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Abstract: Background: Distantly supervised relation extraction (DSRE) aims to identify semantic
relations in large-scale texts automatically labeled via knowledge base alignment. It has garnered
significant attention due to its high efficiency, but existing methods are plagued by noise at both
the word and sentence level and fail to address these issues adequately. The former level of noise
arises from the large proportion of irrelevant words within sentences, while noise at the latter level is
caused by inaccurate relation labels for various sentences. Method: We propose a novel multi-level
noise reduction neural network (MLNRNN) to tackle both issues by mitigating the impact of multi-
level noise. We first build an iterative keyword semantic aggregator (IKSA) to remove noisy words,
and capture distinctive features of sentences by aggregating the information of keywords. Next, we
implement multi-objective multi-instance learning (MOMIL) to reduce the impact of incorrect labels in
sentences by identifying the cluster of correctly labeled instances. Meanwhile, we leverage mislabeled
sentences with cross-level contrastive learning (CCL) to further enhance the classification capability
of the extractor. Results: Comprehensive experimental results on two DSRE benchmark datasets
demonstrated that the MLNRNN outperformed state-of-the-art methods for distantly supervised
relation extraction in almost all cases. Conclusions: The proposed MLNRNN effectively addresses
both word- and sentence-level noise, providing a significant improvement in relation extraction
performance under distant supervision.
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1. Introduction

Relation extraction (RE) aims to identify semantic relationships between entity pairs
from sentences of large corpora, which is a crucial task in the fields of natural language
processing (NLP). Since it has become a foundation for widespread downstream applica-
tions such as question answering [1], knowledge graph [2], and information retrieval [3],
relation extraction has garnered significant attention over the past decade.

Conventional relation extraction methods adopt supervised training [4] and are con-
strained by a lack of large-scale manually labeled data. To reduce the high cost of human
labor, the distant supervised method was proposed [5], which automatically generates
training data by aligning a knowledge base (e.g., Freebase) with plain texts (e.g., New York
Times). Thus, the objective of distant supervision relation extraction (DSRE) is to train an
extractor with these automatically generated training data to identify semantic relations
from large-scale text corpora. Specifically, this method relies on the strong assumption
that, if an entity pair in the knowledge base participates in a relation, then all sentences
mentioning these two entities will express that relation. Table 1 provides an example of
the alignment process. As illustrated, alignment may lead to incorrect labeling problems,
which refers to sentence-level noise. For example, sentences S2 and S3 do not express the
relationship of ’founders’ but are still in the bag. Apart from sentence-level noise, distantly
supervised methods also suffer from word-level noise, which arises from the presence
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of irrelevant words within a sentence. The noisy words inside a sentence diminish the
importance of the keywords that help relation extractors discriminate relations. Therefore,
it is necessary to address this multilevel noise to train an efficient relation extractor.

Table 1. The alignment process between KB and plain texts.

Relation triple in KB business/company/founders (Amazon, Jeffrey P. Bezos)

Sentences in plain texts

S1: Virtual world proponents, which include a roster of Linden Labs
investors, among whom is Jeffrey P. Bezos, the founder of Amazon
S2: Jeffrey P. Bezos, the Amazon chief executive, gave a speech
about the early stages of technology.
S3: Among the speakers will be Jeffrey P. Bezos, below, of Ama-
zon, who is expected to talk about selling more Web services to
business customers.

First, alleviating the impact of noisy words while identifying the significant words
is challenging for relation extraction. For instance, as shown in Table 1, the relationship
expressed in S1 corresponds to the label. However, the phrase ‘Jeffrey P. Bezos, the founder
of Amazon’ alone suffices to denote the relation, which is much shorter than the sentence.
Moreover, according to Liu et al. [6], word-level noise is widespread in datasets such as
NYT-10, with approximately 12 noisy words present in each sentence. Several methods have
been proposed for the sake of removing noisy words, such as dependency tree parser [6,7]
and word-level attention [8–11] methods. The former is limited by fixed syntactic patterns,
making it unable to handle sentences from large-scale corpora. The latter can be broadly
divided into two categories. The first category applies the selective attention mechanism,
as previous works demonstrated the effectiveness of relationship query vectors [9,12]. They
calculate the relevance between words and entity pairs or single relation query vectors
directly to determine the weight of each word. However, these approaches are somewhat
coarse, as the initially input pretrained word vectors are insufficiently precise to reflect the
semantics of the words in their specific sentence context. For example, Table 2 illustrates the
correlation (each row sums to 1) between the embeddings of each word and the entity pair
during the training of previous work using sentence S1 from Table 1. It can be observed
that the weights of the keywords were not clearly highlighted, which implies that word
noise has not been effectively removed, and it would be difficult to accurately enhance
these weights during subsequent training processes without providing proper guidance
to the extractor. The second category [13–15], in contrast, adopts BERT [16] as a sentence
encoder, which applies the self-attention mechanism to each word in the sentence. Such
a computationally intensive approach enables it to capture intricate dependencies and
relationships between any two words in a sentence. However, in the relation extraction
task, it is sufficient to capture only the features pertinent to the relationships between entity
pairs, rather than other information within the sentence. Hence, the existing methods
either introduce additional computational complexity or fail to accurately extract relation
features.

Table 2. Weights (correlation between words and entity pair) of words in S1 during training.

Words in S1 Virtual World Proponents . . . Jeffrey P. Bezos . . . Founder . . . Amazon

Weights 0.058 0.052 . . . 0.105 . . . 0.062 . . . 0.101

Second, addressing the noise from the incorrect labels generated by distant supervi-
sion has long been a challenge for DSRE. Multi-instance learning (MIL) and its variants
have been proposed to address the issue of sentence-level noise. For the sake of simplicity,
sentences labeled with correct relations are called true instances, and false instances repre-
sent incorrectly labeled ones. They generate the representation of a bag by selecting the
most likely sentence [17] or computing the weighted sum of the sentences in the bag [18],
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and several recent works have utilized multi-level attention mechanisms to highlight
high-quality features and de-emphasize false ones [19–21]. These methods either omit
some true instances or neglect the positive effect of false instances. Thus, we contend
that both problems should be considered in MIL. For true instances, when constructing
bag-level representations, sentence-level features with similar semantics (true instances)
should be emphasized, while those with different semantics should be suppressed. If the
model can identify more true instances, this indicates that it has learned a broader range of
syntactic patterns and richer features. Consequently, the bag representation refined from
these instances will not only be accurate, but also more comprehensive. Otherwise, the
information contained in bag-level representations may be insufficiently representative.
As for the false instances, recent studies [22–24] have demonstrated that a considerable
number of false instances are abandoned during the training process due to being treated
as non-informative noise sentences. Specifically, no matter how many sentences a bag
contains, the bag-level representation is formed by the weighted sum of all sentences,
where the weights sum to 1. However, the majority of sentences have very low weights,
meaning they hardly participate in the final training. Thus, the information contained in
these numerous discarded sentences is squandered. If effectively utilized, it could signifi-
cantly improve the performance of our model. Some efforts have been made to utilize false
instances [23–25], but they focused solely on improving the generalization or robustness of
the models, overlooking the first issue. We suggest that the information provided by false
instances can assist the extractor in better identifying true instances, thereby allowing both
issues to be addressed in an interactive manner. Therefore, an advanced multi-instance
learning method ought to strive to thoroughly exploit true instances, while effectively
utilizing the useful information provided by false instances.

