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Abstract: In this research, we analyzed narratives from the National Electronic Injury Surveillance
System (NEISS) dataset to predict the top two injury codes using a comparative study of ensem-
ble machine learning (ML) models. Four ensemble models were evaluated: Random Forest (RF)
combined with Logistic Regression (LR), K-Nearest Neighbor (KNN) paired with RF, LR combined
with KNN, and a model integrating LR, RF, and KNN, all utilizing a probabilistic likelihood-based
approach to improve decision-making across different classifiers. The combined KNN + LR ensemble
achieved an accuracy of 90.47% for the top one prediction, while the KNN + RF + LR model excelled
in predicting the top two injury codes with a very high accuracy of 99.50%. These results demonstrate
the significant potential of ensemble models to enhance unstructured narrative classification accuracy,
particularly in addressing underrepresented cases, and the potential of the proposed probabilistic
ensemble framework ML models in improving decision-making in public health and safety, providing
a foundation for future research in automated clinical narrative classification and predictive modeling,
especially in scenarios with imbalanced data.
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1. Introduction

Injury classification categorizes injuries by location, severity, cause, and type, which
is an essential part of tracking public health and safety by understanding the underlying
causes and circumstances of injuries and, thus, preventing them and minimizing harm.
It also helps in achieving better diagnosis and treatment of injuries [1]. Multiple public
health agencies and organizations are involved in the collection and classification of injury
narratives from hospital emergency rooms (ERs). The narratives collected at ERs are
analyzed by these agencies by assigning different types of diagnostic injury codes, such
as their nature, cause, and severity. In the US, the Consumer Product Safety Commission
(CPSC) maintains the National Electronic Injury Surveillance System (NEISS), which collects
comprehensive narratives outlining the circumstances leading to accidents caused by
consumer products [2]. The narratives collected at ERs are crucial for understanding causes
and concerns with product safety. The narratives allow public health experts to study and
track injury patterns, spot new hazards, and create focused preventive measures. After
the narratives are categorized into a structured form by assigning injury diagnostic codes,
the statistical analysis of classified injury narratives provides insightful information about
the common causes and conditions that lead to injuries. However, the manual approach
to categorizing these narratives into injury codes is time-consuming and prone to errors.
Previous studies have used machine learning (ML)-based approaches for classifying injury
narratives, but the accuracy has been observed to be limited for individual ML models due
to the large number of prediction categories and noisy nature of narratives [3–7].

This motivated us to study the prediction performance of three state-of-the-art ML
models and different ensemble models, based on their probabilistic likelihood of correctness,
in classifying product-related injury narratives.
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2. Literature Review

Researchers studied the use of narrative analysis for describing the mechanisms
of injury and comparing patterns of work-related fatalities in New Zealand, Australia,
and the United States [3]. The study underscored the potential of narrative analysis
to bridge these gaps by offering a consistent framework for comparing work-related
fatalities across countries. The research revealed the narrative analysis’s need in examining
work-related deaths by offering an innovative perspective alongside conventional coding
methods. The analysis improved the knowledge of job safety and aids in creating more
focused preventive measures for different countries and sectors. The narrative analysis
minimized misclassification by enabling researchers to use narrators’ own words, fixing
coding inaccuracies in complex cases [4]. While narrative analysis has its merits, it also
presents obstacles that necessitate a structured coding process. Thus, ML techniques are
seen to be a substitute for the tedious, manual coding of narratives, offering a faster and
efficient classification process.

Fuzzy Bayesian models and automated techniques demonstrated promising results
in the past, precisely classifying cause-of-injury codes from narratives and in the capacity
to separate out cases for human evaluation [5,6]. Classifying injury narratives from large
administrative databases has been made easier with a semi-automated method utilizing
Naïve Bayesian algorithms. The method yielded an overall accuracy of 87% and has
significantly reduced the requirement for manual review [7]. The rapid development of
ML and natural language processing (NLP) technology has provided a viable path towards
automating classification, improving precision, and facilitating continuous surveillance [8].

