PubMed database was used to train various traditional
machine learning and deep learning models. The fine-tuned Bio-ClinicalBERT (Bidirectional Encoder
Representations from Transformers) model, which we named FusBERT, had comparatively optimal
performance metrics with an accuracy of 0.91, a precision of 0.85, a recall of 0.99, and an F1 of
0.91. FusBERT was then successfully integrated into the literature review process. Ultimately, the
integration of this model into the literature review pipeline will reduce the number of irrelevant
manuscripts that the clinical team must screen, facilitating efficient access to emerging findings in
the field.

Keywords: focused ultrasound; machine learning; text classification; BERT

1. Introduction
1.1. Rationale

Focused ultrasound (FUS), also called high-intensity focused ultrasound (HIFU), is
a procedure that uses an acoustic lens to concentrate ultrasound waves on a single focal
point deep in the body to heat up and destroy or change tiny patches of human tissue
without affecting the surrounding normal tissue. Over the past decade, FUS has emerged
as a promising therapeutic modality for the treatment of various medical conditions with
extreme precision and accuracy. This technique is especially known for being minimally
invasive when accessing these desired anatomical structures [1]. In comparison to the
traditional thermal ablation mechanisms used in a clinical practice, such as radiofrequency
currents, microwaves, and laser, this incisionless nature leads to reduced postoperative
recovery periods allowing patients a quicker return to their daily routines, friends, and
family. Presently, there exist nine FDA-approved indications for FUS therapies such as
essential tremor, uterine fibroids, Parkinson’s disease, prostate cancer, benign prostate
hyperplasia, liver tumors, and pain from metastatic lesions to the bone [2]. The growing
prominence of FUS therapies makes it imperative for physicians and researchers to stay
informed about novel scientific breakthroughs and ongoing developments.
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Literature review plays a pivotal role in the advancement of medical knowledge and
the adoption of innovative therapies like FUS. However, the traditional approach to litera-
ture review, often reliant on manual examination, is labor-intensive, time-consuming, and
susceptible to human error. As the volume of published research continues to grow expo-
nentially, the need for more efficient and accurate review processes becomes increasingly
critical. This is particularly relevant to the field of focused ultrasound therapies, which
has seen an exponential increase in research over the past decade. However, keyword-
based database searches often struggle to differentiate between studies related to focused
ultrasound therapies and those involving ultrasound for diagnostic purposes. This sub-
tle but important distinction between two similar yet distinct applications of ultrasound
technology highlights the need for more advanced article classification methods.

Machine learning offers a promising solution to address these challenges [3]. Algo-
rithms have been previously used for text classification in various applications such as
the sentiment analysis [4] of product reviews, the identification of hate speech on social
media [5], and the classification of news topics. By utilizing similar advanced algorithms
and processes for text classification, as successfully applied in the areas mentioned pre-
viously, clinicians and researchers can use machine learning to automate and streamline
various stages of the literature review process, enhancing both efficiency and effectiveness.
One key area where machine learning can significantly impact literature review is in the
screening of articles for inclusion criteria.

Six Steps of the Literature Review Process [6]:

1. Formulating the research question;
2. Searching publication databases for relevant articles;
3. Screening articles for inclusion criteria;
4. Assessing the quality of primary studies;
5. Extracting data;
6. Analyzing data.

Literature review, typically reliant on manual examination, involves painstakingly
scanning through manuscripts deemed ‘relevant’ by Boolean keyword searches in pub-
lished literature databases [6]. Unfortunately, this current methodology has flaws as search
criteria often yield papers containing mere keyword mentions, resulting in many irrelevant
results. Machine learning algorithms, on the other hand, can analyze the content of articles
in a more nuanced manner, identifying relevant information beyond keyword matches.

By training machine learning models on labeled datasets of relevant and irrelevant
articles, researchers can develop classifiers capable of accurately distinguishing between
the two categories. These classifiers can then be used to automate the initial screening
of articles, flagging those that are likely to meet the inclusion criteria for further review
by human experts. This automated screening process could save time and resources and
reduce the likelihood of missing important articles. By automating tedious tasks, improving
the accuracy of article screening, and enhancing quality assessment, machine learning can
help researchers stay up to date on the latest developments and make more informed
decisions based on the available evidence.