In this article, both word-level and sentence-level noise are carefully considered, and
a multi-level noise reduction neural network (MLNRNN) is proposed to jointly address
the aforementioned challenges. For the first challenge, we design an iterative keyword
semantic aggregator (IKSA), which adequately tackles word-level noise with reasonable
computational cost. We leverage the entity pair information and the global context informa-
tion of the sentence to capture a relation query vector for each sentence, as the relationship
expressed by the same pair of entities can vary across different sentences. This vector is then
used as an enhancement of the original input to help exploit the global dependency [9] of
each word for initial denoising through context-to-relation attention. Subsequently, we take
this relation vector as guidance to further integrate the word information that is crucial to
relationships, to form the ultimate discriminative feature of a sentence. During this iterative
process, we also incorporate self-attention layers to exploit pairwise dependencies [26],
enabling a comprehensive extraction of relation features. For the second challenge, we
propose multi-objective multi-instance learning to identify all true instances, while simulta-
neously properly utilizing false instances. In MOMIL, sentences within a bag are divided
into true and false sets based on the representation assignment algorithm, and each set is
then used for different training objectives. We designate the most likely sentence and its
nearest neighbors in the relation space as true instances, while the remaining sentences are
classified as false instances. Then, we use the true instances to train the extractor with the
bag label after the semantic enhancement operation to refine the features. Meanwhile, the
false instances are fed into our cross-level contrast learning (CCL) module, utilizing both
sentence-level and bag-level information to construct positive and negative instance pairs,
refining features that fully capture the sentence semantics and interactively contribute to
the construction of a bag-level representation. These are the two objectives MOMIL aims
to achieve. In particular, the goal of CCL is that the instances actually sharing the same
relational triples (i.e., positive pairs) should be close in the relation space, while the represen-
tations of instances with different relational triples (i.e., negative pairs) should be far apart.
Therefore, false instances, which have been treated inappropriately in previous works, can
have a positive influence on identifying true instances in the MLNRNN, and both true and
false instances contribute to strengthening the relation features collaboratively.
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In summary, we make the following major contributions in this article:

• In this work, we propose a novel neural network named MLNRNN to jointly handle
multi-level noise for relation extraction. The first module, the IKSA, continuously
refines and aggregates keyword semantics within a specific sentence, while removing
noisy words and ultimately capturing salient relation features.

• The next module, MOMIL, is designed to alleviate the influence of sentence-level
noise by identifying all true instances and enhancing their features. Moreover, we
leverage false instances with cross-level contrastive learning to further improve the
classification capability of the extractor in MOMIL.

• Our experiments on two DSRE benchmark datasets (NYT-10 and NYT-16) demon-
strated the improved performance of our approach compared to seven state-of-the-
art methods.

2. Related Work
2.1. Neural Relation Extraction

Neural networks have proven to be useful methods for handling a wide range of
NLP tasks [27,28], due to their ability to extract semantic meaning without hand-designed
features. Convolutional neural networks (CNN) and recurrent neural networks (RNN)
have been shown to be effective for relation extraction [29–31]. Built on a CNN, the classifi-
cation by ranking CNN (CR-CNN) computed a distributed vector representation of text
by minimizing the pairwise ranking loss function, and implemented relation classification
by matching such a vector representation with the relation space [29]. Subsequently, a
piece-wise convolution neural network (PCNN) [17] was proposed to maintain more dis-
criminative features with a convolutional operation and piecewise max pooling. Moreover,
a multi-level attention-based convolution neural network was proposed to capture both
primary attention at the input level, centered on the target entities, and secondary pooling
attention, centered on the target relations. Building on the RNN, bidirectional long-short-
term memory (Bi-LSTM) leverages the inherent dependencies in each entity pair to predict
relationships. The bidirectional gated recurrent unit (Bi-GRU) combined a gated recurrent
unit with a word-level attention mechanism to acquire the semantic relation features of
sentences [30]. Both of the aforementioned neural network architectures have inherent
issues when modeling long sequences. CNNs fail to capture long-range dependencies and
are ineffective in handling word noise. Recurrent network architectures have long been
plagued by the problem of forgetting long-term information.

To better remove noisy words, the dependency path between entities was proposed
and demonstrated to be effective in [32,33], but this was limited in handling a large number
of relations, due to the constraints of fixed syntactic patterns. Existing methods that apply
an attention mechanism at word-level treat the words in a sentence as isolated, without con-
sidering their specific semantic information within the sentence. Recently, several methods
have taken the BERT model as their sentence encoder, which employs a transformer-based
architecture that allows it to capture nuanced meanings and dependencies in text at word
level; it can adapt to various NLP tasks but results in significant computational overheads.
By contrast, we propose an iterative method that performs denoising and extraction of
sentence relation features based on the interaction of word information, with the guidance
of a sentence-specific relation vector, rather than simply using basic word-level attention
and combining this with other complex models as auxiliary information, which tends to
consume a large amount of computation.

2.2. Multi-Instance Learning

To mitigate the effects of mislabeled sentences in automatically generated datasets
for distantly supervised relation extraction, neural relation extractors were combined with
multi-instance learning algorithms in [17,18]. A PCNN selects the sentence that is most
likely to match the relation of the bag and ignores the remaining sentences. Selective
attention over instances (ATT) employs an attention mechanism to assign distinct weights
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to individual sentences within a bag. Relation extraction with joint label embedding (RELE)
leverages external knowledge to calculate the weights of sentences by utilizing advanced
learned label embeddings [34]. Cross-relation cross-bag selective attention (C2SA) [12] and
intra-bag and inter-bag attentions (Intra-Inter Bag) [19] tackle negative instances at both
bag level and sentence level. To excavate potentially useful information, the soft-label (SL)
model adopted a dynamic correction mechanism to adjust inaccurate labels throughout
the training process [35]. Deep clustering-based relation extraction (DCRE) employed an
unsupervised deep clustering approach to assign reliable labels to negative instances [36].
Collaborative adversarial training revitalizes false instances from MIL by leveraging virtual
adversarial techniques, thus improving data utilization [24]. False negative adversarial
networks (FAN) harmonizes false-negative samples into the cohesive feature space, creating
a unified representation that allows the effective assignment of pseudo-labels [37].