In another study, an NLP framework was deployed to identify e-scooter-related
injuries from over 36 million clinical notes [9]. This NLP approach involved refining
regular expression techniques previously developed to identify emergency room (ER) visits
related to e-scooter injuries. The framework was trained and tested using a three-stage
process on ER visit notes. The training data included notes containing keywords, such as
“scooter” and specific e-scooter brand names. The NLP model incorporated an ensemble
random multi-model deep learning (RMDL) technique that combined convolutional neural
networks (CNNs) and deep neural networks (DNNs) to enhance accuracy. The model
used global vectors for word representation (GloVe) and term frequency–inverse document
frequency (TF-IDF) to process the text, translating it into a series of vectors that convey
semantic meaning and context. The combined scores from the CNN and DNN models
were averaged through soft voting to determine the probability of an e-scooter injury. The
algorithm indicated an overall accuracy of 92%, correctly classifying the majority of notes
in the testing set [9].

In [10], researchers used a comprehensive methodology to predict injury severity
using proactive and reactive data from a steel manufacturing plant in India. The dataset
was merged to build a mixed dataset, which underwent several preprocessing steps to
ensure data quality and manage complexities. The study addressed class imbalance by em-
ploying four state-of-the-art oversampling techniques: Synthetic Minority Over-sampling
Technique (SMOTE), Borderline SMOTE (BLSMOTE), Majority Weighted Minority Over-
sampling Technique (MWMOTE), and k-means SMOTE (KMSMOTE). Six classification
algorithms were used for injury severity prediction, with KMSMOTE being the most effec-
tive in balancing datasets and achieving a higher prediction accuracy. The Random Forest
algorithm showed superior performance in terms of accuracy and robustness. The study
demonstrated that by integrating proactive and reactive data, and effectively handling
class imbalance, advanced ML models significantly improved injury severity prediction,
offering valuable implications for safety management and preventive measures.

Van Eetvelde et al. [11] highlighted the growing use of ML in injury prediction and
prevention. The researchers reviewed ML techniques, such as tree-based ensemble meth-
ods, SVM, and ANN, showcasing that ML models can identify high-risk factors. However,
the review called for improved methodological rigor and data analysis and inclusion for op-
timal performance. These studies did not analyze the performance of the likelihood-based
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ensemble approach using combinations of simple and advanced ML models to classify
product injury data; hence, in this study, the classification performance of the likelihood-
based ensemble ML approach using three well-established ML models, K-Nearest Neighbor,
Random Forest, and Logistic Regression, to classify product injury data was evaluated.

3. Methodology
3.1. Data Description

Injury narratives from the National Electronic Surveillance System (NEISS) [2], lever-
aging their concise and unstructured format, were utilized. The NEISS is an informative
dataset managed by the U.S. Consumer Product Safety Commission (CPSC). The system
collects data from over 100 hospitals across various healthcare settings, ensuring data
representation and an accurate scale to reflect nationwide trends. NEISS is a critical tool for
acquiring and assessing information about injuries, including those brought on by defective
consumer goods, adverse drug events, and acts of violence. Preventive initiatives, product
recalls, and public safety regulations have benefited from the use of NEISS data. The
nationally representative hospitals in the United States and its territories feed the data into
NEISS. Every ER visit associated with a consumer product or a kid under five years old’s
poisoning is reported by each member of the NEISS facility [2]. This dataset holds crucial
data elements essential for understanding consumer product-related injury dynamics. It
offers a demographic profile of those most affected by specific injuries, detailing the age,
sex, race, and ethnicity of the injured. The data include detailed injury information, such
as descriptions, affected body areas, diagnoses, and outcomes (treated and released or
hospitalized), alongside product data highlighting potential risks and identifying involved
consumer products. The data used for this research included detailed injury information,
such as descriptions, affected body areas, diagnoses, and outcomes, alongside product data
highlighting potential risks and identifying involved consumer products.