Given these challenges, there is a knowledge gap in the application of advanced ma-
chine learning techniques within the literature review process when researching a specific
topic of interest, such as focused ultrasound therapies [7]. While fine-tuned large language
models trained on general medical and scientific language exist, there are currently no
models specifically designed to classify abstracts related to specific therapies, such as
FUS [8,9]. This gap highlights an opportunity to enhance the literature review process by
leveraging natural language processing (NLP) to more accurately identify relevant articles
while proposing an opportunity for the integration of NLP into the everyday workflow of
physicians and researchers. Using FUS as a subject-specific classification target, this project
can ultimately serve as a case study, exemplifying the process by which machine learning
can be used within the everyday life of a researcher or physician to help them stay updated
on relevant research without spending egregious amounts of time finding relevant articles.
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1.2. Purpose

The primary research question guiding this study is as follows: Can machine learning
models, specifically those that utilize deep learning methods such as transformers, be
applied to automate the classification of scientific abstracts related to focused ultrasound
therapies, thereby potentially improving the efficiency and accuracy of the literature review
process? Therefore, the aim of this study is twofold. Our primary objective is to explore
and compare various machine learning techniques for the binary classification of abstracts
pertaining to FUS therapies, distinguishing those related from those unrelated. Secondly,
we aim to integrate these machine-learning techniques into the literature review process.
This integration is highlighted in a workflow diagram depicting the application of these
techniques to augment the efficiency of screening articles based on inclusion criteria specific
to FUS therapies.

It is important to note that although we propose a workflow for the easiest integration
of this classification model within the literature review process, this preliminary study
will not include a further thematic analysis of included articles as one does in a typical
systematic literature review but rather propose a more efficient way to exclude articles that
are irrelevant to a specific topic. Our chosen subject matter, focused ultrasound therapies,
can serve as an example of how these types of deep learning models could be trained to
perform such a task.

1.3. Background-Text Classification Pipeline

The study of text classification as a subset of natural language processing dates back
to the 1960s [10]. While various models for text classification have evolved over time,
the general pipeline using machine learning has remained relatively consistent. This
pipeline typically comprises six stages: (1) obtaining data, (2) preprocessing the data,
(3) feature extraction, (4) model selection and training, (5) model evaluation, and (6) making
predictions on unseen data [10].

1. Obtaining Data: The initial step in the pipeline, obtaining the data, involves accessing
data from reputable sources and ensuring that the data are labeled into binary classes
based on their relation to FUS. For this study, we are solely interested in the supervised
learning of pre-labeled data although it is possible to use unsupervised learning for
text classification [10].

2. Preprocessing: Preprocessing the data are crucial to clean and transform them into
a suitable format for model input. This may entail tasks such as tokenization, the
removal of English stop words, normalization, text standardization/stemming, and
lemmatization. Preprocessing enhances the quality of the input text, thereby improv-
ing the performance of the model [11].

3. Feature Extraction: The third step, feature extraction, is used in traditional machine
learning and deep learning approaches to text classification to convert words into
numerical vector representation. Examples of feature extraction methods include
Bag-of-Words (BoW), Term Frequency-Inverse, Document Frequency (TF-IDF), and
word embedding (Word2Vec, BERT, etc.) [10,12]. The choice of feature extraction
methods depends on the model chosen for the text classification task [12].

4. Model Selection and Training: Model selection and training, the fourth step, involves
choosing a suitable model for training on the input data. Various models can be
utilized for text classification, broadly categorized into traditional machine learning
and deep learning models (Table 1). Traditional machine learning methods include
Naive Bayes, Support Vector Machines (SVMs), Decision Trees (DTs), Random Forests
(RFs), Logistic Regression, and K-Nearest Neighbor (KNN) [13]. Deep learning
methods include neural networks, such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Transformers [14]. It is important to note that
although all mentioned methods have been used for text classification, the invention
of transformers, such as Bidirectional Encoder Representations from Transformers
(BERT) [15], have been shown to significantly outperform all other types of traditional
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and deep learning methods for this NLP task [16]. Although fine-tuning BERT models
for text classification requires more computational power than training traditional
models, we are interested in seeing how the performance of fine-tuned BERT models
compare. We decided to only investigate the performance of transformers, over
CNNs and RNNs, due to the literature supporting the use of transformers for text
classification tasks over other deep learning methods. Similarly, a few traditional
methods were also explored to assess whether the time and effort required to train
a more complex model like BERT was justified, or if a simpler model could achieve
comparable results.