Although the aforementioned methods can address both issues separately, they have
not been considered simultaneously. Considering that both issues affect the model’s
performance to varying degrees and can be viewed as different facets of multi-instance
learning, they should be addressed concurrently. Thus, we proposed MOMIL to tackle both
issues in an interactive manner. We explore true instances as thoroughly as possible by
selecting the most likely sentence and its nearest neighbors, and for the sentences that are
not selected, we use cross-level contrastive learning to obtain more refined features to help
the extractor identify more true instances.

In addition, artificial intelligence (AI) security issues are becoming increasingly critical,
especially in the context of deep learning models in DSRE. Recent works [24,38,39] have
shown that neural networks are vulnerable to adversarial attacks, where small perturba-
tions in input data can cause significant misclassifications, either by misleading the model
into classifying the input as a specific target class or as an incorrect class in untargeted
attacks. Thus, adversarial training has emerged as an effective approach to enhance the
robustness of neural networks against such perturbations. By incorporating adversarial
examples during the training process, models can learn to resist these attacks and maintain
a stable performance, even when subjected to adversarial interference.

3. Materials and Methods

In the distantly supervised relation extraction paradigm, a bag is formed by grouping
all sentences annotated with the same relation triple, and each sentence is referred to as an
instance. A relation triple is represented as [head, relation, tail], where head refers to the
head entity and tail refers to the tail entity. There are M bags {B1, . . . , BM} in the training
set and the ith bag contains N instances Bi = {Si

1, . . . , Si
N}(i = 1, . . . , M). The purpose

of relation extraction is to predict the label of unlabeled bags. As shown in the overall
framework of the model in Figure 1, our method can be divided into two parts:

Iterative Keyword Semantic Aggregator. Given an instance S∗ with two target entities, the
IKSA encodes it into a high-quality sentence representation using the semantics of salient
words with a novel neural network, which is more accurate and more and efficient than
previous sentence encoders.

Multi-Objective Multi-instance Learning. Given a bag of instances B∗ and two target
entities, we handle true instances and false ones in different ways, to collaboratively form
higher-quality bag-level representations for training the extractor.

3.1. Iterative Keyword Semantic Aggregator

The proposed iterative keyword semantic aggregator (IKSA) utilizes the information of
the entity pair and global sentence information to capture a specific relation vector for each
sentence, which is then used to remove noisy words and for semantic aggregation. Due
to the fact that pairwise and global dependencies within the sentence ought to be jointly
considered, we first utilize context-to-relation attention to explore the global dependency
of each word on the entire sentence within the context of the relation vector and entity
pair information, serving as an initial denoising step. Then, we aggregate the semantics of
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the keywords guided by this information, to form the distinctive sentence representation.
Furthermore, we apply standard token-to-token self-attention to produce a context-aware
representation for each token in light of its syntactic dependencies on other tokens from the
same sequence, which is computationally expensive but necessary. Finally, we repeat the
last two steps to iteratively derive the refined semantic relation features, and the detailed
structure of the IKSA is shown in Figure 2.

... ...... ...

IKSA IKSA IKSA...

... ... ...

sentence 

embeddings

sentence 

representations

MOMIL

bag 

representations

MOMIL MOMIL...

...

Figure 1. Overall framework of the proposed multi-level noise reduction model.The dashed arrows
indicate the utilization of representations from other bags in CCL. Different colors are used to
distinguish between the variations in the input sentence embeddings.

global information 

Average 
Pooling

Entity-Relation Self-Attention Layer

Entity-Relation Interaction Layer

relation query matrix 

latent relation vector Context-to-relation Attention Layer

distinctive sentence representation 

Keyword Semantic Aggregation

Multi-head Self-Attention Layer

iterative refinment

Figure 2. The detailed structure of the IKSA, illustrating the procedure for handling a sentence, and
the dashed part represents the iterative step of this module.
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Input Representation. Tokens in sentences should be embedded into distributed rep-
resentations for mathematical operations in neural networks [40]. For the input tokens
{t1, . . . , th, . . . , tt, . . . , tm} in a sentence, where th and tt represent the head entity and tail
entity, respectively, we train the token ti to vector xi ∈ Rdw in a priori manner with the use
of GloVe [40].The parameter dw indicates the dimension of the word. In addition, to encode
the sentence in an entity-aware manner, relative position embedding [17] is leveraged to
represent the position information in the sentence. For example, the relative distances from
the token "founder" to the head entity [Jeffery P. Bezos] and the tail entity [Amazon] are
−2 and 2, respectively, in sentence S1 from Table 1. Finally, the representation of an input
token is the concatenation of word embedding and position embedding. We denote all
the input tokens in a sentence as an input matrix X = {x1, . . . , xh, . . . , xt, . . . , xm}, where
xi ∈ R1×dx (dx = dw + 2 ∗ dp) and m is the number of tokens in a sentence.

Capture Sentence-specific Relation Vector. Inspired by TransE [41], which treats the
embedding representation of the relationship between the two entities as a transformation
of the embedding representations of the two entities: h + r ≈ t, we argue that xt − xh can
only approximate part of the relation between the two entities. However, the same entity
pair may correspond to different relationships in different contexts, and the embeddings of
the entities are fixed. Therefore, the IKSA module considers the potential relationships of
entities within this context, to obtain a latent vector r between the entity pair.

Specifically, we first perform a compression operation by leveraging the global average
pooling, which retains the overall context information S ∈ R1×m,

S = [
1
dx

dx

∑
j=1

X1,j, . . . ,
1
dx

dx

∑
j=1

Xm,j], (1)

where Xi,j indicates the j-th dimension of the i-th word’s features in the sentence input.
Subsequently, the rough relation xt − xh and the global contextual information S are
concatenated with the embeddings of the entity pair to be the input of the entity-relation
self-attention layer:

uh = tanh(Wp[xh; xt − xh; S]T), (2)

ut = tanh(Wp[xt; xt − xh; S]T), (3)

where tanh(·) represents the tanh non-linear function, Wp ∈ Rrhid×(2dx+m) is the weight
matrix, and rhid is the dimension of the relation vector. Next, this section designs an entity-
relation interaction layer, which uses a learnable relation query matrix R ∈ Rt×rhid with t
relations to interact with [uh, ut], obtaining a weight matrix A ∈ Rt×2 for the two entities
regarding each relation:

E = R[uh, ut], (4)

Aij =
exp(Eij)

∑t
k exp(Ekj)

. (5)

In other words, each row of the matrix R is a query vector, which is a representation of
a specific type of relation. Since the potential relationship ought to consider both entities, a
weight αj is assigned to each relation:

αj =
2

∑
j=1

Aij, (6)

The latent relation vector r is obtained using the weighted sum of all relations, serving
as a compact representation of relations for a specific sentence:

r =
t

∑
i=1

αiRi, (7)

where Ri is the i-th row of matrix R. The resultant latent relation vector r corresponds
to the relation features of its sentence, and is the latent representation of the relationship
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expressed by the sentence, which will also be utilized in the forthcoming denoising and
semantic aggregation processes.