The NEISS data collection involved the following steps:

(1) User Affiliation: Affiliation was declared by selecting the category “researcher”. This
classification affects access and offers context for data usage.

(2) NEISS Data Highlights: Access to summary reports of data was granted through this
section, with the selection of “Overview-All Products”.

(3) Archived Annual NEISS Data: An Excel file was used for storing the raw data acquired
for 2022.

(4) NEISS Estimates Query Builder: The NEISS Estimates Query Builder was utilized for
specialized data gathering, enabling comprehension of injury codes with few samples
(less than 100). Two files, “neiss2022.xlsx” and “DataDictionary042022.xlsx” were
retrieved from the NEISS database from their website [2]. The “neiss2022.xlsx” file,
which contains three distinct worksheets, namely, “NEISS_2022”, “NEISS_FMT”, and
“Code Details”, was utilized. Figure 1 shows a sample record, where the “Narrative_1”
column was used as independent variable (X), and the “Diagnosis” column as the
dependent variable (Y). The NEISS dataset’s injury codes were decoded using the file
“DataDictionary042022.xlsx”. The document provided the meaning behind each digit
in the injury code, including the kind of injury, body part, gender, and product type.
Since the dataset was already processed, it did not contain any missing records.

There were a total of 323,344 data points, encompassing 30 unique codes. Table 1 lists
the number of injury cases and description for each injury code in the NEISS data used for
this research.
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Age Gender Race Body Part Diagnosis Product Narrative_1 

34 2 1 82 59 478 
34YOF WAS WASHING A GLASS THAT BROKE. DX: 
LACERATION TO RIGHT HAND 

11 2 1 82 53 3286 
11YOF INVOLVED IN FOUR WHEELER TURNO-
VER. DX: CONTUSION WITH ABRASION LEFT 
HAND. 

12 2 1 30 53 3286 
12YOF WITH MVA, WAS PASSENGER ON A FOUR 
WHEELER. DX: CONTUSION SHOULDER, CONTU-
SION RIGHT KNEE. 

38 2 1 75 62 698 

38YOF, FELL X 4 DAYS GETTING OUT OF HOT 
TUB, SLIPPED HIT RT SIDE OF HEAD, + LOC DX; 
FALL, HEADACHE, CLOSED HEAD INJURY, RT 
KNEE CONTUSION, LT HAND CONTUSION 

Figure 1. Sample records in NEISS data files. 
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27 71 Other/Not Stated 61,220 
28 72 Avulsion 2487 
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Table 1. Data description of different diagnosis codes.

Sr. No Diagnosis Code Cause Data Samples

1 41 Ingestion 3884

2 42 Aspiration 327

3 46 Burns, Electrical 79

4 47 Burns, Not Specified 94

5 48 Burns, Scald 2280

6 49 Burns, Chemical 455

7 50 Amputation 643

8 51 Burns, Thermal 2495

9 52 Concussions 6438

10 53 Contusions, Abrasions 34,775

11 54 Crushing 668

12 55 Dislocation 5113

13 56 Foreign Body 7028

14 57 Fracture 53,849

15 58 Hematoma 4453

16 59 Laceration 50,991

17 60 Dental Injury 1759

18 61 Nerve Damage 1414

19 62 Internal Organ Injury 42,451

20 63 Puncture 2467

21 64 Strain, Sprain 28,840

22 65 Anoxia 940

23 66 Hemorrhage 731

24 67 Electric Shock 192

25 68 Poisoning 4541

26 69 Submersion 380

27 71 Other/Not Stated 61,220



AI 2024, 5 1688

Table 1. Cont.