5. Model Evaluation: In the fifth step, model evaluation involves selecting appropriate
metrics to quantify performance. Certain metrics can be optimized depending on
their relevancy and appropriateness to the problem addressed through the fine-tuning
of hyperparameters. Common metrics include accuracy, precision, recall, and F1-
score [17].

Table 1. Materials and Methods.

Traditional Methods Deep Learning Methods

Naive Bayes CNNs
Support Vector Machines RNNs
Decision Trees Transformers (i.e., BERT)
Random Forests
Logistic Regression
K-Nearest Neighbor

2. Materials and Methods

The study was conducted in two distinct phases: (1) exploration of machine learning
(ML) methods for text classification, and (2) integration of ML methods into the scientific
literature review process. In the initial phase, we investigated various traditional and deep
learning approaches to text classification to identify the most effective one. Subsequently,
in the second phase, we adapted the existing literature review pipeline to include ML
automation, aiming to enhance its efficiency.

2.1. Obtaining Data

The data consist of a curated collection of scientific abstracts sourced from PubMed, a
search engine maintained by the National Center for Biotechnology Information (NCBI).
The Focused Ultrasound Foundation (FUSF) provided Excel files from their monthly
literature review process, covering February to August 2023. These literature searches
yielded a variety of articles both related to FUS and unrelated to FUS, and used search
parameters selected from an expert in the field, outlined below:

Articles had to include at least one of the following keywords:

1. Focused Ultrasound;
2. HIFU (High-Intensity Focused Ultrasound);
3. MRgFUS (MR-Guided Focused Ultrasound);
4. LIFU (Low-Intensity Focused Ultrasound);
5. Ultrasound Imaging;
6. Transducer;
7. Ultrasound Ablation;
8. High Intensity Focused Ultrasound Ablation;
9. Diagnostic Ultrasound.

During these literature searches, conditions were added to ensure that neither retracted
publications nor preprints were included in the search. We also adhered to all privacy
and text mining policies, and confirmed that all publications were open source-accessible.
After compiling the articles into an Excel file, the Focused Ultrasound Foundation clinical
team performed a manual review to validate that the scraped publications in the Excel
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sheet were indeed related to FUS, totaling 489 articles. This initial dataset was bolstered by
90 labeled abstracts of scientific articles used in prior work by FUSF. Furthermore, a dataset
of FUS-related scientific abstracts was available in a publicly accessible Zotero database on
the FUSF website [18]. We used all abstracts within this database, except those categorized
as veterinary-related, amounting to 1960 articles.

There was an overlap of keywords in articles on FUS technology and those studying
the use of ultrasound for diagnostic purposes. To help our model identify articles using
ultrasound for diagnosis as non-FUS related, we made sure to incorporate additional
articles that fell under the “Ultrasound Imaging” or “Diagnostic Ultrasound” categories of
the PubMed literature searches.

All collected abstracts of scientific articles, along with their corresponding labels, were
consolidated into a CSV file. Duplicate abstracts and null values were removed from the
dataset. The final dataset consisted of 1794 abstracts related to FUS and an equivalent
number of non-FUS abstracts for a total of 3588 abstracts (Figure 1).
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2.2. Data Preprocessing and Feature Extraction

The process of preparing the data for our analysis began with the classification of
scientific abstracts, sourced from the FUS therapy field. The classification was conducted
by the Chief Medical Officer (CMO) of the Foundation, with each abstract marked with
a binary indicator to denote relevance to the FUS domain. After compiling our collected
data, we were able to move on to the next step.