Context-to-relation Attention. To exploit the global dependencies of each word in
expressing a relation, we first utilize the acquired relation vector r and the information of the
entity pair to enhance the original input X, transforming it into X̃ = {x̃1, . . . , x̃h, . . . , x̃t, . . . , x̃m},
x̃i = [xi; xh; xt; r] ∈ R1×(3dx+rhid). Following this is the operation to obtain the dependency of
each token from the enhanced input:

V = σ(W2
v δ(W1

v X̃T + b1
v) + b2

v), (8)

where W1
v ∈ Rdhid×(3dx+rhid) and W2

v ∈ Rdx×dhid represent two weight matrices, and
b1

v ∈ Rdhid and b2
v ∈ Rdx represent their bias terms, respectively, for calculating V ∈ Rdx×m.

Accordingly, we leverage a sigmoid active function σ(·) to set the output in the range
between 0 and 1, and δ(·) refers to the Gaussian error linear unit (GELU) function, as the
input of neurons tends to follow a normal distribution. According to the dimension of V, it
computes a score for each feature of each word, so it can select the features that can best
describe the word’s relational meaning in the enhanced sentence:

H = VT ⊙ X, (9)

where ⊙ represents element-wise multiplication. Hence, such information is preserved in
the output H = {h1, . . . , hm} ∈ Rm×dx for further relation feature extraction.

Relation Semantic Aggregation and Word Interaction. To obtain accurate relation features,
we perform keyword semantic extraction and aggregation in this section. Additionally, we
consider the specific meanings of the same word in different contexts through word-level
interactions. In other words, after the semantic extraction of each keyword, we update
the word vectors using sequence self-attention to more comprehensively form a sentence
representation. Preliminarily, we project [xh; r] and [xt; r] into the vector space of word
embeddings to serve as the two target vectors [qh, qt] ∈ R2×dx for information aggregation.
As a result, we select words that are relatively relevant to the target vectors. The relevancy
matrix A

′ ∈ R2×m is computed with the following operation:

E
′
= [qh, qt]HT , (10)

A
′
ij =

exp(E
′
ij)

∑t
k exp(E′

kj)
. (11)

For the sake of selecting the top k tokens, we compute the weights α for each token
with a relevance matrix using equation αj = ∑2

i=1 A
′
ij. Meanwhile, the aggregated relation

features are obtained:
[Qh, Qt] = A

′
H. (12)

It is necessary to note that the weights of the entity pair are naturally higher when
calculating relevance, because an accurate relational feature must include the information
of the entity pair along with the words describing the relationship. To avoid misleading
the extractor, the aggregated Q̃ = [Qh, Qt] does not incorporate information from qh or qt
in a weighted manner, as the relation vector contained is not inherently presented in the
sentence itself. Then, the aggregated information is activated by two linear transformations
with a ReLU activation in between:

Q = max(0, W1
q Q̃ + b1

q)W
2
q + b2

q , (13)

where W1
q and W2

q are learnable parameters that keep Q the same shape of Q̃. To implement
word interaction, multi-head self-attention (MHSA) is utilized to obtain the dependencies
between every two tokens in H. For clarity, we first give the definition of the dot-product
attention mechanism:
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Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (14)

where Q, K, and V represent the query, key, and value, respectively. Note that they are
all derived from H through three different transformation matrices in IKSA: Q = HWQ,
K = HWK, V = HWV . Subsequently, these three matrices can each be replaced by n
matrices of the same shape to form n heads:

headi = Attention(Qi, Ki, Vi), (15)

MHSA(Q, K, V) = Concat(head1, . . . , headn)WO. (16)

Based on the fact that the MHSA keeps the input shape the same as the output
shape, when the word interaction is insufficient, we repeat the above operations in this
section to obtain more comprehensive semantics for each word and more refined relation
features. For example, the input of the i-th relation semantic aggregation is Hi−1, [Qi−1

h ; r],
and [Qi−1

t ; r]. Correspondingly, the skip connection is taken into account of in the output of
each operation:

Qj+1 = Qj + A
′ j H j. (17)

The residual information can facilitate the deeper layer training of the extractor, and
i represents the i-th iterative process. In addition, layer normalization is also considered
during different iterations to stabilize and accelerate the training process. Eventually, a dis-
tinctive sentence representation Sr ∈ Rdr is fitted by a neural layer in following operation:

Sr = W1
r (Q

i
h)

T + W2
r (Q

i
t)

T + br, (18)

where W1
r , W2

r ∈ Rdr×dx , and Qi
h and Qi

t are the final keyword semantic aggregations for
the head and tail entities, respectively.

3.2. Multi-Objective Multi-Instance Learning

In this section, we present our proposed multi-objective multi-instance learning
(MOMIL) module, as shown in Figure 3, to alleviate the influence of sentence-level noise.
We focus on handling multiple relations within a bag of sentences, taking into account both
the bag labels and the potential relations of false instances.

all sentence representations
 in the bag 

Representation Assignment

nearer instances

Semantic Enhancement

bag representation

positive pair

seed

negative pair

Figure 3. Overview of multi-objective multi-instance learning. The sentence representations high-
lighted in blue represent the selected true instances, while the others are false instances.
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Given a sentence representation Sr produced by the IKSA, we select the instance that
best matches the prediction relation r as the seed true instance. Intuitively, we argue that in-
stances with a distance less than a certain threshold Thd from the seed true instance express
the same relation. In other words, instances that express the same relations can be clustered
in a relation space. Under such an assumption, an appropriate threshold and a proper
clustering algorithm are crucial. Otherwise, instances expressing different relationships
might be clustered together, or other true instances might be missed. Therefore, we chose a
tight threshold along with a greedy algorithm, as shown in Algorithm 1, to avoid omitting
true instances.