Sr. No Diagnosis Code Cause Data Samples

28 72 Avulsion 2487

29 73 Burns, Radiation 135

30 74 Dermatitis, Conjunctivitis 2214

3.2. Text Preprocessing

The classification of injury narratives requires text preprocessing that converts unstruc-
tured text data into a more uniform and analytical structure. Text preprocessing involves
steps that are necessary to enhance the interpretability of the text by ML models. The
following preprocessing steps were carried out:

3.2.1. Tokenization

Narratives were divided into smaller units, such as words, phrases, and symbols. An-
alyzing and comprehending the structure and meaning of the text required this distinction.
The algorithm took into consideration a number of linguistic quirks and norms, such as
how contractions and multi-word sentences were handled.

3.2.2. Cleaning

Characters like punctuation, special symbols, and numerals that do not contribute
to the meaning of the text were eliminated. This kind of text cleaning reduced the text’s
complexity and made it useful for the analysis to concentrate on its important aspects.

3.2.3. Normalization and Stop Words Removal

In order to reduce data dimensionality and the influence of lexical diversity, the
text was standardized by changing its case to lowercase. The corpus was restructured
by eliminating high-frequency stop words to allow for a more focused analysis on more
significant words.

3.3. Training and Test Data

The preprocessed text was split into training and test datasets, following an 80/20 rule
to ensure effective training and generalizability. With the allocation of 80% of the data
to training, the model learned comprehensively and identified underlying patterns. The
remaining 20% was used for testing that assessed the model’s ability to generalize to
new data. This strategic division facilitated the detection of overfitting and underfitting,
enabling tuning to model complexity and training strategy. This approach optimized the
ML model’s performance across various injury codes and narrative contexts, enhancing its
real-world application potential.

3.4. Vectorization

The preprocessed data were transformed into numerical vectors using Count Vector-
izer (CV) and Term Frequency Inverse Document Frequency (TF-IDF) Transformer. Count
Vectorizer tokenized text narratives by assigning unique features to each word across the
corpus. This process enabled ML algorithms to understand the text’s content with greater
nuance. TF-IDF Transformer refined the textual data representation by calculating token
importance based on term frequency within a document and inverse document frequency
across the corpus [12]. The integration of CV and TF-IDF transformer accounted for the
frequency and uniqueness of words, enhancing document disparity and classification based
on thematic relevance [13].
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3.5. Machine Learning Models

Three well-established ML models, K-Nearest Neighbor, Random Forest, and Logistic
Regression that provided the output in form of prediction and associated likelihood of
correctness of prediction, were used.

K-Nearest Neighbor (KNN), a versatile ML model, was utilized for classification tasks.
It operates on the principle of instance-based learning, deferring its learning phase until a
prediction is required. The core principle of KNN involves predicting the label of a new data
point by assessing the “k” nearest labeled data points in the feature space. The “closeness” is
determined using a Euclidean distance metric. For this research, KNN was chosen due to its
effectiveness in big data analysis, owing to its simplicity and efficiency in handling massive
datasets [14]. For each narrative, KNN was utilized to predict both the top 1 and top 2 injury
classifications. This approach was adopted to provide a comprehensive understanding of
the potential injuries associated with each narrative.

The Random Forest algorithm is an ensemble learning strategy used for classification,
which enhances the decision tree method. RF integrates multiple trees to boost prediction
accuracy and model stability [15]. The RF model for multiclass classification trains each
tree in the forest to predict multiple classes. The training procedure creates bootstrap
samples from the original dataset, and each sample is utilized to build a decision tree. RF
addresses class imbalance by assigning class weights that effectively prioritize rarer classes.
The approach ensures that the less frequented categories are accurately represented in the
model’s decision-making process.

Logistic Regression effectively extends to multiclass text classification, modeling
the text sample’s likelihood for predefined categories, and efficiently using the high-
dimensional nature of textual data. The “multinomial” method was used to apply LR
to injury classification. The approach directly modeled the likelihoods of categories. The
model predicted that a given narrative belongs to each code using the SoftMax function,
extending the logistic function to multiple categories [16]. This was achieved by computing
a set of coefficients for each code that involved maximizing the likelihood of the observed
data under the model. These coefficients then determined the influence of each feature
on the likelihood of belonging to each category. The sign and magnitude of coefficients
indicated the direction and strength of the relationship between features and the log-odds
of category elements.