In the preprocessing phase, each abstract was transformed to standardize the text to
make it more conducive to the machine learning analysis. The first step in this process was
to convert all the abstracts to string format and lowercase, which is a common practice in
text processing that helps reduce the complexity of the text data by consolidating variations
of the same word [11]. Following this, we used tokenization to break down the text into
individual words or tokens. This step is crucial for understanding the structure of sentences
and for subsequent feature extraction techniques. We specifically used a tokenization
process compatible with the BERT model. This involved using the AutoTokenizer function
with specific parameters made to prepare the text for modeling. The tokenizer was config-
ured to ensure that there was uniform sequence length across the dataset through padding,
where shorter sequences were extended to match the longest sequence in the batch using a
designated padding token. Also, sequences exceeding the BERT model’s maximum input
size of 512 tokens were truncated to this limit. Lastly, the tokenized output was converted
into PyTorch tensors to align with the computational framework used for model training.

After the text tokenization step, we used several pre-trained BERT models for feature
extraction, translating the scientific abstracts into numerical data that reflected both the
meaning and structure of the language in the text. BERT does this by assigning each token
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to vectors (also known as token embeddings) that capture the meanings of the words,
using positional embedding, to maintain word order, and segment embeddings, to manage
different parts of the text [19]. BERT’s transformer architecture allows for the model to
understand each word in the context of the whole text, which is enhanced through its
pre-training on large datasets [20]. Pre-training helps BERT better understand complex
patterns in language, making it able to identify relevant nuances in FUS literature.

For the analysis using Logistic Regression, Support Vector Machine (SVM), and Naive
Bayes models, we used the TF-IDF (Term Frequency-Inverse Document Frequency) vec-
torizer to convert text data into a matrix of TF-IDF features. This method is particularly
effective for these models as it not only considers the frequency of words but also how
unique the words are across the entire dataset, which enhances the performance of these
traditional machine learning models.

2.3. Model Selection and Training

To address the primary aim of our study, we conducted a comparative analysis be-
tween traditional machine learning and deep learning methodologies for text classification.
As for traditional machine learning methods, Logistic Regression [21], Naive Bayes [22],
and Support Vector Machine [23] (SVM) models were employed for classification, chosen
over some of the other models for their specialization in binary classification (SVM and
Logistic Regression) and working with text data (Naïve Bayes). These models used fea-
tures extracted from a TF-IDF [3] tokenizer as parameters for binary classification, with no
additional optimization performed.

In contrast, for the deep learning approach, we selected and trained several BERT
(Bidirectional Encoder Representations from Transformers) models. These transformer
models fit the scope of our project well and are the current state-of-the-art approach for
text classification. The BERT models we trained included TinyBERT [24], SciBERT [25], Dis-
tilBERT [26], and Bio-ClinicalBERT [27] for performance evaluation. Each BERT model had
been pre-trained on a distinct corpus of text. For instance, Bio-ClinicalBERT [27] was pre-
trained on biomedical and clinical text data, tailored for healthcare and biomedicine tasks,
while DistilBERT [26] and TinyBERT [24] were scaled-down versions of the original BERT
model designed for improved efficiency while maintaining performance. SciBERT [25],
on the other hand, was pre-trained on scientific text, particularly enhancing performance
within scientific domains (Table 2).

Table 2. Description of BERT model variants.

Model Total Parameters Dataset

TinyBERT [24] 14,350,874 Original BERT corpus
SciBERT [25] 109,920,002 Semantic Scholar corpus

DistilBERT [26] 66,955,010 Original BERT corpus
Bio-Clinical BERT [27] 108,311,810 MIMIC-III corpus

We selected these classification methods and used 2906 abstracts to train traditional
machine learning models and fine-tune the pre-trained BERT models.

We fine-tuned each pre-trained BERT model on our corpus of FUS-related abstracts for
more precise classification specific to FUS literature and coined our new model, ‘FusBERT’.
It is important to note that we decided to only train FusBERT on scientific abstracts for effi-
ciency and easier integration into the literature review pipeline, which involves screening
abstracts before screening the entire article.

A hyperparameter optimization of BERT models was conducted by applying a sys-
tematic grid search approach using Ray Tune over a predefined set of hyperparameters
(number of epochs, training batch size, and learning rate) [28]. The chosen values for grid
search were based on the hyperparameter search space recommended by BERT authors [16].
Additionally, a seed was set for reproducibility.
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• Epochs: 2, 3, 4;
• Train batch size: 8, 16, 32;
• Learning rate: 2 × 10−5, 3 × 10−5, 5 × 10−5;
• Seed value: 6013.