Given two sentence representations Sa
r and Sb

r , we encode them into probability dis-
tributions pa and pb. We adopt a JS distance of (pa, pb) as the distance between pa and pb,
which is computed using the Jensen–Shannon (JS) divergence:

DJS(pa ∥ pb) =
1
2

DKL(pa ∥ pb) +
1
2

DKL(pb ∥ pa), (19)

The JS divergence is the symmetrized and normalized version of the Kullback–Leibler
(KL) divergence:

DKL(pa ∥ pb) =
t

∑
i

pa(i) log
pa(i)
pb(i)

, (20)

whose advantages can make calculations and threshold adjustments more convenient.
Specifically, the value of the JS divergence ranges from 0 to 1; the closer it is to 0, the more
similar the two distributions are, while the value of the KL divergence has no upper limit.

With the representation assignment algorithm, all instances in a bag are categorized
into true and false sets. Referring to the concept from Zhou et al. [42], semantic enhance-
ment is applied to true instances to distill more similar relation features in these sentence
representations, forming an ultimate accurate bag representation for training. The weight
of each instance is determined based on its correlation with other instances:

ei = ∑
j=1,2,...,k,j ̸=i

Si
r

∥ Si
r ∥2

(
Sj

r

∥ Sj
r ∥2

)T , (21)

where k is the size of set V, ∥ · ∥2 denotes the Euclidean norm (or 2-norm) of a vector,
and the bag representation Br is obtained using the weighted sum of these true instances
after softmax. In this way, features that are less relevant to the relation will be further
filtered out. Unlike previous methods that directly assign weights to sentences in a bag,
we refine the features after identifying the set of true instances. Our approach prevents
any single sentence that best aligns with the label relationship from dominating with an
excessively high weight. Instead, we focus on extracting similar features from the set of
positive instances, leading to a more even distribution of weights and, consequently, a more
comprehensive and accurate representation of the bag.

Relation Prediction. To make the use of comprehensive bag feature a fully connected
layer, a tanh(·) activation function is adopted, which aims to perform a nonlinear transfor-
mation and map Br to the relation prediction space o:

o = WBtanh(Br) + bB (22)

where WG ∈ Rt×dr and bG ∈ Rt represent the weight and the bias. Then, a softmax classifier
is utilized to predict the entity relation p(r|Br; θ):

p(r|Br; θ) =
exp(oi)

∑t
j=1 exp(oj)

. (23)
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Algorithm 1 Representation assignment

Require: sentence representations in a bag Bi, threshold Thd
Ensure: true instances set V

1: Add the most possible true instance S∗
r to set V

2: Initialize the queue Q with S∗
r

3: while Q ̸= ∅ do
4: Dequeue the first element Sr from Q
5: Compute the distances di between Sr and instances in [B − V]
6: if di < Thd then
7: Add the corresponding Si

r to V
8: Enqueue Si

r into Q
9: end if

10: end while

We define the objective of classification using a cross-entropy function, as follows:

LCE(θ) = − 1
M

M

∑
i=1

logp(ri|Bi
r; θ), (24)

where M is the number of bags.
Cross-level Contrastive Learning. For false instances, we implement cross-level con-

trastive learning to exploit useful information within them. Previous works have shown
the effectiveness of utilizing cross-level information. Thus, for the i-th false instance Si

r,
we chose the representation of other bags Bt

r(t ̸= i) as its negative pair, since is has been
denoised and naturally has a different relation triple from false instances within the original
bag. However, it is not clear to which other instance expresses the same relationship as
the false instance Si

r when constructing a positive pair. Therefore, we generate a positive
instance with dynamic gradient perturbations ptadv to solve this issue, since a previous
work [43] proved its effectiveness in creating a pseudo-positive sample with minimal
deviation from the original sample, making sure that they are sufficiently similar:

S̃i
r = Si

r + ptadvi
= Si

r + ε
gi

∥ gi ∥2
(25)

where gi = ∇Bi
r
LCE(Bi

r; θ) is the gradient from the loss function, ε is a hyperparameter
that regulates the degree of disturbance. Figure 3 shows an example of how to construct a
positive pair and negative pair in a bag. We define a objective using InfoNCE [23] loss for
the representation Si

r:

LCL(Si
r; θ) = −log

esim(Si
r ,S̃i

r)

esim(Si
r ,S̃i

r) + ∑t:t ̸=i esim(Si
r ,B̃t

r)
(26)

where sim(a, b) indicates a cosine function to measure the similarity between two sentence
representations. Through such a design, we can bring the sentence representations of
the same relational triples closer together, while pushing the representations of different
relational triples further apart.

3.3. Training Objective

Considering the initial stage of training, our extractor should first obtain an accurate
encoder IKSA for predicting entity relations. Thus, we introduce a increasing function λ(s)
with respect to the training step s into the training objective:

λ(s) =
2

1 + e−s − 1. (27)
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Accordingly, the training objective is defined as

L(θ) = LCE(θ) +
λ(s)

F

F

∑
i
LCL(Si

r; θ) (28)

where F is the number of false instances in a batch. The value of λ(s) progressively
approaches 1 as the relative training steps s increases, thereby allocating greater emphasis
to the CCL.

4. Results

In this section, we present a series of experiments to demonstrate the effectiveness
of our proposed method. With this aim, we first introduce the datasets and evaluation
metrics. Then, we discuss the parameter settings and compare the MLNRNN with seven
DSRE competitors. Additionally, we carried out an ablation study to investigate the
effectiveness of each component. Furthermore, a complexity analysis is provided to assess
the computational efficiency of the method. Finally, we conclude with a case study, for a
more specific evaluation.

4.1. Datasets and Evaluation Metrics

In our experiments, we adopted three DSRE benchmark datasets: NYT-10 [44], NYT-16 [17],
and Wiki-20m [13]. Both NYT-10 and NYT-16 were generated by aligning the Freebase entity
relation with the New York Times corpus and support 53 different relations, including NA.
NYT-10 takes the corpus from 2005 to 2006 as a training set and employs the data of 2007
as a test set. In detail, the training set contains 522,611 sentences, 281,270 entity pairs, and
18,252 relation facts, while the testing set contains 172,448 sentences, 96,678 entity pairs, and 1950
relation facts. NYT-16 provides 112,941 sentences, 65,726 entity pairs, and 4266 relation facts as
a training set, and 152,416 sentences, 93,574 entity pairs, and 1732 relation facts for testing. In
contrast, Wiki-20m is a recently released and larger dataset for training DSRE models. It consists
of 6,987,222 sentences, 304,870 entity pairs, and 157,740 relation facts for training, along with
137,986 sentences, 74,390 entity pairs, and 56,000 relation facts for testing.