These models were implemented using scikit-learn, a Python library, with default
parameters; no hyperparameter tuning was performed.

3.6. Ensemble Modeling

Different ensemble models that integrated the predictive capabilities of the LR, KNN,
and RF [17] were developed. The ensemble approach combined the advantageous prop-
erties of classifiers into a framework to enhance prediction precision and reliability. The
four ensemble models developed were as follows: the KNN + LR model, the KNN + RF
model, the RF + LR model, and the KNN + LR + RF model. Combining KNN with LR, we
leveraged KNN’s ability to capture the nuances of local data structures and LR’s powerful
probabilistic classification ability. Similarly, making use of RF’s strength to handle complex
data interconnections and high dimensionality, with KNN’s locality-based insights, the
number of misclassifications by the individual models were minimized [18].

The third model along with LR used RF, known for its classification efficacy by ag-
gregating multiple decision trees to minimize overfitting while retaining accuracy. The
experimental setup and subsequent performance evaluation led to the development of
the fourth model [18]. The comprehensive approach integrated the strengths of the KNN,
LR, and RF models as depicted in Figure 2. By averaging the likelihood of each category,
this model effectively harnessed the combined strengths of the individual models for a
more accurate prediction of injury codes from narrative texts. This model enhanced the
understanding of injury codes even with limited data points. Unlike conventional strategies
that assign a single code to each narrative, these models are intended to predict two po-
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tential injury codes, reflecting the complex and diverse character of accidents, which often
involve more than one type of injury. The classifier analyzed narratives for probable injury
codes that targeted the top 1 (Top1) and top 2 (Top2) potential codes for each narrative.
These Top1 and 2 codes were selected based on the likelihood/probability of correctness of
prediction, provided as output by the model.
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Figure 2. Schematic diagram of ensemble model.

4. Results and Discussion

The performance of these models was quantified using three well-established perfor-
mance metrics used for machine learning: accuracy, precision, and recall, and the results
were reported for both the top 1 (Top1) and top 2 (Top2) predictions. In this context, the
Top1 accuracy represents the model’s ability to correctly predict the primary injury code,
while the Top2 accuracy extends this to include the model’s second guess, increasing the
chances of a correct prediction. Table 2 presents the performance evaluation metrics for
individual ML models of KNN, RF, and LR in predicting the top 1 and 2 injury codes. KNN
showed lower performance, particularly in precision and recall for the top 1 predictions,
which can be attributed to its sensitivity to noise and reliance on distance measures. In
contrast, RF and LR demonstrated superior accuracy in handling high-dimensional data,
particularly for the top 2 predictions. LR surpassed RF in precision and recall, benefiting
from its strength in binary outcomes and clear decision boundaries.

Table 2. Evaluation metrics of single machine learning models.

Performance
Metrics (%)

KNN RF LR

Top1 Top2 Top1 Top2 Top1 Top2

Accuracy 71.3 83.6 90.2 97.5 92.2 98.6

Precision 78.2 51.5 89.0 55.5 91.6 55.2

Recall 65.4 77.1 64.9 81.2 77.9 89.7

The RF model showed superior performance in the Top1 predictions across all metrics,
particularly in accuracy (90.19%) and precision (89.02%), indicating its effectiveness in
correctly identifying the primary injury code with high reliability. The LR model, however,
showed remarkable results in the Top2 accuracy (98.63%), suggesting its strength in pro-
viding a broader set of potential injury codes that likely include the correct one. Table 2
underscores the variability in model performance based on the metric considered, highlight-
ing the need to balance precision (the model’s ability to return relevant results) and recall
(the model’s ability to find all relevant instances) based on the application’s requirements.