Once the optimal hyperparameters for our models were determined, the best-performing
model was selected for integration into the literature review pipeline. The hyperparam-
eter optimizations were evaluated using a validation dataset of 323 abstracts. The BERT
hyperparameters chosen after grid search are summarized below (Table 3).

Table 3. BERT model hyperparameter summary.

Model Train Batch Size Learning Rate Epochs

TinyBERT 16 5 × 10−5 3
SciBERT 32 5 × 10−5 3

DistilBERT 16 3 × 10−5 3
Bio-ClinicalBERT 8 3 × 10−5 4

In pursuit of our secondary aim, the chosen model was integrated into the literature
review process. The initial steps of the pipeline, involving article retrieval and compilation,
were automated using Python scripts to scrape articles from PubMed and preprocess the
abstracts. Subsequently, our FusBERT model generated predictions regarding the related-
ness of abstracts to FUS therapies, aiding researchers in efficiently screening articles. The
workflow for integrating FusBERT underwent iterative refinement through collaboration
with the clinical and data management team at the Focused Ultrasound Foundation, with
the final workflow presented in the subsequent Results section.

2.4. Evaluation Metrics

Each model was carefully evaluated through several key performance metrics: accu-
racy, precision, recall, and F1 score [16,28]. These metrics each provide unique insights into
the model’s effectiveness and suitability for the literature review process by examining
the relationships between true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN).

Accuracy measures the proportion of true results (both true positives and true nega-
tives) among the total number of cases examined. In the context of our study, high accuracy
indicates that our model correctly identifies abstracts related to FUS therapies, as well
as those that are unrelated, showcasing the model’s overall effectiveness in filtering the
relevant literature from the vast array of publications [29].

Accuracy =
TP + TN

TP + TN + FP + FN

Precision (or positive predictive value) measures the proportion of true positive results
in all positive predictions made by the model. It reflects the model’s ability to return relevant
abstracts while minimizing false alarms—abstracts incorrectly classified as relevant. High
precision is crucial for ensuring that the literature review process is not only efficient but
also effective by focusing on truly relevant studies [29].

Precision =
TP

TP + FP

Recall (or sensitivity) measures the proportion of true positive results among all actual
positives. This metric assesses the model’s ability to identify all relevant abstracts from the
dataset. In our study, a high recall value is indicative of the model’s capacity to capture a
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comprehensive range of studies pertinent to FUS, ensuring that no significant research is
overlooked during the review [29].

Recall =
TP

TP + FN

F1 Score is the harmonic mean of precision and recall, providing a single metric to
balance the trade-off between the two. Since precision and recall are often inversely related,
the F1 score serves as an indicator of the model’s balanced performance. An optimal
literature review model would achieve a high F1 score, demonstrating both relevance and
comprehensiveness in its classification of FUS literature [29].

F1 Score = 2 × Precision × Recall
Precision + Recall

In the evaluation of our text classification models, these metrics collectively inform the
selection of the most suitable model for integrating into the literature review process. The
chosen model should maximize efficiency in identifying relevant studies, thus facilitating a
streamlined and effective literature review in the rapidly evolving field of FUS therapies.

Given the prevalence of non-FUS articles within the collection of literature that needs to
be reviewed, our model must prioritize minimizing the number of false negatives over false
positives. This approach ensures that all FUS-related articles are identified and classified
accurately. While the model may classify some non-FUS articles as relevant to FUS, this
is a more manageable scenario for the reviewers. It is considerably more convenient for
the team to exclude a few misplaced non-FUS articles from their selection than to sift
through an extensive number of articles to find missed FUS-related studies. Therefore, the
emphasis on reducing false negatives aligns with our objective to enhance the efficiency
and effectiveness of the literature review process, ensuring that no FUS-related article is
overlooked. For this reason, recall will be the primary focus of our evaluation metrics,
followed by accuracy.

3. Results

We used a web scraper to retrieve scientific articles related to FUS from PubMed based
on the keyword search parameters listed previously. After a manual filtration and valida-
tion, we used those articles to train various machine learning and deep learning models,
and compared the results to discover which model had the best metrics for classifying the
FUS-related literature.