To ensure fair comparisons, each DSRE method was evaluated using a held-out test,
where the precision and recall were determined by comparing the predictions of models
with the relational facts in the datasets. In our experiments, we employed precision–recall
(PR) curves, P@N(s), and the area under the precision–recall curve (AUC) as metrics for
evaluation. P@N(s) was calculated from the top N predictions that were sorted by the
confidence score of each bag. It is well-established that the NYT-10 and NYT-16 datasets,
both of which are auto-labeled, contain numerous incorrect labels and duplicate instances,
hurting the performance of DSRE methods. In line with previous studies [12,14,19], we
used the metrics Top-100, Top-200, and Top-300 P@N(s) for these datasets. However, Wiki-
20m is a human-labeled dataset, which results in the better performance of DSRE models,
due to the high-quality annotations it provides. We leveraged Top-30,000, -40,000, and
-50,000 P@N(s) for Wiki-20m to enable a more accurate performance assessment.

4.2. Parameter Settings

In the experiments, word embeddings were trained a priori using GloVe [40] on the
two datasets. In our work, we concatenated the words of an entity horizontally if it consisted of
multiple words. We employed the Adam optimizer to train the objective function. The dimen-
sion for word embeddings dw and position embeddings dp were set to 50 and 5, respectively.
Correspondingly, the dimensions of the relation query vector rhid and the sentence represen-
tation dr were both 60. We adjusted parameters through cross-validation and grid search,
including a distance threshold Thd, disturbance regulator ε, head count of MHSA l, dropout
rate DR to avoid overfitting, learning rate LR, and batch size bs. Table 3 lists all the parameter
settings for our model.
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Table 3. Model parameters and their values.

Parameter Value

dw 50
dp 5

rhid 60
dr 60

Thd 0.018
ε 2
l 4

LR 0.0005
DR 0.1
bs 45

4.3. Comparative Experiments with Competitors

In this section, the MLNRNN was compared with seven state-of-the-art methods to
demonstrate its effectiveness, including

• PCNN + ATT [18]: A method that integrates a piece-wise CNN with selective attention
over instances.

• PARE [13]: A method based on BERT concatenates all sentences in a bag to explore
more information.

• Intra-Inter Bag [19]: A method with a multi-level attention mechanism to refine
features at sentence-level (ATT_RA) and bag-level (BAG_ATT), which employs a
PCNN as its encoder.

• FAN [37]: A method utilizing adversarial training to align false negative instances
into a unified feature space and generate pseudo labels for them, which employs a
PCNN with a transformer layer as its encoder.

• HiCLRE [14]: A method leveraging interactive information between entity level,
sentence level, and bag level with an MHSA to learn more intra-level information
with adversarial contrastive learning, which employs BERT as its encoder.

• Multicast [24]: A method employing adversarial training at sentence-level and bag-
level to improve data utilization, which employs a PCNN as its encoder.

• CIL [23]: A method proposing contrastive instance learning to construct a positive
pair with TF-IDF, which employs BERT as its encoder.

Figures 4–6 show the PR curves of the MLNRNN and the competitors on the NYT-
10, NYT-16, and Wiki-20m datasets. It can be observed that the MLNRNN achieved the
highest precision on the majority of recalls on the three datasets. Since the NYT-16 dataset
is significantly larger than the NYT-10 dataset, the PR curves for all models showed a
greater decline on the NYT16 dataset. Although the Wiki-20m dataset was much larger
than the previous two, PR curves of all models tended to decline less sharply, because
it was manually annotated, with fewer incorrect labels. Consequently, all competitors,
including our method, generally performed better on it.

We adopted the AUC in our experiments because it can show the difference in per-
formance more clearly between the competitors and the MLNRNN. Tables 4–6 present
a comprehensive comparison of the MLNRNN with the other competitors, detailing the
Top-N P@N(s), Mean P@N, and AUC for NYT-10, NYT-16, and Wiki-20m, respectively.
The highest values are indicated in bold. From Tables 4–6, we can see that the MLNRNN
outperformed all competitors across all evaluation metrics. Among the competitors, PARE
performed better than the others, while the MLNRNN demonstrated a superior perfor-
mance, showing improvements of 3.2% in Mean P@N and 1.2% in AUC from Table 4, 2.3%
in Mean P@N and 1.9% in AUC from Table 5, and 0.6% in Mean P@N and 1.1% in AUC
from Table 6.
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Figure 4. PR curves of the MLNRNN and the competitors for the dataset NYT-10.
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Figure 5. PR curves of the MLNRNN and the competitors for the dataset NYT-16.
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Figure 6. PR curves of the MLNRNN and the competitors for the dataset Wiki-20m.

Table 4. Comparisons of the MLNRNN with the competitors in terms of P@N(s) and AUC on NYT 10.

DSRE Methods
P@N(s) (%)

AUC
Top 100 Top 200 Top 300 Mean

PCNN + ATT 76.0 71.0 67.3 71.4 36.3
Multicast 83.7 79.2 74.2 79.0 40.2
CIL 81.5 75.5 72.1 76.4 42.1
FAN 85.8 83.4 79.9 83.0 44.8
Intra-Inter Bag 91.8 84.0 78.7 84.4 42.2
HiCLRE 82.0 78.5 74.0 78.2 45.3
PARE 90.0 84.3 82.3 85.5 47.5
MLNRNN(Ours) 94.2 88.4 83.4 88.7 48.9

The best P@N(s) or AUC values are marked in bold and this formatting is consistent across all tables below.

Table 5. Comparisons of the MLNRNN with the competitors in terms of P@N(s) and AUC on NYT 16.

DSRE Methods
P@N(s) (%)

AUC
Top 100 Top 200 Top 300 Mean

PCNN + ATT 68.7 64.3 61.1 64.7 26.9
Multicast 75.0 70.5 65.3 70.3 31.3
CIL 70.2 68.8 64.3 67.8 29.5
FAN 76.2 71.0 66.2 71.1 33.9
Intra-Inter Bag 76.0 72.0 67.3 71.8 33.1
HiCLRE 75.6 71.2 65.8 70.9 33.7
PARE 77.0 72.0 68.6 72.5 35.9
MLNRNN(Ours) 79.2 74.0 71.2 74.8 37.8
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Table 6. Comparisons of the MLNRNN with competitors in terms of P@N(s) and AUC on Wiki-20m.

DSRE Methods
P@N(s) (%)

AUC
Top 30,000 Top 40,000 Top 50,000 Mean

Multicast 94.7 88.8 80.4 88.0 82.1
CIL 96.2 89.4 83.6 89.7 85.1
FAN 95.4 89.6 84.2 89.7 84.0
Intra-Inter Bag 97.0 92.8 86.7 92.2 88.7
HiCLRE 97.2 94.0 86.6 92.6 87.9
PARE 97.4 94.0 87.6 93.0 89.9
MLNRNN(Ours) 97.9 94.4 88.5 93.6 91.0

4.4. Ablation Study and Analysis

Since the two proposed modules are essential components, they could not be directly
removed for ablation experiments. However, to fully demonstrate the effectiveness of each
module, we first replaced each our module with several existing methods for comparison.
Then, we selected the best-performing replacements for an overall comparison experiment.