The detailed performance of the LR model for each category is shown as a confusion
matrix in Figure 3. It depicts the LR model’s performance in multi-class variation, high-
lighting the model’s challenges in correctly classifying complex data due to high prediction
errors and misclassifications. The results indicate that using a single model, such as LR, is
ineffective for handling complex datasets, thus necessitating the need for ensemble models,
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which combine the strengths and capabilities of multiple algorithms to improve prediction
accuracy and reduce errors.

AI 2024, 5, FOR PEER REVIEW 8 
 

 
Figure 3. Confusion matrix of top-1 predictions of LR model. 

Tables 3 and 4 indicate the analysis of ensemble models, which combine predictions 
from multiple ML techniques to improve overall prediction accuracy. Table 3 indicates the 
Top1 prediction performance of ensemble models made from different combinations of 
KNN, RF, and LR. The RF + LR ensemble showed the highest accuracy (92.27%) and pre-
cision (92.01%), suggesting that this combination is particularly effective at identifying the 
primary injury code accurately. The combination of all three models (KNN + RF + LR) 
proved to be the most accurate, demonstrating a significant improvement in predictive 
modeling. The differences in precision and recall among various combinations (e.g., KNN 
+ LR, RF + LR) highlighted the unique advantages of each ensemble, owing to their stra-
tegic integration of base model capabilities. Compared to Table 2, showing that individual 
models had distinct performance limitations, the shift to ensemble methods was an effec-
tive strategy to overcome these challenges. While Table 2 presents the highest accuracy of 
92.19% (LR for top 1) and 98.63% (LR for top 2), the peak ensemble accuracy in Table 3 is 
97.36%. This improvement of up to 5.17% in the top 1 prediction confirms the effectiveness 
of combining different modeling techniques to address complex prediction tasks. 

Table 4 depicts the effectiveness of ensemble models in predicting the top two injury 
codes, representing a trend of improved accuracy and precision compared to single-model 
predictions. It shows that the ensemble methods address the limitations observed in single 
models within complex scenarios, as highlighted in Table 2. The KNN + RF + LR ensemble 
model excelled in accuracy, demonstrating its ability to integrate a broader range of rele-
vant features for more precise predictions. The ensemble model had a drop in precision, 
from a peak of 91.51% (LR in Table 2 for top 1) to 60.23%. Despite this, the high recall rate 
compensated for the precision decline, indicating that while the ensemble predicted more 
than one code, it reliably identified the correct ones due to its comprehensive approach. 
By integrating the diverse strengths of KNN, RF, and LR, the ensemble model effectively 
navigated the complexities of the data, ensuring that relevant predictions were not missed.  

  

Figure 3. Confusion matrix of top-1 predictions of LR model.

Tables 3 and 4 indicate the analysis of ensemble models, which combine predictions
from multiple ML techniques to improve overall prediction accuracy. Table 3 indicates the
Top1 prediction performance of ensemble models made from different combinations of KNN,
RF, and LR. The RF + LR ensemble showed the highest accuracy (92.27%) and precision
(92.01%), suggesting that this combination is particularly effective at identifying the primary
injury code accurately. The combination of all three models (KNN + RF + LR) proved to be
the most accurate, demonstrating a significant improvement in predictive modeling. The
differences in precision and recall among various combinations (e.g., KNN + LR, RF + LR)
highlighted the unique advantages of each ensemble, owing to their strategic integration of
base model capabilities. Compared to Table 2, showing that individual models had distinct
performance limitations, the shift to ensemble methods was an effective strategy to overcome
these challenges. While Table 2 presents the highest accuracy of 92.19% (LR for top 1) and
98.63% (LR for top 2), the peak ensemble accuracy in Table 3 is 97.36%. This improvement of
up to 5.17% in the top 1 prediction confirms the effectiveness of combining different modeling
techniques to address complex prediction tasks.

Table 3. Evaluation metrics of ensemble models—Top one prediction

Performance
Metrics (%)

Ensemble Models

KNN + LR KNN + RF RF + LR KNN + RF + LR

Accuracy 90.47 83.88 92.27 97.36

Precision 89.66 86.54 92.01 89.08

Recall 77.50 70.14 75.99 76.99
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Table 4. Evaluation metrics of ensemble models—Top two predictions.