3.1. FusBERT Model–Fine-Tuned Bio-ClinicalBERT Model

Overall, the deep learning models outperformed traditional machine learning methods
used in this study. The deep learning models achieved higher accuracy, recall, and F1 scores.
However, the traditional machine learning methods achieved higher precision scores. These
metrics are based on model performance on a test dataset of 359 abstracts (Table 4).

Table 4. Performance comparison between different models.

Model Accuracy Precision Recall F1

Naive Bayes 0.87 0.89 0.87 0.87
SVM 0.89 0.90 0.89 0.89

Logistic
Regression 0.90 0.91 0.90 0.90

TinyBERT 0.88 0.82 0.98 0.89
SciBERT 0.89 0.89 0.99 0.90

DistilBERT 0.90 0.84 0.99 0.91
FusBERT 0.91 0.85 0.99 0.91
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Based on our aim to prioritize high recall over accuracy, precision, and F1, while also
ensuring competitive performance across all metrics, we concluded that the fine-tuned
FusBERT model, which leveraged the pre-trained Bio-ClinicalBERT architecture, yielded
the most favorable results. The best-performing fine-tuned FusBERT model exhibited the
following performance metrics on our test data: accuracy 0.91, precision 0.85, recall 0.99,
and F1 0.91 (refer to Supplementary Materials for more details).

3.2. Development of ML-Assisted Literature Review Workflow

As mentioned previously, the literature review process consists of six distinct steps.
Step 3, which involves screening for inclusion criteria, emerges as a prime candidate for
leveraging machine learning techniques to enhance efficiency (Figure 2).
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dataset is subsequently subject to quality assessment.

3.3. Example Use Case of ML-Assisted Literature Review Workflow

In this section, we will run through what these ML-assisted steps within the literature
review process may look like in practice with an example use case for this type of workflow.
A physician may be interested in keeping up to date on the state of science within the field
of focused ultrasound. Each month, they search publication databases for new articles
about focused ultrasound research. They begin by inputting their search terms, such as
“focused ultrasound”, within the search field of their desired database and include articles
published within the previous month. Although the search produces many relevant articles,
yet some of them are about diagnostic ultrasound rather than focused ultrasound research.
The physician does not have time to sift through all these articles for relevancy, so they
decide to use FusBERT to further identify article relevancy.

The physician first exports the search results into an Excel file that may look something
like Figure 3 below.
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They then use this Excel file as data input for the Python script that will run the
FusBERT algorithm on the ‘Abstract’ column. This script automatically formats the data
via the preprocessing and tokenization of the abstracts and generates model predictions. A
new column is created in the Excel file that identifies which articles are related to focused
ultrasound (coded as 1) and which ones are not (coded as 0), which can be seen in Figure 4.
The physician can then sort the dataset by the predictions column, to then continue with
the rest of their literature review, assessing only relevant articles for full-text article analysis
and knowledge synthesis.
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cancer which may offer effective oncological control and low morbidity. We performed
a review of PubMed articles assessing the current applications of focused ultrasound
in the treatment of genitourinary cancers, including prostate, kidney, bladder, penile,
and testicular cancer. Current research indicates that high-intensity focused ultrasound
(HIFU) focal therapy offers effective short-term oncologic control of localized prostate and
kidney cancer with lower associated morbidity than radical surgery. In addition, studies
in mice have demonstrated that focused ultrasound treatment increases the accuracy of
chemotherapeutic drug delivery, the efficacy of drug uptake, and cytotoxic effects within
targeted cancer cells. Ultrasound-based therapy shows promise for the treatment of geni-
tourinary cancers. Further research should continue to investigate focused ultrasound
as an alternative cancer treatment option or as a complement to increase the efficacy
of conventional treatments such as chemotherapy and radiotherapy. Keywords: cancer;
review; treatment; ultrasound [30].”