To verify the effectiveness of the IKSA, we compared it with RNN/CNN/BERT rela-
tion extractors on the NYT-10 dataset for P@Ns, as NYT-10 is the most widely used dataset
in DSRE. As noted in Table 7, IKSA+ATT outperformed the neural networks with the other
structures. We can also see that the transformer-based model obtained better results than
the CNN-based and RNN-based models. Accordingly, we compared MOMIL with other al-
gorithms that deal with sentence representations or bag representations based on the same
sentence encoder. From Table 7, we can also infer that MOMIL failed to achieve the best
result for the Top 100, as this module relies on obtaining accurate sentence representations
first and convolutional operations are unable to model long-distance dependencies.

Table 7. Comparisons between replaced methods on NYT-10 to select appropriate ablation methods.

Replaced Methods
P@N(s) (%)

Top 100 Top 200 Top 300 Mean

PCNN+ONE 75.0 70.0 64.7 69.9
PCNN+ATT 76.0 71.0 67.3 71.4
PCNN+ATT_RA+BAG_ATT 91.8 84.0 78.7 84.4
PCNN+MOMIL 90.8 84.6 79.8 84.7

Bi-LSTM+ATT 72.4 66.7 63.8 67.6
BERT+ATT 88.2 82.7 79.3 83.4
IKSA+ATT 91.4 85.3 81.6 86.1

Therefore, we compared the MLNRNN with three ablation methods. We could prune
the CCL and replace the IKSA and MOMIL with their strongest competitors, respectively,
that we selected from Table 7. Specifically, we replaced the IKSA with BERT to form
a MLNRNN w/o IKSA, and replaced MOMIL with the ATT_RA+BAG_ATT to form a
MLNRNN w/o MOMIL. Figure 7 depicts the precision curves of the MLNRNN and
the three ablation methods on NYT-10, where the curve of the MLNRNN is better than
the others, meaning that each module in the MLNRNN provided varying degrees of
improvement to the model. We can observe that the MLNRNN obviously performed better
than the three ablation methods across the different Top-N and mean P@N values from
Table 8. Additionally, we can observe that the three ablation methods showed inconsistent
performance across the different P@N values. For instance, the MLNRNN w/o IKSA
performed the worst of the three ablation methods. Through this observation, we can infer
that the IKSA plays a crucial role in the overall performance of the model, significantly
contributing to its effectiveness, due to the fact that the IKSA can capture the semantic
features that express relationships more comprehensively and accurately. Although BERT
is also capable of effectively modeling the overall semantics of a sentence, it is inevitably
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influenced by other features rather than relation features within the sentence. In contrast,
the IKSA, through an interaction between denoised word information, only extracts the
features that are more relevant to the entity pairs and the sentence-specific latent relation,
thereby eliminating the influence of unrelated but frequently occurring words. From
the perspective of computational cost, the IKSA achieved the optimal performance after
six iterations, while even the BERT-based models consisted of twelve transformer encoder
modules. The IKSA’s parameter count was only 60% of that of the BERT-based models.
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Figure 7. PR curves of the MLNRNN and three ablation methods on the NYT-10 dataset.

Table 8. P@N(s) of MLNRNN and three ablation methods on NYT-10.

DSRE Methods
P@N(s) (%)

Top 100 Top 200 Top 300 Mean

MLNRNN w/o MOMIL 91.4 85.3 81.6 86.1
MLNRNN w/o CCL 92.0 86.4 81.7 86.7
MLNRNN w/o IKSA 90.8 84.6 79.8 84.7
MLNRNN 94.2 88.4 83.4 88.7

Subsequently, the MLNRNN w/o MOMIL failed to outperform the MLNRNN w/o
CCL, which indicates that MOMIL is effective even without CCL. This effectiveness can
be attributed to the greedy algorithm of MOMIL that can exploit as many true instances
as possible, with a proper threshold and semantic enhancement to form the accurate bag
representation for classification. From another perspective, combining MOMIL with other
encoders could also lead to improvements, showing that MOMIL can be well integrated
with other encoders such as PCNN and Bi-LSTM. Moreover, MOMIL approaches the
multiple-instance learning problem from a new perspective, by first distinguishing between
positive and negative instances and then processing them separately, rather than treating
all instances uniformly.

Last but not least, the MLNRNN w/o CCL performed the best among the three
ablation methods but worse than the MLNRNN, showing that false instances indeed
contain abundant useful information to improve the performance of models. With the
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contrastive learning framework that we designed, sentences containing the same relation
triple bring their semantic features closer together, whereas the differences between the
semantic features of sentences with different relation triples are magnified in the semantic
space. This approach ensures that the learned features are more discriminative, thus
improving the ability to effectively distinguish between sentence features. Thus, the results
of the MLNRNN w/o CCL decreased in P@N(s).

Since the threshold Thd is a critical parameter of MOMIL, we also conducted exper-
iments to verify our assumption. Figure 8 shows the performance of tow models with
different thresholds. When the threshold is 0, this means that the model selects only the
most likely instance as the true instance. We can see that the performance of both models
declined when the threshold was either below or above the optimal value. This is because
a too low threshold results in missing true instances, while a too high threshold causes
false instances to be recognized as true ones, introducing noise, and thereby hurting the
performance. However, a higher threshold is less detrimental to the model compared to a
lower threshold. This is due to the effect of the semantic enhancement mechanism, which
can filter out some noise, while filtering out dissimilar semantics.
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Figure 8. The performance with different thresholds.

4.5. Computational Complexity Analysis

To demonstrate the practical applicability of the proposed MLNRNN, we analyze
its time and space complexity in this section. For the time cost, the primary computation
of the MLNRNN is concentrated in the multi-head self-attention (MHSA) layer of the
IKSA module. Therefore, we considered its time complexity to be O(m2 × d2

x), where m
represents the sequence length, and dx is the word embedding dimension. For comparison,
we chose the strongest competitor, the PARE [13] model, which also focuses its computation
on the multi-head self-attention layer and shares the same time complexity. To further
compare, we analyzed the floating point operations (FLOPs) of both models to evaluate
their real-time runtime performance. The FLOPs for PARE [13] were 348.21 G, while for
our proposed MLNRNN, they were 220.41 G. This demonstrates that our method achieved
a superior performance, while maintaining a lower time complexity. For space complexity,
we analyzed the parameter numbers of the MLNRNN. Our method contains 69.73 M
parameters, whereas the methods based on BERT, such as HiCLRE [14], typically have
over 80 M parameters. Although convolutional neural-network-based methods have less
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parameters, such as Intra-Inter Bag [19] with 78.25 K parameters and Multicast [24] with
81.75 K parameters, their ability to extract key features is limited. Despite having fewer
parameters, these methods did not outperform MLNRNN on the various datasets.