Performance
Metrics (%)

Ensemble Models

KNN + LR KNN + RF RF + LR KNN + RF + LR

Accuracy 97.12 95.16 98.50 99.50

Precision 53.04 53.30 59.50 60.23

Recall 88.54 83.58 88.04 88.03

Table 4 depicts the effectiveness of ensemble models in predicting the top two injury
codes, representing a trend of improved accuracy and precision compared to single-model
predictions. It shows that the ensemble methods address the limitations observed in single
models within complex scenarios, as highlighted in Table 2. The KNN + RF + LR ensemble
model excelled in accuracy, demonstrating its ability to integrate a broader range of relevant
features for more precise predictions. The ensemble model had a drop in precision, from
a peak of 91.51% (LR in Table 2 for top 1) to 60.23%. Despite this, the high recall rate
compensated for the precision decline, indicating that while the ensemble predicted more
than one code, it reliably identified the correct ones due to its comprehensive approach.
By integrating the diverse strengths of KNN, RF, and LR, the ensemble model effectively
navigated the complexities of the data, ensuring that relevant predictions were not missed.

Figure 4 shows the confusion matrix, illustrating the performance of the ensemble
model with KNN, RF, and LR. The values along the diagonal are closer to zero, indicating
more accurate predictions compared to the LR model alone. Misclassifications, represented
by off-diagonal values, are reduced, suggesting that the ensemble model handles the data
efficiently, overall, improving the accuracy and reducing extreme prediction errors.
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5. Conclusions

We developed ensemble models that enhanced the predictive performance across
a number of criteria by combining three of the most popular ML models: K-Nearest
Neighbor, Random Forest, and Logistic Regression. Our results indicate that ensemble
models, especially the KNN +RF + LR combination, are highly effective for injury code
prediction using NEISS data, providing a robust tool for accurately identifying injury types
from narrative reports. The inclusion of both the Top1 and Top2 prediction evaluations
offers a comprehensive view of each model’s performance, emphasizing the trade-offs
between capturing the most likely injury code and ensuring broader coverage to include
possible alternatives.

The combined KNN, LR, and RF model indicated an accuracy of as high as 99.50% for
the top two injury predictions, while the KNN + LR ensemble model showcased a robust
predictive power with a high accuracy of 90.47%. Our results demonstrate that ensemble
machine learning is a useful tool for enhancing clinical accident narrative classification,
particularly when individual ML models do not yield a very high accuracy. Future research
in clinical narrative analysis can utilize the presented ensemble ML models framework for
decision support in injury surveillance and prevention.

The proposed ensemble models’ ability to make multiple predictions enhanced relia-
bility and also ensured that cases with fewer samples were considered, which might be
overlooked by a conventional (single) prediction model due to underfitting. In real-world
applications, this is particularly valuable because certain injury types or scenarios may be
underrepresented in the data, making it challenging for a single model to make accurate
predictions. The ensemble models address this issue by combining the strengths of multiple
algorithms, ensuring that even rare or less common cases are captured in predictions. The
ensemble model approach can, thus, aid in emergency response by accurately predicting
and prioritizing critical injuries that are not frequently reported, ensuring appropriate
resources are allocated in real-world applications.

Our findings demonstrate the potential of ensemble models to mitigate data scarcity,
laying the groundwork for methodological advancements. These probability-based ensem-
ble models can be deployed to predict injury trends, identify emerging risks, and improve
workplace safety. This application of AI-driven text analysis enables a comprehensive
understanding of injury causation and will help in informed preventive measures, thus
promoting safety and public health on a broader scale. This approach can also be applied
to other predictive modeling scenarios, where data imbalance is an issue, ensuring that
cases with lower sample sizes and less frequent occurrences are given appropriate consid-
eration. The proposed ensemble model has potential for advancing predictive analytics in
healthcare, public health, and high-risk industries.
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