The types of language seen within this article can be compared to an article related
to ultrasound but not focused ultrasound. Our model correctly classifies the following
abstract as being not related to focused ultrasound:

“Ultrasound is commonly used in clinical examination, which is economic, non-invasive
and convenient. Ultrasound can be used for the examination of solid organs and hollow
organs. Due to the presence of air, routine ultrasound examination of the digestive tract
is not very appropriate, Because of the development of endosonography and its related
technology, diagnosis of gastrointestinal diseases have been improved which is valuable in
clinic. This review focused on the application of ultrasound technology in the diagnosis of
digestive tract diseases [31].”

The integration of FusBERT within the physician’s review greatly reduces the time
it takes to screen abstracts for subject-specific relevancy. For example, within seconds,
FusBERT can classify a month’s worth of new medical abstracts, while it may take a human
1 min to classify only one abstract. Although a human reviewer may be able to more
accurately classify abstracts, it takes them a lot more time. This use case highlights how
leveraging deep learning methods such as fine-tuned BERT models, for literature review
has the potential to significantly boost efficiency, especially with large datasets.

4. Discussion and Conclusions

Ultimately, our FusBERT model satisfied our condition to optimize the recall value,
demonstrating its efficacy in minimizing the number of false negatives over false positives,
while maintaining relatively high levels of accuracy, precision, and F1 score. This best-
performing model was then successfully integrated into the conventional literature review
process. We then presented examples of correct classifications of scientific literature by
FusBERT despite cases where the topics are very closely related.

Our findings demonstrate that BERT models can efficiently automate the classification
of the scientific literature with high accuracy in the fields of and relating to FUS. Whether
such findings can be expanded to other domains necessitates further studies and experimen-
tation. However, the adaptability of BERT models, characterized by their understanding
of context and nuance in text, showcase their position as valuable and flexible tools for re-
searchers. Thus, this project also highlights the significant potential for integrating machine
learning techniques, particularly BERT models, into the literature review process across
various fields beyond FUS therapies.

Looking ahead, the potential for expanding the use of BERT models in literature
review processes is vast. As various fields related to biomedical and health research grow,
the amount of potential training data for BERT models also increases. As long as a wealth
of data already exists in a given area, we can retrieve those related articles by adjusting
the keyword parameters on the scraper, giving BERT models much promise to adapt
and thrive. Given that our study was limited to the binary classification of abstracts, a
promising direction for future research could be the development of BERT models capable
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of multi-class classification. This would allow for the incorporation of multiple inclusion
and exclusion criteria in the article screening process [32]. This advancement would
enable the models to categorize the literature into multiple predefined categories, further
refining the review process. This capability would significantly enhance the precision of
literature reviews, making it easier for researchers to locate studies relevant with greater
granularity [32].

However, the application of BERT models, particularly for multi-class classification,
comes with certain challenges. A notable limitation of using BERT for this task is the
requirement for large amounts of data to train these models effectively. BERT models rely
on extensive data to understand and interpret the nuances of language accurately. As the
complexity of classification increases from binary to multi-class, the demand for more di-
verse and expansive datasets grows accordingly. These limitations do not necessarily affect
the generalizability of our findings but rather make it difficult for individual researchers to
obtain the amount of data required to train a model for their specific research purposes.

Furthermore, the computational resources required to train and run BERT models,
especially for large datasets and complex classification tasks, present another challenge.
In this study, all models were trained using an academic research center’s server which
contains larger computational power than the average person’s personal computer. This
specific challenge makes it difficult for physicians or researchers who do not have access to
additional higher-powered servers to leverage the full potential of using transformers for
their specific research needs, ultimately limiting the widespread adoption of these tools
within specialized fields of research.

Finally, given that the precision requirements for medical care are very high, one
limitation of this approach is the question of whether the accuracy ranges of 0.85–0.99 are
sufficient. While this may be good for carrying out academic data reviews, it may not be
high enough to conduct a data search that relates to clinical care.

In conclusion, the incorporation of machine learning, and BERT models in particular,
into literature review processes is promising for enhancing research efficiency. While
limitations such as data requirements, computational demands, and a need for near-perfect
accuracy are still present, the potential benefits in terms of time efficiency and the ability to
handle large volumes of literature are compelling. As the ability to collect and process data
advances, the potential of machine learning in literature review processes also grows.

Supplementary Materials: For further information on the code and model, please see our GitHub
page at https://github.com/rteb8/MSDS_FUSCapstone23/.
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