4.6. Case Study

We present several sample cases from the NYT-10 dataset to show the realistic perfor-
mance of the IKSA and MOMIL, respectively. We selected three typical sentences for the
IKSA, and words with weights higher than the overall average are highlighted in bold in
Table 9. We can see that the selected words contain salient relation features and other words
are completely irrelevant. It is worth noting that these words are distributed discretely
throughout the sentence and do not follow any fixed pattern. In addition, we provide
three bags to exhibit the performance of MOMIL and compare it with three multi-instance
learning algorithms, as shown in Table 10. The four algorithms were implemented on the
basis of the same encoder. The first bag had two correct sentences, and the other two bags
had only one true instance. MOMIL could effectively remove the noise and was not misled
by sentences with ambiguous semantics. This was not only due to the accurate sentence
representations provided by the IKSA, but also to an appropriate threshold Thd.

Table 9. Cases study for keywords that IKSA selected.

Relations Sentences

LC
In [New York], a new downtown center is planned for Brookhaven on [Long
Island], and a village development designed by Robert, called Tuxedo Reserve,
is planned for Tuxedo.

PN
... said the new foreign minister of [Albania] during an interview in his office,
decorated with an elegant portrait of [Faik Konica], who became the first
Albanian ambassador to the United States in 1926.

CF The most visible and one of the most outspoken is [Vinod Khosla], a founder
of [Sun Microsystems] and now a partner at Khosla Ventures.

Words in brackets are entities and the remaining bold text represents the keywords selected by IKSA. ‘LC’,
‘PN’, and ‘CF’ are relation labels in the dataset, which are ‘location/contains’, ‘person/nationality’, and ‘com-
pany/founders’, respectively.

Table 10. Case study for bags processed by MOMIL and other multi-instance learning algorithms.

Relations Bags
Weights

ONE ATT ATT_RA MOMIL

S1: The effort has proved increasingly contentious, involving everything from local
financing for the arts to the future of democracy in [Hong Kong], which Britain
returned to [China] in 1997.

1 0.105 0.127 0.376

LC S2: The Fountain Set Group, a fabric maker that has headquarters in [Hong Kong] and
is [China]’s second-biggest textile exporter, was named in a study by Morgan Stanley.

0 0.889 0.597 0.624

S3: Chinese customs officials count the same goods as exports to [Hong Kong], a
simpler approach that allows [China] to release trade statistics quickly.

0 0.006 0.276 0

S1: That is the sum of his old Congressional district, which was mostly in [Brooklyn],
and the one drawn after the 2000 census, which added more [Queens] neighborhoods.

0 0.792 0.344 1

NA S2: He supervised Patrol, Administrative and Plainclothes duties in Manhattan,
[Brooklyn] and [Queens].

1 0.173 0.437 0

S3: The suit has been joined by City Councilman Eric Gioia, who represents
the [Queens] neighborhoods on the north side of Newtown Creek; and Marty
Markowitz, the [Brooklyn] borough president.

0 0.035 0.219 0

S1: The months of tense negotiations between [Tokyo] and Washington to reopen
the market of [Japan] received extensive coverage in their media.

0 0.013 0.16 0

CC S2: In practice, the subject matter of his prints was the urban life of Edo, the old
name for [Tokyo] and de facto capital of [Japan] after 1603.

1 0.978 0.66 1

S3: In a measure of changing Japanese attitudes to Russia, Shintaro Ishihara,
governor of [Tokyo], said in an interview on Thursday: [Japan], the U.S. and Russia
should jointly work on the pipeline project.

0 0.009 0.18 0

‘NA’ represents ‘non-relation’ and ‘CC’ represents the relation of ‘country/capital’.
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5. Discussion

From the comparative experimental results in Section 4.3, we can observe that the BERT-
based methods [13,14,23] generally outperformed the PCNN-based methods [18,19,37] (with
the exception of Multicast [24], which primarily applies adversarial training (AT) and virtual
adversarial training (VAT) to enhance model robustness, rather than designing methods
specifically for classification accuracy). This demonstrates the effectiveness of self-attention
mechanisms for modeling long sequences. Building on this foundation, our proposed ML-
NRNN introduced a keyword feature extraction approach tailored for relation extraction,
achieving improved performance, while also reducing the number of parameters. In addition,
the PCNN-based method Intra-Inter Bag [19] also achieved commendable results, indicating
that its proposed multi-level attention mechanism is capable of refining representative relation
features from the features extracted by the PCNN.

Moreover, we acknowledge the limitations of this article, such as not considering the
impact of different entities on the relational sentence structures. For example, sentences
expressing the same relation may have significantly different representations depending on
the entity pair involved. In addition, we did not account for interactions between sentences
or the interactions between sentence-level and bag-level information. Consequently, much
work remains to be done in neural relation extraction. (1) In relation extraction, greater
emphasis could be placed on the types of entity pairs, rather than the entities themselves.
For instance, when expressing the relationship of “place of birth”, the phrase most used
is “born in”. By focusing on keywords and eliminating representation differences caused
by different entity pairs, more comprehensive representations could be obtained. (2) Inter-
actions between sentences can provide additional information for relation classification,
as the relationship between entity pairs is not always explicitly expressed in the sentences
where they are mentioned.

6. Conclusions

In this article, we proposed a novel neural network, MLNRNN, which focuses on both
word-level and sentence-level noise, challenges that previous works have not adequately
addressed. The first module, the IKSA, was designed to capture the salient discriminative
features of sentences, while removing noisy words to address word-level noise. Moreover,
we introduced a different multi-instance learning algorithm, MOMIL, to alleviate sentence-
level noise, while leveraging information from false instances through CCL. Based on
such a framework, the MLNRNN can obtain more accurate sentence representations by
innovatively using latent relation vectors for guidance, and it takes into account both the
global dependencies and pairwise dependencies of words. To prove the effectiveness of the
MLNRNN, we performed extensive experiments on three DSRE benchmark datasets: NYT-
10, NYT-16, and Wiki-20m. Specifically, the MLNRNN achieved significant improvements
in AUC metrics compared to the state-of-the-art (SOTA) methods, with a 1.4% enhancement
on the NYT-10 dataset, a 1.9% improvement on the NYT-16 dataset, and a 1.1% boost on
the Wiki-20m dataset. We anticipate that this insight may be useful for advancing future
research and applications, such as knowledge graph construction.
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